On the 2-systole of stretched enough positive scalar curvature metrics on $S^2 \times S^2$
Thomas Richard

To cite this version:
Thomas Richard. On the 2-systole of stretched enough positive scalar curvature metrics on $S^2 \times S^2$. 2020. hal-02889894v2
On the 2-systole of stretched enough positive scalar curvature metrics on $S^2 \times S^2$

Thomas Richard

July 29, 2020

We use recent developments by Gromov and Zhu to derive an upper bound for the 2-systole of the homology class of $S^2 \times \{\ast\}$ in a $S^2 \times S^2$ with a positive scalar curvature metric such that the set of surfaces homologous to $S^2 \times \{\ast\}$ is wide enough in some sense.

Recall that the systole of a compact Riemannian manifold (M^n, g) is the length of the shortest non contractible loop in (M^n, g). In the middle of the 20th century, Loewner and Pu proved sharp upper bounds on the systole of any metric on T^2 or RP^2 in term of its volume. These were vastly generalized when in the early 80s Gromov gave similar (non sharp) bounds for n-dimensional essential manifolds. (See [Ber93] for the full story until 1993.)

The k-systole $sys_k(g)$ of (M^n, g) is the infimum of the k-dimensional volume over all homologically non trivial k-cycles. In general, for $k \geq 2$, the k-systole of a manifold cannot be bounded by the volume alone. In particular, Katz and Suciu showed in [KS99] that one can find metrics on $S^2 \times S^2$ whose volume is 1 but whose 2-systole can be arbitrary large. (Similar examples in higher dimension where already known to Gromov, see again [Ber93].)

One way to circumvent this is to introduce the more subtle “stable systoles” (see again [Ber93]), another way is to try to introduce curvature restrictions. This second route was first considered in dimension 3 by Bray, Brendle and Neves for manifolds such as $S^2 \times S^1$ with positive scalar curvature metrics in [BBN10]. Recently, Zhu treated the case of $S^2 \times T^n$ ($n + 2 \leq 7$) in [Zhu20], see Section 1 for a precise statement.

Here we will show how Zhu’s result together with recent developments due to Gromov gives some progress in the case of $S^2 \times S^2$.

Let S_{ℓ} be the set of embedded surfaces in $S^2 \times S^2$ which are in the same homology class as $S^2 \times \{\ast\}$.

LAMA, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, F-94010, Créteil, France
Definition 0.1. Let g be a Riemannian metric on $\mathbb{S}^2 \times \mathbb{S}^2$, the left stretch of g, denoted by $\text{stretch}_\ell(g)$ is defined as

$$\text{stretch}_\ell(g) = \sup_{S_1, S_2 \in \mathcal{S}} d_g(S_1, S_2).$$

Example 0.2. For a product metric $g = g_1 \oplus g_2$ on $\mathbb{S}^2 \times \mathbb{S}^2$, the left stretch is $\text{stretch}_\ell(g) = \text{diam}(\mathbb{S}^2, g_2)$ and is achieved by $S_1 = \mathbb{S}^2 \times \{p_1\}$ and $S_2 = \mathbb{S}^2 \times \{p_2\}$ where $d_{g_2}(p_1, p_2) = \text{diam}(\mathbb{S}^2, g_2)$.

Definition 0.3. Let g be a Riemannian metric on $\mathbb{S}^2 \times \mathbb{S}^2$, the left 2-systole of g, denoted by $\text{sys}_{2, \ell}(g)$ is defined as

$$\text{sys}_{2, \ell}(g) = \inf_{S \in \mathcal{S}} \text{area}_g(S).$$

Example 0.4. For a product metric $g = g_1 \oplus g_2$ on $\mathbb{S}^2 \times \mathbb{S}^2$, the left 2-systole is $\text{sys}_{2, \ell}(g) = \text{area}(\mathbb{S}^2, g_1)$ and is achieved by any $S = \mathbb{S}^2 \times \{\ast\}$.

The theorem below is the main result of the paper. It says that positive scalar curvature metrics on $\mathbb{S}^2 \times \mathbb{S}^2$ with large left stretch cannot have large left 2-systole.

Theorem 0.5. Let g be a metric on $\mathbb{S}^2 \times \mathbb{S}^2$ with $\text{Scal}_g \geq 4$. If $s = \text{stretch}_\ell(\mathbb{S}^2 \times \mathbb{S}^2, g) > \frac{\sqrt{3}}{2}$, then $\text{sys}_{2, \ell}(\mathbb{S}^2 \times \mathbb{S}^2, g) \leq \frac{8\pi s^2}{4s^2 - 3\pi}$. Moreover, $\text{sys}_{2, \ell}(\mathbb{S}^2 \times \mathbb{S}^2, g)$ is attained by an embedded 2-sphere.

Remark 0.6. This estimate is asymptotically sharp when s goes to $+\infty$, as the example of the product of two round spheres of radii $\frac{1}{\sqrt{k}}$ and $\frac{1}{\sqrt{2-k}}$ for $k \in [1, 2)$ shows.

Remark 0.7. Of course, if one denotes by \mathcal{S}_r the set of embedded spheres homologous to $\{\ast\} \times \mathbb{S}^2$, we can define right stretch and systole as $\text{stretch}_r(g) = \sup_{S_1, S_2 \in \mathcal{S}_r} d_g(S_1, S_2)$ and $\text{sys}_{2, r}(g) = \inf_{S \in \mathcal{S}_r} \text{area}_g(S)$ and get the same inequality between the right systole and the right stretch.

It is currently unknown whether the 2-systole is bounded from above on the set $\mathcal{M}_{\mathbb{S}^2 \times \mathbb{S}^2, \text{Scal} \geq 4}$ of metrics on $\mathbb{S}^2 \times \mathbb{S}^2$ with scalar curvature greater than 4. Our result says that if there is no upper bound, there must be a sequence of metrics in $\mathcal{M}_{\mathbb{S}^2 \times \mathbb{S}^2, \text{Scal} \geq 4}$ whose 2-systoles goes to infinity while their left and right stretches stay below $\frac{\sqrt{3}}{2\pi}$.

The rest of the paper is organized as follows: we first review some previously known results by Gromov and Zhu on manifolds with positive scalar curvature which will be used to prove Theorem 0.5, we then prove an elementary topological fact and we finally give the proof of the main theorem.

Acknowledgements

The author would like to thank G. Besson and S. Sabourau for helpful discussions. He also thanks Jintian Zhu for pointing an inaccuracy in a previous version of this work. The author is supported by the grant ANR-17-CE40-0034 of the French National Research Agency ANR (Project CCEM).
1 Positive scalar curvature inequalities by Gromov and Zhu

We will need the following result by Jintian Zhu, which was already alluded to in the introduction.

Theorem 1.1 ([Zhu20], Theorem 1.2). Let \((M^n, g)\) be a closed manifold of dimension at most seven such that:

- \(\text{Scal}_g \geq 2\);
- there exists a map \(F : M^n \to \mathbb{S}^2 \times \mathbb{T}^{n-2}\) with non-vanishing degree.

Then \(\text{sys}_2(g) \leq 4\pi\). More precisely one can find an embedded 2-sphere \(S\) such that \(F_*([S]) = [\mathbb{S}^2 \times \{\ast\}]\) and whose area is less than \(4\pi\).

The proof uses the second variation formula of the area functional for stable minimal hypersurfaces and a repeated symmetrization construction to reduce the problem to \(\mathbb{T}^{n-2}\)-invariant metrics on \(\Sigma^2 \times \mathbb{T}^{n-2}\). This method of proof was pioneered by Fischer-Colbrie and Schoen in dimension 3 and used in dimensions at most seven by Gromov and Lawson in [GL83]. The author also studies the equality case.

Remark 1.2. The proof in [Zhu20] shows that if one starts with an \(S^1\)-invariant metric on \(M = M' \times S^1\) satisfying the hypothesis of Theorem 1.1 then one can find a 2-sphere in \(M'\) whose area is at most \(4\pi\).

In the Spring of 2019, the author was lucky enough to attend the lectures “Old, New and Unknown around Scalar Curvature” given by Gromov at IHES. There, the author learned about the following result by Gromov which is also proved using the Fischer-Colbrie-Schoen symmetrization process:

Theorem 1.3 ([Gro18], p. 2). Let \(2 \leq n \leq 7\), \(M = [-1, 1] \times \mathbb{T}^{n-1}\) and \(\partial \pm M = \{\pm 1\} \times \mathbb{T}^{n-1}\). Let \(g\) be a Riemannian metric on \(M\) such that \(\text{Scal}_g \geq n(n-1)\). Then

\[
\mathcal{D}_g(\partial_- M, \partial_+ M) \leq \frac{2\pi}{n}
\]

In his Spring 2019 lectures, Gromov gave a new proof of the previous theorem. Instead of using the second variation of the \((n-1)\)-dimensional volume as in [Gro18], a twisted functional is considered. Given a density \(\mu : M^n \to \mathbb{R}\), the \(\mu\)-area functional maps an open set \(U \subset M\) to \(\mathcal{V}_{n-1}(\partial U) - \int_U \mu\), where \(\mathcal{V}_{n-1}\) denotes the \((n-1)\)-dimensional volume. Using a well chosen density \(\mu\), Gromov proved the following theorem, which is a generalisation of the theorem above.

Theorem 1.4 ([Gro19], Section 5.3). Let \((M^n, g)\) \((n \leq 7)\) be a compact \(n\)-manifold with two boundary components \(\partial_- M\) and \(\partial_+ M\). Assume that

\[
\text{Scal}_g \geq \frac{4(n-1)\pi^2}{n \mathcal{D}_g(\partial_- M, \partial_+ M)^2} + \delta
\]

for some \(\delta > 0\). Then there exists
• a connected hypersurface \(\Sigma \) which separates \(\partial_- M \) and \(\partial_+ M \),
• a positive function \(u : \Sigma \to \mathbb{R} \),
such that the metric \(h = g|_\Sigma + u^2 dt^2 \) on \(\Sigma \times \mathbb{R} \) has \(\text{Scal}_h \geq \delta \).

2 Topological preliminaries

Before proving the main theorem, we establish a topological preliminary. Let \(M = S^2 \times S^2 \).

The idea is that if we remove two disjoint spheres \(S_1 \) and \(S_2 \) in \(S_\ell \) from \(M \), we should be in a situation which is very similar to removing \(S^2 \times \{n\} \) and \(S^2 \times \{s\} \) from \(S^2 \times S^2 \), where \(n \) and \(s \) are the north and south poles of the right factor. Thus \(\tilde{M} = M \setminus (S_1 \cup S_2) \) should look like

\[
S^2 \times S^2 \setminus (S^2 \times \{n\} \cup S^2 \times \{s\}) = S^2 \times (S^2 \setminus \{n, s\}) \cong S^2 \times S^1 \times (-1, 1).
\]

However, our surfaces \(S_1 \) and \(S_2 \) from \(S_\ell \) may have higher genus and thus \(\tilde{M} \) may be more complicated.

However we are able to prove the following, which will be enough for our purpose:

Proposition 2.1. Let \(S_1 \) and \(S_2 \) be two disjoint surfaces in \(S_\ell \). Let \(\Sigma \subset M \) be a connected hypersurface such that

• \(\Sigma \) is disjoint from \(S_1 \) and \(S_2 \),
• \(\Sigma \) separates \(S_1 \) and \(S_2 \).

Then there exists a non-zero degree map \(\Sigma \to S^2 \times S^1 \).

This map will be the restriction of a map \(F : \tilde{M} = M \setminus (S_1 \cup S_2) \to S^2 \times S^1 \).

We will first show :

Lemma 2.2. Any \(S \in S_\ell \) has a trivial normal bundle.

Proof. Let \(NS \) be the normal bundle to \(S \) and let \(e(NS) \) be the Euler class of \(NS \). It follows from [BT95][Theorem 11.17, p. 125] that the Euler class of a vector bundle over a compact manifold can be computed as the intersection number between the zero section and another transverse section times the fundamental class of the base.

Since \(NS \) can be embedded in \(M \) as a small tubular neighborhood of \(N \), this intersection number can be computed in \(M \). Since in \(S_\ell \) one can find two disjoint spheres, the intersection number is 0 and \(e(NS) = 0 \).

Moreover the Euler class is the only obstruction for an oriented rank \(k \) vector bundle over a a compact \(k \)-manifold to have a non vanishing section (see [Hat03], Proposition 3.22). Hence \(NS \) has a nowhere vanishing section. Since \(NS \) is an orientable rank 2 vector bundle, it is trivial. \(\square \)
For $\varepsilon > 0$, we denote by S^ε_1 the tubular neighborhood around S_1. We will choose ε small enough so that S^ε_1 and S^ε_2 are disjoint regular neighborhoods.

Lemma 2.3. The map $F_2 : \tilde{M} \subset S^2 \times S^2 \to S^2 \times \{\ast\}$ is surjective in homology.

Proof. Consider a 3-cycle C in M such that $\partial C = S_1 - S_2$. By using an fine enough triangulation, we can decompose $C = C_1 + \tilde{C} + C_2$, where \tilde{C} is a 3-cycle in \tilde{M} and C_i is a 3-cycle in S^ε_i. Now, $S^\varepsilon_1 = \partial C_1 - S_1$ is a 2-cycle in \tilde{M} homologous to S_1, hence $\pi(F_2)_\ast([S^\varepsilon_1]) = [S^2 \times \{\ast\}]$. □

Set $S = S_1 \cup S_2$, $S^\varepsilon = S^\varepsilon_1 \cup S^\varepsilon_2$ and $\tilde{S}^\varepsilon = S^\varepsilon \setminus S$.

Lemma 2.4. $H^1(\tilde{M}, \mathbb{Z}) = \mathbb{Z}$.

Proof. We will use the Mayer-Vietoris exact sequence for cohomology associated with the decomposition $M = S^\varepsilon \cup \tilde{M}$. Note that S^ε is homotopy equivalent to S and since S_1 and S_2 have trivial normal bundle, \tilde{S}^ε is homotopy equivalent to $S \times S^1$.

The Mayer Vietoris sequence gives

$$\cdots \to H^1(M) \to H^1(S^\varepsilon) \oplus H^1(\tilde{M}) \to H^1(\tilde{S}^\varepsilon) \to H^2(M) \to \cdots$$

Thus, we have

$$\cdots \to 0 \to H^1(S_1) \oplus H^1(S_2) \oplus H^1(\tilde{M}) \to H^1(S_1) \oplus \mathbb{Z} \oplus H^1(S_2) \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z} \to \cdots$$

where the map $H^1(\tilde{S}^\varepsilon) \simeq H^1(S_1) \oplus \mathbb{Z} \oplus H^1(S_2) \oplus \mathbb{Z} \to H^2(\tilde{M})$ is given by $(a, x, b, y) \mapsto (x - y, 0)$. Hence $H^1(\tilde{M})$ is isomorphic to \mathbb{Z}. □

Since $H^1(\tilde{M}, \mathbb{Z}) \simeq \mathbb{Z}$, $H^1(\tilde{M}, \mathbb{R}) \simeq \mathbb{R}$ and we can find a closed 1-form α on \tilde{M} which is not exact. Let Γ be the image in \mathbb{R} of the abelian group morphism : $c \in H_1(M, \mathbb{Z}) \mapsto \int_c \alpha \in \mathbb{R}$. By a computation similar to the proof of the previous lemma, $H_1(\tilde{M}, \mathbb{Z}) = \mathbb{Z}$. Hence Γ is a discrete subgroup of \mathbb{R}. The classical period map construction gives :

Lemma 2.5. Let $x_0 \in \tilde{M}$. For any curve c from x_0 to x, $\int_c \alpha$ is well defined as an element \mathbb{R}/Γ. This defines a map $F_1 : \tilde{M} \to \mathbb{R}/\Gamma$ such that the induced map $H_1(\tilde{M}) \to H_1(\mathbb{R}/\Gamma)$ is an isomorphism.

$F = (F_2, F_1) : \tilde{M} \to S^2 \times S^1$ is the map we are looking for.

Proof of Proposition 2.1. First note that any connected hypersurface $\Sigma \subset M$ which separates S_1 and S_2 will be homologous to ∂S^ε_1 for ε small enough. Thus it is enough to show that the image of $[\partial S^\varepsilon_1]$ under F is not zero in $H_3(S^2 \times S^1) = H_2(S^2) \oplus H_1(S^1)$, which is routinely deduced from the proofs of Lemmas 2.3 and 2.4. □
3 Proof of the main theorem

We are now ready to prove Theorem 0.5.

Proof of Theorem 0.5. Our assumption is that
\[s = \text{stretch}_{(S^2 \times S^2, g)} > \sqrt{\frac{3\pi}{2}}. \]
Thus, for any \(\varepsilon > 0 \) we can find two surfaces \(S_1 \) and \(S_2 \) in \(S^\ell \) such that \(d_g(S_1, S_2) = s - \varepsilon \). Assume that \(\varepsilon > 0 \) is such that

- \(s - 3\varepsilon > \sqrt{\frac{3\pi}{2}} \);
- the tubular neighborhoods \(S^\varepsilon_1 \) and \(S^\varepsilon_2 \) of radius \(\varepsilon \) around \(S_1 \) and \(S_2 \) are disjoint and regular.

Then if we set \(\tilde{M} = M \setminus (S^\varepsilon_1 \cup S^\varepsilon_2) \), its two boundary components \(\partial_- \tilde{M} = \partial S^\varepsilon_1 \) and \(\partial_+ \tilde{M} = \partial S^\varepsilon_2 \) satisfy \(d_g(\partial_- \tilde{M}, \partial_+ \tilde{M}) = s - 3\varepsilon \).

Set \(\delta = 4 - \frac{3\pi^2}{(s - 3\varepsilon)^2} \) and note that \(\delta > 0 \). Then we have:

\[
\text{Scal}_g \geq 4 = \frac{3\pi^2}{d_g(\partial_- \tilde{M}, \partial_+ \tilde{M})^2} + \delta.
\]

This is exactly what we need to apply Gromov's Theorem 1.4. Hence we get an hypersurface \(\Sigma \subset \tilde{M} \) which separates \(S_1 \) and \(S_2 \) such that \(\Sigma \times S^1 \) admits a metric of the form \(h = g_\Sigma + u^2 dt^2 \) for some \(u : M \rightarrow \mathbb{R} \) such that \(\text{Scal}_h \geq \delta \).

Moreover, by Proposition 2.1 there exists a non-zero degree map \(\Sigma \rightarrow S^2 \times S^1 \). Hence there is a non-zero degree map \(\Sigma \times S^1 \rightarrow S^2 \times \mathbb{T}^2 \) and we can apply Zhu's Theorem 1.1 and Remark 1.2 to show that one can find an embedded 2-sphere \(S \) in \(\Sigma \) whose area is at most

\[
\frac{8\pi}{\delta} = \frac{8\pi(s - 3\varepsilon)^2}{4(s - 3\varepsilon)^2 - 3\pi^2}.
\]

Since \(\Sigma \) is isometrically embedded in \(M \), \(S \) embeds in \(M \) with area at most \(\frac{8\pi(s - 3\varepsilon)^2}{4(s - 3\varepsilon)^2 - 3\pi^2} \). Moreover, by the properties of the map \(F \) built in section 2 the surface \(S \) of \(M \) belongs to \(S^\ell \). Since \(\varepsilon > 0 \) can be as small as one wants we get the results.

References

