Partially Linear Spatial Probit Models - Les annales de l'ISUP
Article Dans Une Revue Annales de l'ISUP Année : 2019

Partially Linear Spatial Probit Models

Résumé

A partially linear probit model for spatially dependent data is considered. A triangular array setting is used to cover various patterns of spatial data. Conditional spatial heteroscedasticity and non-identically distributed observations and a linear process for disturbances are assumed, allowing various spatial dependencies. The estimation procedure is a combination of a weighted likelihood and a generalized method of moments. The procedure first fixes the parametric components of the model and then estimates the non-parametric part using weighted likelihood; the obtained estimate is then used to construct a GMM parametric component estimate. The consistency and asymptotic distribution of the estimators are established under sufficient conditions. Some simulation experiments are provided to investigate the finite sample performance of the estimators.
Fichier principal
Vignette du fichier
Pages de DEP_8-V-64396_(2015-2019)-44.pdf (10.17 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03133818 , version 1 (10-03-2022)

Identifiants

  • HAL Id : hal-03133818 , version 1

Citer

Mohamed-Salem Ahmed, Sophie Dabo-Niang, Michaël Genin, Alaa Ali Hassan. Partially Linear Spatial Probit Models. Annales de l'ISUP, 2019, 63 (2-3), pp.71-96. ⟨hal-03133818⟩
331 Consultations
44 Téléchargements

Partager

More