Canonical Commutation Relations: A quick proof of the Stone-von Neumann theorem and an extension to general rings
Résumé
Let $R$ be a (not necessary commutative) ring with unit, $d\geq 1$ an integer, and $\lambda$ a unitary character of the additive group $(R,+).$ A pair $(U,V)$ of unitary representations $U$ and $V$ of $R^d$ on a Hilbert space $\mathcal{H}$ is said to satisfy the canonical commutation relations (relative to $\lambda$) if $U(a) V(b)= \lambda(a\cdot b)V(b) U(a)$ for all $a=(a_1, \dots, a_d), b= (b_1, \dots, b_d)\in R^d$, where $a\cdot b= \sum_{k=1}^d a_k b_k.$
We give a new and quick proof of the classical Stone von Neumann Theorem about the essential uniqueness of such a pair in the case where $R$ is a local field (e.g. $R= \mathbf{R}$). Our methods allow us to give the following extension of this result to a general locally compact ring $R$. For a unitary representation
$U$ of $R^d$ on a Hilbert space $\mathcal{H}, $ define the inflation $U^{(\infty)}$ of $U$ as the (countably) infinite multiple of $U$ on $\mathcal{H}^{(\infty)}=\oplus_{i\in \mathbf{N}} \mathcal{H}$.
Let $(U_1, V_1), (U_2, V_2)$ be two pairs of unitary representations of $R^d$ on corresponding Hilbert spaces $\mathcal{H}_1, \mathcal{H}_2$ satisfying the canonical commutation relations (relative to $\lambda$). Provided that $\lambda$ satisfies a mild faithful condition, we show that the inflations $(U_1^{(\infty)}, V_1^{(\infty)}), (U_2^{(\infty)}, V_2^{(\infty)})$ are approximately equivalent, that is, there exists a sequence $(\Phi_n)_n$ of unitary isomorphisms $\Phi_n: \mathcal{H}_1^{(\infty)}\to \mathcal{H}_2^{(\infty)}$ such that
$$\lim_{n} \Vert U_2^{(\infty)}(a) - \Phi_n U_1^{(\infty)}(a) \Phi_n^{*}\Vert=0 \quad \text{and} \quad \lim_{n} \Vert V_2^{(\infty)}(b) - \Phi_n V_1^{(\infty)}(b) \Phi_n^{*}\Vert=0,$$
uniformly on compact subsets of $R^d.$
Origine | Fichiers produits par l'(les) auteur(s) |
---|