A unified analysis of elliptic problems with various boundary conditions and their approximation - Équations aux dérivées partielles
Pré-Publication, Document De Travail Année : 2018

A unified analysis of elliptic problems with various boundary conditions and their approximation

Résumé

We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue–Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii) several approximation methods. The considered approximations can be conforming, or not (that is, the approximation functions can belong to the energy space of the problem, or not), and include classical as well as recent numerical schemes. Convergence results and error estimates are given. We finally briefly show how the abstract setting can also be applied to other models, including flows in fractured medium, elasticity equations and diffusion equations on manifolds. A by-product of the analysis is an apparently novel result on the equivalence between general Poincaré inequalities and the surjectivity of the divergence operator in appropriate spaces.
Fichier principal
Vignette du fichier
gdm_abst.pdf (255.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01823265 , version 1 (25-06-2018)
hal-01823265 , version 2 (25-03-2019)
hal-01823265 , version 3 (06-05-2019)

Identifiants

Citer

Jérôme Droniou, Robert Eymard, T. Gallouët, R. Herbin. A unified analysis of elliptic problems with various boundary conditions and their approximation. 2018. ⟨hal-01823265v1⟩

Collections

LAMA_EDP
349 Consultations
555 Téléchargements

Altmetric

Partager

More