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Abstract

Rotational transitions of the gauche-acetone cyanohydrin are measured in
the microwave range between 5 and 23 GHz. Results from quantum chem-
istry indicate that the hydrogen atom of the hydroxyl group undergoes a
tunneling motion connecting two equivalent structures. The observed sig-
nals are assigned to the two lowest tunneling substates 0+ and 0−, belonging
to either a- or c-type transitions exhibiting Coriolis splittings of a few MHz.
Additional hyperfine structure arises from quadrupole coupling of the 14N
nucleus. The energy separation ∆E of the 0+ and 0− states is calculated
to be around 51 GHz. The molecular structure and internal dynamics are
discussed in terms of their spectral signatures.

Keywords:
Coriolis coupling, astrochemistry, high resolution microwave spectroscopy,
prebiotics, cyanohydrin

1. Introduction

Where do we come from? This is a genuine question. Until today, we are
still questioning whether the first prebiotic molecules on Earth were formed
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in its atmosphere, or if they were brought to Earth by asteroids billions of
years ago. Humanity has always been fascinated by the firmament, leading to
intense research in the fields of astrochemistry, astrobiology, and astrophysics.

Finding or dismissing evidence for the astrochemical models and their un-
derstanding is a key aspect of radioastronomic observations in combination
with theoretical knowledge and measurements under well defined conditions
in terrestrial laboratories. Since most of the molecules in space are unam-
bigously identified by their rotational transitions, microwave and millimeter
wave spectroscopy are the established methods of choice. Concerning chi-
ral discrimination of different enantiomers, although sophisticated concepts
for laboratory experiments are developed, seems illusive.[1] Only one chiral
molecule, propylene oxide (CH3CHCH2O), has been detected in molecular
clouds yet, while it is also unknown, if these molecules are formed enantiose-
lective or racematic.[2] On Earth, it is well known that most reactions do not
produce only one enantiomer as a product without adding chiral informa-
tion e.g. a well defined catalyst. Even when acknowledging parity violation
caused by the weak interaction, it is likely too inefficient to see these reactions
take place in molecular clouds on their own. Such reactions might occur on
a catalytic surface, that is presumably dust in molecular clouds, that might
aggregate over long time scales forming comets and asteroids in the end. This
allows for two possibilities: Outgasing of comets can be detected and these
signals can be analyzed and assigned. A well known example is the comet
Hale-Bopp, that has been studied extensively.[3, 4, 5, 6] This approach is
quite limited, since the object has to be near to the earth (e.g. in our solar
system), to allow for in-situ observations. Another approach is the obser-
vation of molecular clouds and try to find molecules, that have potential to
form chiral prebiotic molecules like amino acids, sugars etc.[7] Therefore, it
seems more promising to look for small molecules as potential precursors for
prebiotics or chiral molecules themselves. This is also the purpose of our
investigation.

With more than 200 different molecular species positively detected, nearly
fifty percent of these molecules can be classified as diatomics and triatomics,
that in certain cases are common and important for the production of medium
sized molecules.[8] The laboratory formation of the already detected molecules
might be quite different from their formation in space: Small metal containing
molecules are often vaporized into the gas phase by laser ablation. Radical
and ion formations require electric discharge, which can also be applied to
form long conjugated unsaturated carbon chains like cyanopolyynes which
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were identified very early in molecular clouds [9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Nevertheless,
many detected molecules are stable under laboratory conditions, for example
aldehydes[33, 34, 35, 36, 37, 38, 39, 40, 41], ketones [42, 43, 44], esters [37,
45, 41], amides [46, 47, 39, 36], carboxylic acids [48, 49], amines [50, 51, 52],
alcohols [53, 54, 55, 56, 57, 58] and nitriles [51, 59, 34, 60, 61, 62, 41, 63] .

Acetone has been identified already in 1987 in Sgr B2 as an astrochemi-
cally abundant molecule, which was confirmed in 2002 [64]. Later, Friedel et
al. and Lykke et al. found acetone signals in Orion KL and around the low
mass protostar IRAS 16293-2422 [65, 66]. The other prerequisite component,
hydrogen cyanide, is quite common in most regions of the interstellar medium
[67]. In the laboratory, direct reaction of acetone with hydrogen cyanide re-
sults in the creation of the metastable molecule, acetone cyanohydrin, which
is discussed to be a prochiral precursor. Since the labotatory reaction (reac-
tion (a) in Scheme 1) will largely be inhibited in space due to its high Gibbs
free activation energy, we suggest different possible reaction pathways : The
formation of acetone cyanohydrin from the reaction of hydrogen cyanide and
acetaldehyde (reaction (b) in scheme 1) with highly reactive methyl radicals
or cations. The methylation process is assumed to be the initial step for
the interstellar formation of protonized acetone and subsequent addition of
hydrogen cyanide in the same environment result in the formation of ace-
tone cyanohydrin after proton abstraction [68]. The stepwise methylation
of formaldehyde cyanohydrin/hydroxyacetonitrile (reaction (c) in scheme 1)
upon subsequent exchange of two hydrogens by two methyl groups via rad-
ical mechanisms could also form acetone cyanohydrin. Alternatively, such
two step substitutions could also be applied to two other possible starting
materials ethanol and ethyl cyanide.

The simplest cyanohydrin, Hydroxyacetonitrile, was discovered in 2019
around the protostar IRAS16293-2422 B [69], two years after its laboratory
characterization in the millimeter wave region based on microwave data from
Cazzoli et al. and Lister et al.[70, 71, 72] This molecule is proposed to be a
key in the synthesis of prebiotic significant molecules.[73]

With 13 atoms, like benzonitrile [74, 75], acetone cyanohydrin, would
be one of the largest molecular species found in the interstellar medium,
apart from the purely carbon based buckyballs C60 and C70. In addition
to the fullerenes, which due to the lack of a dipole moment could only be
identified like the benzene molecule by their vibrational bands [76, 77, 78],
efforts have been made to find polyclic aromatic hydrocarbons. The targeted
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Scheme 1: Possible reactions to form acetone cyanohydrin.

species were chosen to that have comparably large dipole moments, like the
notable example of corannulene, but those attempts have not been successful
yet.[79, 80]

2. Methodology

2.1. Theoretical

Acetone cyanohydrin was studied in 1977 by Lister and Lowe using Stark
modulated microwave spectroscopy [81]. The authors only observed one se-
ries of a-type R-branch bands which allowed them to determine just the
three rotational constants of the vibrational ground state (A0 = 4748.4 MHz,
B0 = 2830.83 MHz, C0 = 2762.99 MHz). By comparing the corresponding mo-
ments of inertia with those predicted using a molecular model based on the
structures of tert-butyl cyanide and methanol, Lister and Lowe concluded
that the assigned signals belong to the gauche conformer with the structure
given in Figure 1.

To investigate the conformations of acetone cyanohydrin, we perform a
potential scan rotating the hydroxyl group around the C-O bond using the
B3LYP functional, an aug-cc-pVTZ basis set, Grimmes D3 corrections, and
Becke-Johnson damping as implemented in the Gaussian 16 program revi-
sion B.01 [82], as illustrated in Figure 2. The potential energy curve reveals
two stable conformers where the hydrogen atom of the hydroxyl group is in
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Figure 1: Molecular structures of two conformers of acetone cyanohydrin and their corre-
sponding Newman projections.

gauche or in anti position with respect to the cyano group. Geometry opti-
mizations at the B3LYP-D3BJ/aug-cc-pVTZ level of theory are carried out
to obtain fully relaxed structures of the two conformers, as well as anhar-
monic frequency calculations for the ground state rotational constants and
centrifugal distortion constants.

Chemical intuition might suggest the anti -conformer to be favored in
view of the interactions between the lone pairs of the oxygen and the methyl
groups. However, in acetone cyanohydrin as well as other alcohols with two
identical substituents bonded to the hydroxyl carbon making the two gauche
structures are energetically equivalent, are ethanol, propanol, propargyl alco-
hol, benzyl alcohol, methoxymethanol, allyl alcohol and some of their deriva-
tives [83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], the anti-confomer is
higher in energy. Figure 2 illustrates the barrier hindering the tunneling large
amplitude motion (LAM) between the two equivalent gauche forms. Conse-
quently, due to the transition dipole selection rules, all b-type transitions of
gauche acetone cyanohydrin appear as tunneling doublets corresponding to
inter-state transitions with separation of 2∆E, while the a- and c-type intra-
state transitions only show narrow splittings caused by Coriolis interactions.
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2.2. Experimental

All measurements were performed using a Fourier transform microwave
spectrometer with a coaxially oriented beam resonator arrangement (CO-
BRA), characterized by its high sensitivity and resolution, that allows to
distinguish two signals separated by > 5 kHz [96]. Acetone cyanohydrin was
measured maintaining continuous cooling to slow down decomposition of the
substance into acetone and hydrogen cyanide. Adiabatic supersonic jet ex-
pansions with neon or helium as carrier gases were obtained from the nozzle
of a pulse solenoid valve operated at a stagnation pressure of approximately
1 bar.

3. Results and Discussion

3.1. Prediction

The computed molecular rotational-torsion parameters are collected in
Table 1. The barrier heights hindering the internal rotations of the two
methyl groups were predicted to be 1262 cm−1 and 1143 cm−1 for the gauche
conformer. For the two equivalent methyl rotors of the anti conformer, the
calculation obtained a value of 1255 cm−1. These values correspond with a
very small tunneling rate. Indeed predictions with the combined axis method
Hamiltonian in the XIAM program [97] confirm that the splittings resulting
from the internal rotation for both conformers are below the resolution limit
of the instrument.

The relaxed potential energy surface scan around the C-O bond, displayed
in Figure 2, shows that the gauche conformer is about 670 cm−1 more stable
than the anti -conformer. Therefore, the strongest signals in the spectrum are
expected to belong to gauche acetone cyanohydrin, even though the tunneling
LAM, the nuclear quadrupole coupling, and the dipole moment being lower
than that of anti acetone cyanohydrin, result in a reduction of the transition
intensities.

For a convenient treatment of the hydroxyl LAM, we estimated the ∆E
parameter by assuming a general exponential correlation between ∆E and
the corresponding barrier height V of the equivalent gauche forms with data
from literature. Therefore we perform a linear regression with these data,
shown in Figure 3:

ln(∆E/GHz) = −0.007298301× (V/cm−1) + 7.171727
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Table 1: Predicted molecular parameters of the two conformers of acetone cyanhydrin
obtained at the B3LYP-D3BJ/aug-cc-pVTZ level of theory.

gauche anti
A0

a / MHz 4726.67 4716.59
B0

a / MHz 2828.84 2830.42
C0

a / MHz 2760.76 2775.90
DJ

b / kHz 0.3182 0.3156
DJK

b / kHz 4.3024 4.0432
DK

b / kHz -3.5157 -3.2378
d1

b / Hz -6.9102 -5.0884
d2

b / Hz -1.644 -1.106
3/2χaa

c / MHz -7.205 -7.220
1/4(χbb − χcc) c / MHz -0.1008 -0.1233
χab

c / MHz -0.0222 -
χac

c / MHz 0.0131 -0.167
χbc

c / MHz 0.0349 -
V3,α(CH3) d / cm−1 1262 1255
sα(CH3)e 103.3 102.7
V3,β(CH3) d / cm−1 1143 1255
sβ(CH3)e 93.6 102.7
|µa| f / D 3.1 4.8
|µb| f / D 1.2 0.00
|µc| f / D 0.7 1.5
E g / kJ/mol−1 0 7.55

a Rotational constants in the vibrational ground state.
b Quartic centrifugal distortion constants, in Watson S reduction, Ir

representation.
c Quadrupole coupling tensor elements in the inertial principal axis system.
d V3 potential of the methyl torsion predicted by relaxed scans. The indices α
and β refer to the two methyl groups.
e Reduced barriers: s := 4

9V3/F ; F is the rotational constant of the methyl rotor
f Dipole moment components in the inertial principal axis system
g Energy relative to the absolute energy (zero-point corrected) of -286.728491758
Eh of the more stable gauche conformer.
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Figure 2: Potential energy curve for the rotation of the hydroxyl group of acetone cyanohy-
drin calculated at the the B3LYP-D3BJ/aug-cc-pVTZ level of theory. Important conform-
ers are displayed by Newman projections.

The computed value for the barrier height of aceton cyanohydrin (ap-
proximately 444 cm−1) then corresponds to a ∆E value of 50.972 GHz.

3.2. Fits

Initially, measured a-type transitions of gauche acetone cyanohydrin re-
vealed, in addition to the quadrupole hyperfine structure, splittings due to
Coriolis interactions. The two components corresponding to the intra-state
transitions of the hydroxyl torsional states 0+ and 0− were unambiguously
assigned based on their similar hyperfine structures and fitted together utiliz-
ing a suitable Hamiltonian implemented in the CALPGM suite of programs
by Pickett [102]. After the spectroscopic parameters have been adjusted, also
weaker c-type transitions were included in the analysis. All of the strongest
signals observed in the frequency range of our spectrometer were assigned,
lacking any sign of b-type transitions. Fitting the rotational constants and
the 14N nuclear quadrupole coupling parameters 3/2χaa and 1/4(χbb − χcc)
as well as Coriolis coupling constants and the energy separation ∆E leads
to a root-mean-square (rms) deviation of 1.4 kHz close to the experimental
accuracy of about 2 kHz. Fixing the ∆E parameter obtained by the linear
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Table 2: Experimentally deduced ∆E parameter and the corresponding barrier height of
the hydroxyl group tunneling motion between the two equivalent gauche-forms of selected
alcohols.

Molecule V / cm−1 ∆E / GHz
Propargyl alcohol [98] 90 644

Methyl hydroperoxide [99] 173 449
equatorial -1-Methylcyclohexanol [83] 320 103

axial -1-Methylcyclohexanol [83] 356 103
equatorial -Cyclohexanol [88] 377 52

syn-Allyl alcohol [84] 558 14
gauche-2,2,2-Trifluoromethanol [95] 763 6

Formaldehyde cyanohydrin [100] 433a 113
Acetone cyanohydrin 444b 51c

a from flexible model calculation [101]
b from ab initio calculation
c from linear regression, see Figure 3

regression results in the same rms value. To perform these fits, we used the
effective Hamiltonian:

H =
1∑

ν=0

|ν〉(Hr +H∆ +HNQ)〈ν|+ (|0〉〈1|+ |1〉〈0|)Hc

〈0| and 〈1| denote the symmetric and the antisymmetric tunneling state,
respectively. Hr consists of the overall rotation and the quartic centrifugal
distortion terms and has the form:

Hr = AP 2
a+BP 2

b +CP 2
c−DJP

4−DJKP
2P 2

z−DKP
4
z +d1P

2(P 2
++P 2

−)+d2(P̂ 4
++P̂ 4

−),

where the terms A,B and C are the rotational constants of the vibrational
ground state, DJ , DJK , DK , d1 and d2 describes the quartic centrifugal distor-
tion coefficients of Watson’s S-reduced Hamiltonian in the Ir representation
(P+, P− are the step operators). The term HNQ describes the quadrupole
coupling

HNQ =
1

2I(2I − 1)

∑
α,β

χαβ[Iα, Iβ]+ with χαβ = eQqαβ (1)
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where χαβ are the tensor elements proportional to the elementary charge
e, the nuclear quadrupole moment Q, and the electric field gradient tensor
elements. I denotes the nuclear spin of the quadrupolar nucleus that couples
with the end-over-end rotation J of the molecule.[103] This results in the
total angular momentum quantum number F = J + I. In the coupled basis,
the Hamiltonian is no longer diagonal in J , but diagonal in F , the latter
only remaining a good quantum number if a significant amount second order
contribution to the quadrupolar coupling occurs.

H∆ describes the torsional splitting between the 〈0| and 〈1| tunneling
state

H∆ = ∆E + ∆EJP
2 + ∆EKP

2
z + ∆E2(P 2

+ + P 2
−),

and Hc is the Coriolis operator connecting the two states given by

Hc = Fac(PaPc + PcPa) + Fbc(PbPc + PcPb).

The constants Fac, Fbc are Coriolis coupling parameters, and EJ , EK
and E2 are centrifugal distortion parameters to ∆E. [104, 105, 106] The
spectroscopic parameters from the least squares fitting are presented in Table
3. All observed frequencies are available in Table S1 and Table S2 of the
Supplementary Material.

The successful observation of the huge 2∆E tunneling splitting of the
b-type signals in the spectrum would capture this value directly. Because of
the splitting being larger than the total span of the centimeterwave region,
measurements in the millimeterwave region would be required to determine
∆E from a splitting. All transitions observed in the microwave spectrum
belong to the gauche conformer, indicating that anti acetone cyanhydrin is
too high in energy and not present under our measurement conditions.

3.3. Internal rotations

In agreement with results for the barrier height from quantum chemistry,
splittings arising from the internal rotations of two methyl groups could not
be resolved. Barriers close or above 1000 cm−1 are typical for methyl groups
at the end of an alkyl chain with ethane as the simplest example [107], com-
monly resulting in the symmetry species being split at or below the resolution
limit.[108, 109, 110, 111, 112] The V3 potential barriers of methyl groups in
three series of increasingly methyl substituted alcohols are collected in Table
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Table 3: Molecular parameters of the gauche acetone cyanohydrin from the rotational
transitions fitted with a suitable Hamiltonian utilizing the program SPFIT.

Parameter Unit Fit 1 Fit 2
A0

a / MHz 4777.45751(52) 4777.45753(52)
B0

a / MHz 2830.83663(15) 2830.83666(15)
C0

a / MHz 2762.93703(14) 2762.93702(14)
DJ

b / kHz 0.2881(22) 0.2888(22)
DJK

b / kHz 4.5240(62) 4.590(21)
DK

b / kHz -3.73(10) -3.84(11)
d1

b / kHz -0.0103(27) -0.0102(27)
d2

b / kHz -0.0152(13) -0.0158(13)
3

2
χaa

c / MHz -6.47730(77) -6.47731(77)

1

4
(χbb − χcc)c / MHz -0.07917(30) -0.07918(30)

χab
c / MHz -0.0222j -0.0222j

χac
c / MHz 0.0131j 0.0131j

χbc
c / MHz 0.0349j 0.0349j

∆E d / MHz 50972j 49868(33)
Fbc

e / MHz 3.461(24) 3.426(26)
Fac

e / MHz -24.3494(29) -24.048(90)
EJ

f / MHz 0.027726(42) 0.027661(47)
EK

f / MHz -0.04634(11) -0.04635(11)
E2

f / MHz -0.034135(24) -0.034161(26)
N g / MHz 170 170
σ h / kHz 1.40 1.35

a vibrational ground state rotational constants
b quartic centrifugal distortion constants Watson S reduction, Ir representation
c quadrupole coupling tensor elements in the principal inertial axis system
d energy separation between the 0+ and 0− level
e Coriolis coupling parameters
f Centrifugal distortion parameters to ∆E
g number of assigned hyperfine components
h standard deviation
j value fixed during the fit
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Table 4: Experimentally determined barrier heights to methyl group internal rotation of
selected molecules and computed value of acetone cyanohydrin.

Molecule V3 / cm−1

Ethane [107] 1012(1)
Ethyl fluoride [113] 1171(7)
Ethyl chloride [114] 1260(3)
Ethyl bromide [115] 1282(41)/1276(40)
Ethyl iodide [116] 1267(52)

Ethyl isocyanide [117] 1167(18)
anti -Ethanol [53] 1173.76(220)

gauche-Ethanol [91] 1331
gauche-Isopropanol [118] 588

tert-Butanol [119] 443
Acetaldehyde cyanohydrin [100] 1310(30)/1510(30)
gauche-Acetone cyanohydrin 1262/1143
anti -Acetone cyanohydrin 1252

4. Within each group the medium to high barriers decrease substantially with
increasing degree of methyl substitution. This can be rationalized by the de-
creasing relative hyperconjugation effect of the rotating methyl group, with
increasing number of methyl substituents. The value found for acetaldehyde
cyanohydrin compared to the values we determined for acetone cyanohydrin
indicate that this electronic effect is less pronounced in the exceptionally high
methyl torsional barriers of cyanohydrins.

3.4. Proton tunneling

Though we are not able to conclusively determine the tunneling barrier
between the two equivalent forms of gauche acetone cyanohydrin due to the
lack of observed b-type transitions, we can compare the quantum chemically
computed barrier with barriers of related molecules in the literature (see
Table 2).

The computed tunneling barrier of acetone cyanohydrin is somewhat
smaller but not significantly different in magnitude from the interconver-
sion between the two non-equivalent gauche conformers of about 400 cm−1

in acetaldehyde cyanohydrin and to the tunneling barrier of formaldehyde
cyanohydrin, which we could derive from experimental data with Meyer’s
flexible model approach.[101] This indicates that substituting the methyl
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groups by hydrogen atoms and vice versa does not dramatically change the
electronic environment of the cyanohydrin moiety, which is mainly governed
by the electron withdrawing property of the nitrile group. This assumption is
supported by comparison with ethane derivatives, where the α-carbon atom
is substituted by an electron withdrawing group e.g. CN and OH, leading
to a remarkable increase of the methyl torsional barrier in cyanohydrins (see
Table 4). Furthermore, comparing the tunneling barriers in Table 2 pro-
vides insight into steric repulsion interactions in the vicinity to the hydroxyl
group. Propargyl alcohol for example experiences a quite free internal rota-
tion as no steric interaction between the hydroxyl group and the remaining
molecule seems to be present. So this missing repulsive contribution appears
to be crucial since the barrier of propargyl alcohol is already extremely low
for alcohols in general. This comparison of barrier heights in Table 2 shows
that the steric repulsion interaction in the case of acetone cyanohydrin seems
to be the predominant contribution to the tunneling barrier, which is com-
parable to cyclohexanol with essentially the same barrier height.

3.5. 14N nuclear quadrupole coupling

The coupling of an atomic nucleus with electric quadrupole moment de-
pends on the electric field gradient at the nucleus and therefore can serve as
a direct probe regarding the electronic environment of the atom, in this case
the 14N nucleus. This can be discussed in terms of hybridization and polar-
izations of the chemical bonds in which the atom is participating in. Townes
and Dailey provided a model to analyze and interpret the quadrupole cou-
pling tensor in terms of qualitative bonding concepts. The initial model was
restricted to linear and symmetric rotors [120], and subsequently expanded to
asymmetric rotors possessing two independent elements of the (diagonalized)
coupling tensor [121, 122]. In this conventional Townes-Dailey approach, the
tensor element χzz along the bonding axis is linked only to the ionic char-
acter of the bond, and the difference of the two remaining tensor elements
χxx − χyy are used exclusively to determine the π character of the bond.
Novick proposed an extended version of the model, using information of the
whole tensor to determine the bonding characters [123]. So far, the 14N
nuclear quadrupole coupling of nitrile groups were mainly interpreted for
planar molecules like tricyanobenzenes and substituted cyanobenzenes. In
those molecules, the CN bond is always expected to be polarized due to
the difference in electronegativity of the two elements [124, 125], while the
mesomeric character changes by interactions with the aromatic system to
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Table 5: Experimentally determined quadrupole coupling tensor element χzz of selected
cyanides, denoting the component of the diagonalized tensor along the C-N bond axis.

Molecule χzz / MHz
HCN [126] -4.7

Acetonitrile [127] -4.5
Isopropyl cyanide [128] - 3.9
tert-butyl cyanide [129] -4.2

Ethyl cyanide [130] -4.5
Acetone cyanohydrin -4.3

Acetaldehyde cyanohydrin [100] -4.6

which they are bound. For acetone cyanhydrin, we assume that the elec-
tronic withdrawal is mainly reflected in ionic rather than mesomeric changes
of the CN bond. The only molecule where the extended model was applied
for sp-hybridization, is the symmetric top acetonitrile [123]. The tensor ele-
ments χzz of the quadrupole coupling tensor aligned CN bond are collected
for a few cyanide containing molecules in Table 4. Similar to the conventional
Townes-Dailey approach, the χzz value is correlated to the ionic character
of the bond. A decrease of χzz leads to an increasing negative charge of the
nitrogen atom. Attributed to the σ character of the CN bond, that which
is reflected in the χzz value, the nitrogen atom draws electron density away
from the central carbon. This inductive effect of the cyanide group does not
change dramatically upon substitutions of the carbon atom.

The conclusions are supported by Natural Bond Orbital (NBO) calcula-
tions shown in Figure 3. The effective electron transfers are quantified as
0.074 e and 0.054 e from the methyl group hydrogen atoms to the central
carbon and 0.272 e and 0.073 e from central carbon to the hydroxyl and the
cyano group, respectively. Taking the partial charges of the cyano group
yields 0.359 e − 0.286 e = 0.073 e. This indicates that electron withdrawing
effects of the hydroxyl group is mainly responsible for the positive charge
at the central carbon atom. On the other hand, the predominant contribu-
tion to the high methyl torsional barrier is the repulsive interactions between
the methyl hydrogen atoms and the remaining substituents, as shown in the
methyl torsion potential given in Figure 5. A similar situation was observed
in the case of methyl 3,3,3-trifluoropyruvate, where repulsive interactions
of the methyl group with the carbonyl oxygen of methylesters explain the
changes in barrier heights with different substitutions [131].
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Figure 4: Partial charges of all atoms in acetone cyanohydrin obtained from NBO calcu-
lations at the CCSD(T)/aug-cc-pVTZ level of theory. The colors represent the sign of the
charge. Lighter color indicates larger magnitude of the partial charge.

However, the predominant contribution to the high methyl barrier arises
the repulsive interactions of the hydrogen atoms with the remaining sub-
stituents.

4. Conclusion

The microwave spectrum of gauche acetone cyanohydrin is investigated
using high resolution microwave spectroscopy in combination with quantum
chemical calculations. Not only the nuclear quadrupole hyperfine structure
was revealed, additional splittings observed for all a- and c-type transitions
occur at the same order of magnitude governed by Coriolis interactions,
thereby providing a unique fingerprint pattern of each rotational transition.
Due to the low barrier tunneling motion of the hydrogen atom in the hydroxyl
group, b-type transitions split into doublets with large separation expected
to be around 100 GHz. Since the energy separating the two inversion tun-
neling states could not be obtained directly from an observed b-type 0+ -
0− splitting, we used an empirically found correlation between ∆E and V
to predict a ∆E value. Additionally, we fitted the measured signals with a
model Hamiltonian accounting for Coriolis coupling and related distortion
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Figure 5: Calculated V3 potential of the methyl group in the gauche conformer of acetone
cyanohydrin at the B3LYP-D3BJ/aug-cc-pVTZ level of theory.
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terms to obtain ∆E. Confidence is gained from both values being in remark-
able agreement with each other. However, additional measurements in the
millimeterwave region are advised to remove possible correlations from the
determined spectroscopic constants resulting in an improved frequency range
extrapolation for a out-of-band prediction and subsequent interstellar search.

Acetone cyanohydrin has potential for astronomical searches based on the
confirmed existence of the plausible educts acetone and hydrogen cyanide in
the interstellar medium along with a low-barrier possible reaction pathway.
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[130] H. Mäder, H. M. Heise, H. Dreizler, Microwave Spectrum of Ethyl
Cyanide; r0-Structure, Nitrogen Quadrupole Coupling Constants and
Rotation-Torsion-Vibration Interaction, Zeitschrift fur Naturforschung
- Section A Journal of Physical Sciences 29 (1) (1974) 164–183.
doi:10.1515/zna-1974-0119.

[131] K. G. Lengsfeld, P. Buschmann, P. Kats, D. Siekmann, S. Herbers,
D. A. Obenchain, S. Genuit, C. M. Höhne, J.-U. Grabow, Barrier
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