

What role for AHR activation in IL4I1-mediated immunosuppression?

Flavia Castellano, Armelle Prevost-Blondel, José L Cohen, Valérie

Molinier-Frenkel

► To cite this version:

Flavia Castellano, Armelle Prevost-Blondel, José L
 Cohen, Valérie Molinier-Frenkel. What role for AHR activation in IL4I1-
mediated immunosuppression ?. OncoImmunology, 2021, 10 (1), pp.1924500.
 10.1080/2162402 X.2021.1924500. hal-03244910

HAL Id: hal-03244910 https://hal.u-pec.fr/hal-03244910v1

Submitted on 1 Jun2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 What role for AHR activation in IL4I1-mediated immunosuppression ? 2 3 Flavia Castellano^{1,2}*, Armelle Prevost-Blondel A³, José L. Cohen^{1,4}, and Valérie Molinier-Frenkel^{1,2}* 4 ¹Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France 5 ²AP-HP, Hopital Henri Mondor, Departement d'Hematologie-Immunologie, Créteil 94010, France 6 ³ Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France 7 ⁴AP-HP, Hopital Henri Mondor, Centre d'investigation clinique en biothérapie, Créteil 94010, France 8 9 10 Running title: Immunosuppression by IL4I1 and AHR 11 12 Keywords: amino-acid catabolizing enzyme, aryl-hydrocarbon receptor, T cell response, tumor 13 microenvironment, immune escape 14 15 *Correspondence: F Castellano (flavia.castellano@inserm.fr) and V Molinier-Frenkel 16 (valerie.frenkel@inserm.fr) 17 Mailing address: IMRB – Equipe Cohen, Faculté de Médecine de Créteil, 8 rue du Général Sarrail, F-18 94010 Créteil cedex. 19 Fax: 01 49 81 22 98. Phone: 01 49 81 37 65 20 21 This work was supported by a grant from the Fondation BMS pour la Recherche en Immuno-22 Oncologie to FC and a grant from the Institut National du Cancer INCA N°2018-155 to APB, FC and 23 VMF. 24 The authors have no conflict of interest to declare. 25 26 27

29 Abstract

28

The amino-acid catabolizing enzyme Interleukin-4 induced gene 1 (IL4I1) remains poorly 30 31 characterized despite it is emerging as a pertinent therapeutic target for cancer. IL4I1 is secreted in 32 the synaptic cleft by antigen-presenting cells. It inhibits TCR signaling, modulates naïve T cell 33 differentiation and limits effector T cell proliferation. IL411 expression in tumors shapes the tumor 34 microenvironment and impairs the antitumor cytotoxic T cell response, thereby facilitating cancer 35 immune escape. Several mechanisms participate in these effects. Recent data suggest a role of new 36 IL4I1 metabolites in activation of the aryl-hydrocarbon receptor (AHR). Here, we observe that 37 expression of IL411 is poorly correlated with that of validated targets of AHR in human cancers. 38 Moreover, dendritic cells do not upregulate AHR target genes in relation with IL411 expression in 39 vivo. Finally, IL411 activity towards tryptophan leading to production of AHR-activating products is 40 very low, and should be negligible when tryptophan-degrading enzymes of higher affinity compete 41 for the substrate. We recently showed that IL411 expression by dendritic cells directly regulates 42 immune synapse formation and modulates the repertoire and memory differentiation of responding 43 CD8 T cells after viral infection. Thus, IL411 may restrain tumor control through regulating the priming 44 of tumor-specific CD8 T cells, independently of AHR activation.

45

46

47

48

49 Introduction

50 Amino-acid catabolizing enzymes, responsible for the diminution of T-cell activation, proliferation,

and/or function, have gained growing importance in immunology over the last 20 years (1). Several are now clearly perceived to be central actors of tumor escape from immunosurveillance. Illustrating this interest, indoleamine 2,3-dioxigenase (IDO1) has been proposed as a possible target for the treatment of cancer and small-molecule inhibitors have been tested in preclinical models and Phase I/II trials, with promising results. However, in a Phase III clinical trial in melanoma patients, the absence of any additional clinical benefit of the most advanced molecule, epacadostat, in combination with pembrolizumab has prompted rethinking of this strategy (2). Other

58 immunosuppressive enzymes represent possible candidates for chemical inhibition.

59 Since the first study to identify human IL411 as a phenylalanine (Phe) oxidase secreted by antigen-60 presenting cells (dendritic cells [DC], monocytes, macrophages, and B-cells) in 2007, it has also been 61 demonstrated to inhibit human T-cell proliferation in vitro (3, 4). Both CD8⁺ and CD4⁺ T cells were 62 equally inhibited, but CD45RO⁺ (memory) cells were more sensitive than CD45RA⁺ (naïve) cells. IL411 63 also facilitated the differentiation of FoxP3⁺ regulatory T cells from naïve CD4⁺ T cells (5). IL4I1 is 64 produced by the macrophages that infiltrate most human solid tumors and by cancerous cells in the 65 case of certain B-cell lymphoma types (6). Recent single cell analyses have also identified IL411 66 expression in tolerogenic DC subpopulations of the tumor microenvironment, which can express 67 IDO1 (7, 8).

68 The role of IL4I1 has been characterized in mouse models of transplanted and spontaneous 69 melanoma, both in WT and IL4I1 deficient backgrounds, clearly showing that it facilitates tumor 70 growth by inhibiting the antitumor cytotoxic T-cell response and remodeling the tumor immune 71 microenvironment (9, 10). These observations have been recently extended to a model of chronic 72 lymphocytic leukemia (11). In line with this, clinical correlations have been reported between IL411 73 expression by stromal cells and invasion of the sentinel lymph nodes, a higher melanoma stage, and 74 rapid relapse in human primary cutaneous melanomas, in which IL4I1 expression was analyzed by 75 immunohistochemistry (12). Most interestingly, zones in which IL411 expression was concentrated 76 were depleted of cytotoxic CD8⁺ T cells and enriched with regulatory FoxP3⁺ T cells. Moreover, *IL411* 77 was overexpressed in melanoma patients with progressive disease under treatment with the anti-PD-78 1 antibody nivolumab, suggesting a relation between IL4I1 expression and resistance to immune-79 checkpoint blockade (11).

80 We initially proposed IL4I1 as a prognostic biomarker and therapeutic target in cancer in 2009 (6). 81 Transcriptomic data from several groups also indicated that IL4I1 is associated with poor outcome in 82 certain human carcinomas (breast, renal, and colon carcinoma and glioma) (13 and reviewed in 14). 83 Sadik et al recently showed IL4I1 expression in tumor cells of low-grade gliomas and glioblastomas 84 and observed correlation with diminished patient survival (11). Glioblastoma is particular in that it is 85 suspected to be derived from neural stem cells (15) and isoform 2 of IL411 is expressed in several 86 neural cell types (16), with a still undefined function that may involve control of the level of 87 neurotransmitter amines (17, 18). In the same work, they demonstrate for the first time that IL411 88 promotes glioblastoma motility in vitro, an effect that may be highly relevant for metastatic 89 processes. Finally, their work brings new insights by proposing that the immunosuppressive effect of 90 IL4I1 in tumors is mediated by activation of the ligand-activated transcription factor aryl hydrocarbon 91 receptor (AHR). AHR is widely distributed in tissues and displays very diverse activities, depending on 92 the cellular and molecular context. Its role in cancer is complex and incompletely deciphered, 93 involving both pro and anti-tumorigenic effects that affect directly tumor cells or the tumor 94 microenvironment (19). Here, we examine the hypothesis of IL4I1-mediated AHR activation and 95 propose a model of IL4I1 action during cancer development.

- 96
- 97

98 Material and methods

99 Transcriptomic analysis of human primary tumors and mouse DCs

100 Data from human primary tumors: breast, colon, and ovarian cancer, melanoma, mesothelioma, and

- 101 glioblastoma were retrieved from The Cancer Genome Atlas (TCGA) using the Xena platform. Among
- 102 genes used in the Sadik et al. study (11), we defined 45 experimentally-confirmed AHR target genes
- 103 according to the Harmonizome platform (20), which report genes identified by Lo and Mathews (21).
- 104 Spearman's rho were calculated using GraphPad Prism 8.
- 105 Genes modulated by 2,3,7,8-tétrachlorodibenzo-p-dioxine (TCDD) in human cells (hepatocytes,
- 106 CD34⁺ hematopoietic stem cells, MCF7 and HL60 cell lines) were retrieved from GSE7765, GSE14553, GSE16160, GSE24193, GSE46874, GSE122518 (NCBI GEO site), based on metaanalysis by
- 107 108 Oshchepkova et al (22).
- DCs were obtained by negative cell sorting from spleens of WT and IL4I1^{-/-} mice at steady state and at 109 110 24h of infection with lymphocytic choriomeningitis virus (LMCV) strain WE2.2, as described in Puiffe
- 111 et al. (23). Mouse experiments were approved by the local Ethical Committee for Animal
- 112 Experimentation (Cometh Anses/ENVA/UPEC) and the French Research ministry under the number 113 05338.03.
- 114 Total RNA was isolated from purified DCs using RLT buffer and RNeasy columns (Qiagen). Libraries of 115 polyA mRNA were generated using the TruSeq® Stranded mRNA Library Prep kit (Illumina) with 116 double indexing using TruSeq RNA UD Illumina Indexes. RNA was reverse transcribed using 117 SuperScript[™] II (Invitrogen). Next-generation sequencing was performed by 75 bp single reading with 118 the NextSeq 500/550 High Output Kit v2.5 (75 Cycles) on a NextSeq 500 analyzer (all from Illumina).
- 119
- The twelve samples (40,675,782 ± 2,630,770 reads/sample) were quality-checked using the software 120 FastQC (version 0.11.8). We checked that rRNA depletion had the expected quality (less than $2.32 \pm$
- 121 0.88 of total RNA, no prokaryotic contamination) and that more than 93% of the reads mapped to
- 122 the mouse genome (GRCm38) using SortMeRNA (version 2.1b), FastQScreen (version 0.13) and
- 123 Kraken2 (version 2.0.9 / default database). Trimmomatic (version 0.39) was used to filter reads using 124 a quality 20 (sliding window of 5 reads) and minimal length of 50pb, which led to more than 96% of 125 surviving reads. Filtered reads (39,151,723 ± 2,545,395) were aligned to the mouse genome 126 (GRCm38) using STAR (version 2.6.1d). The mapping of the reads for the different regions of the 127 genome and the level of gene expression was calculated using RSEM (version 1.3.2). The level of
- 128 gene expression was normalized in CPM (counts per million). A heatmap was generated using 129 GraphPad Prism 8 for the selected AHR-dependent genes and IL411, showing the mean CPM from 130 three mice per condition.
- 131
- 132

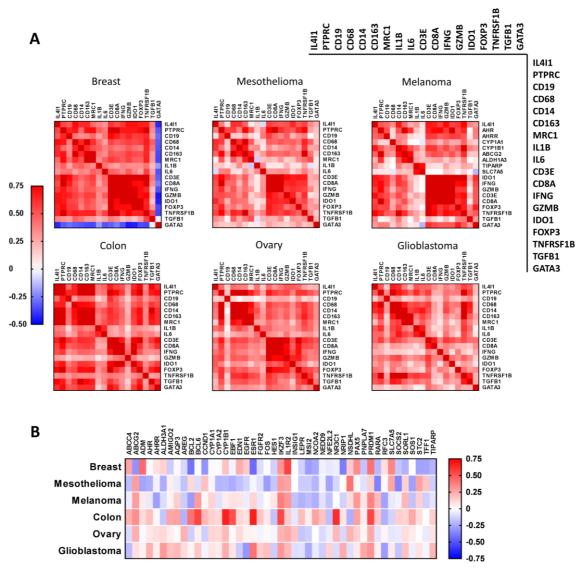
133 IL4I1 enzymatic activity

- 134 Phe and Trp were dissolved in 0.1 N HCl and a 100 ng/ml solution of human recombinant IL4I1 (R&D) 135 was used. Hydrogen peroxide production from IL411 activity was measured at 30 minutes according 136 to Carbonnelle-Puscian et al. (6) with serial dilutions (1250 to 78 μ M) of each amino acid. The Km and 137 Vmax were calculated using GraphPad Prism 8. IL4I1 activity was also measured on the inducible 138 recombinant HEK cell line expressing IL4I1 (described in Boulland et al (3). Lysates in Phosphate 139 Buffer Saline containing protease inhibitors (Complete mini, Roche, Meylan, France) were obtained 140 by 3 freeze-thaw cycles. The enzymatic test was performed as described above, on 40 µL cell lysates 141 corresponding to $5x10^5$ cells. Activity was calculated as pmol H₂O₂ produced per min and per mL.
- 142
- 143 144
- 145 **Results and discussion**
- 146
- 147 Relation between IL4I1 expression and activation of the transcription factor AHR.

148 T-cell inhibition by IL4I1 has been mainly attributed to its enzymatic activity via the metabolic 149 consequences of Phe consumption and the effect of hydrogen peroxide (3, 4), although inhibition of 150 early TCR signaling by IL411 does not involve amino acid deficiency, nor the presence of Phe 151 catabolites (24). Sadik et al. establish a correlation between the expression of IL411 and of the pan-152 tissue AHR signature they generated. We examined the list of genes used for this AHR signature (11) 153 and were puzzled by the fact that it contains several genes, of which the expression may reflect the 154 immune infiltrate of the tumor, in particular, IFNG, CD3E, and CD8A (Table I). Indeed, the expression 155 of IL411 in primary tumors from TCGA correlates very strongly with that of T-cell related genes, as 156 well as others, such as IDO1, which is indicative of the activation of a Th1 and cytotoxic T-cell 157 response in the tumor bed (CD3E = 0.57±0.11, CD8A = 0.49±0.13, IFNG = 0.47±0.13, ID01 = 0.55±0.15; mean rho ± SD on the six tumor types analyzed; Fig. 1A). This is in accordance with 158 159 previous results in human and mouse melanomas (10, 12) and with the known regulation of IL411 160 expression by interferons (4). This is also in line with the reanalysis by Sadik et al of data from Riaz et 161 al (25), indicating concomitant induction of IL411 and IDO1 in patients with advanced melanoma 162 treated with anti-PD-1. This induction may result from restored local production of IFN γ by 163 reinvigorated T cells. As IL411 is produced by tumor-associated macrophages in most solid tumors (6), 164 we also observed a strong correlation between IL4I1 and various genes attesting the presence of 165 macrophages in the tumor bed (*CD68* = 0.57 ± 0.15 ; *CD14* = 0.63 ± 0.15 ; *CD163* = 0.51 ± 0.17 ; mean

166 rho ± SD on the six tumor types analyzed).

C21orf33	CYP3A4	FOXQ1	IL1B	MSI2	PCK2	SERPINE1	TNFSF9
CARD11	DKK3	FPR2	IL1R2	MYC	PDE2A	SESN2	TXNRD1
CAV1	DLX3	GATA3	IL2	NANOG	PDS5B	SH3KBP1	UGT1A6
CCL5	DUOX2	GFI1	IL6	NCOA2	PER1	SLC10A1	VAV3
CCND1	EBF1	GHR	INSIG1	NCOR2	PHGDH	SLC3A2	XDH
CD36	EDN1	GNA13	IRF8	NDRG1	PIWIL1	SLC7A5	ZIC3
CD3E	EGFR	GSTA2	JAG1	NEDD9	PIWIL2	SMAD3	
CD8A	EGR1	GSTM1	JUP	NFE2L2	PLA2G4A	SMAD7	
CDK4	EPGN	HES1	KDM1A	NOS1	PNPLA7	SOCS2	
CDKN1A	EREG	HIF1A	KIAA1549	NOS3	POLK	SORL1	1
CFTR	ESR1	HLA-DRB4	КІТ	NPTX1	PPARGC1A	SOS1	
CRH	F3	HMOX1	КМО	NQO1	PRDM1	SPRR2D	
CXCL2	FAS	HSD17B4	LEPR	NR1H3	PTGS2	STC2	
CYBB	FAT1	HSPB2	LHCGR	NR1H4	RARA	TFF1	
CYP19A1	FBXO32	ID1	LIFR	NR3C1	REL	TGFBI	
CYP1A1	FGFR2	ID2	LPL	NRIP1	RFC3	TGM1	
CYP1A2	FIG4	IFNG	LTBP1	NSDHL	RSPO3	ТН]
CYP1B1	FLG	IGF2	LYN	OVOL1	SCARB1	THBS1	
CYP2B6	FOS	IGFBP1	MID1	PAX5	SCIN	TIPARP	
CYP2E1	FOXA1	IKZF3	MMP1	PCK1	SERPINB2	TJP1	
	CARD11 CAV1 CCL5 CCND1 CD36 CD3E CD8A CD8A CDK4 CDKN1A CFTR CRH CXCL2 CYBB CYP19A1 CYP19A1 CYP1A2 CYP1B1 CYP2B6	CARD11DKK3CAV1DLX3CAV1DLX3CCL5DUOX2CCND1EBF1CD36EDN1CD36EGFRCD8AEGR1CDK4EPGNCDKN1AEREGCFTRESR1CRHF3CXCL2FASCYBBFAT1CYP19A1FBXO32CYP1A2FIG4CYP2B6FOS	CARD11DKK3FPR2CAV1DLX3GATA3CCL5DUOX2GFI1CCND1EBF1GHRCD36EDN1GNA13CD3EEGFRGSTA2CD8AEGR1GSTM1CDK4EPGNHES1CDKN1AEREGHIF1ACFTRESR1HLA-DRB4CRHF3HSD17B4CYBBFAT1HSPB2CYP19A1FBXO32ID1CYP1B1FLGIGF2CYP2B6FOSIGFBP1	CARD11DKK3FPR2IL1R2CAV1DLX3GATA3IL2CAV1DLX3GATA3IL2CCL5DUOX2GFI1IL6CCND1EBF1GHRINSIG1CD36EDN1GNA13IRF8CD3EEGFRGSTA2JAG1CD8AEGR1GSTM1JUPCDK4EPGNHES1KDM1ACDK1AEREGHIF1AKIAA1549CFTRESR1HLA-DRB4KITCRHF3HMOX1KMOCXCL2FASHSD17B4LEPRCYBBFAT1HSPB2LHCGRCYP19A1FBXO32ID1LIFRCYP1B1FLGIGF2LYNCYP2B6FOSIGFBP1MID1	CARD11DKK3FPR2IL1R2MYCCAV1DLX3GATA3IL2NANOGCCL5DUOX2GFI1IL6NCOA2CCND1EBF1GHRINSIG1NCOR2CD36EDN1GNA13IRF8NDRG1CD3EEGFRGSTA2JAG1NEDD9CD8AEGR1GSTM1JUPNFE2L2CDK4EPGNHES1KDM1ANOS1CDKN1AEREGHIF1AKIAA1549NOS3CFTRESR1HLA-DRB4KITNPTX1CRHF3HSD17B4LEPRNR1H3CYBBFAT1HSPB2LHCGRNR1H4CYP19A1FBXO32ID1LIFRNR3C1CYP1A2FIG4IFNGLTBP1NSDHLCYP1B1FLGIGF2LYNOVOL1CYP2B6FOSIGFBP1MID1PAX5	CARD11DKK3FPR2IL1R2MYCPDE2ACAV1DLX3GATA3IL2NANOGPDS5BCCL5DUOX2GFI1IL6NCOA2PER1CCND1EBF1GHRINSIG1NCOR2PHGDHCD36EDN1GNA13IRF8NDRG1PIWIL1CD36EGFRGSTA2JAG1NEDD9PIWIL2CD8AEGR1GSTM1JUPNFE2L2PLA2G4ACDK4EPGNHES1KDM1ANOS1PNPLA7CDKN1AEREGHIF1AKIAA1549NOS3POLKCFTRESR1HLA-DRB4KITNPTX1PPARGC1ACRHF3HSD17B4LEPRNR1H3PTGS2CYBBFAT1HSPB2LHCGRNR1H4RARACYP19A1FBXO32ID1LIFRNR3C1RELCYP1A2FIG4IFNGLTBP1NSDHLRSPO3CYP1B1FLGIGF2LYNOVOL1SCARB1CYP2B6FOSIGFBP1MID1PAX5SCIN	CARD11DKK3FPR2IL1R2MYCPDE2ASESN2CAV1DLX3GATA3IL2NANOGPDS5BSH3KBP1CCL5DUOX2GFI1IL6NCOA2PER1SLC10A1CCND1EBF1GHRINSIG1NCOR2PHGDHSLC3A2CD36EDN1GNA13IRF8NDRG1PIWIL1SLC7A5CD3EEGFRGSTA2JAG1NEDD9PIWIL2SMAD3CD8AEGR1GSTM1JUPNFE2L2PLA2G4ASMAD7CDK4EPGNHES1KIDM1ANOS1PNPLA7SOCS2CDKN1AEREGHIF1AKIAA1549NOS3POLKSORL1CFTRESR1HLA-DRB4KITNPTX1PPARGC1ASOS1CRHF3HMOX1KMONQ01PRDM1SPR2DCXCL2FASHSD17B4LEPRNR1H3PTGS2STC2CYBBFAT1HSPB2LHCGRNR1H4RARATFF1CYP19A1FGFR2ID2LPLNRIP1RFC3TGM1CYP1A2FIG4IFNGLTBP1NSDHLRSP03THCYP1B1FLGIGF2LYNOVOL1SCARB1THBS1CYP2B6FOSIGFBP1MID1PAX5SCINTIPARP

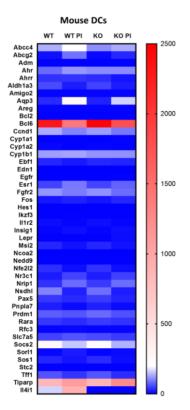

Table I. Genes of the AHR signature in Sadik et al. (n = 166). Forty-five genes identified as AHR targets by CHIP-

168 Seq are in bold (21). Blue and red boxes indicate genes that are upregulated and dowregulated, respectively,

by TCDD in GSE7765, GSE14553, GSE16160, GSE24193, GSE46874, GSE122518. HLA-DRB4 is upregulated in

170 CD34⁺ cells, but downregulated in hepatocytes. The most robustly AHR-dependent genes in this list are AHRR,
 171 CYP1A1, CYP1B1, NFE2L2, SLC7A5, TIPARP (all upregulated) according to the metaanalysis of Oshchepkova et a

172 l(*22*).


173 174 Fig.1. Correlation between the expression of IL4I1, immune-response genes and AHR-regulated genes in 175 primary tumors. (A) Correlation between IL411 and PTPRC (coding the panleukocyte marker CD45), CD19 (B 176 cells), CD68, CD14, CD163, MRC1, IL1B, IL6 (macrophages and inflammation), CD3E, CD8A, IFNG, GZMB, ID01, 177 FOXP3, TGFB1, TNFRSF1B and GATA3 (T-cell infiltration, Th1 response, regulatory T-cells, Th2 cells). (B) 178 Correlation between *IL411* and AHR-dependent genes. Each line shows results for one of the six primary cancer 179 types analyzed. Values above 0.5 are considered highly significant correlations.

180

181 A comparison of the AHR signature reported by Sadik et al. to validated AHR targets identified by 182 CHIP-seq in the study of Lo and Matthews (21), retrieved 45 genes common to both lists, which did 183 not include IFNG, CD3E, or CD8A. We analyzed these 45 genes for correlations with IL4I1 expression 184 in primary tumors from the TCGA database using the Xena platform (26) (Fig. 1B). With few 185 exceptions, Spearman's rho was consistently inferior to 0.25; depending on tumor type, 1 to 15 186 genes had rho > 0.25 and 0 to 9 had rho <-0.25 (total, 1 to 15 genes modulated). Colon carcinoma 187 displayed the highest correlation between IL411 and AHR-regulated genes (15 genes upregulated 188 with rho>0.25, 7 with rho>0.5, none downregulated with rho <-0.25). Three of these genes (CYP1B1, 189 ESR1, ALDH3A1) are known to be upregulated by TCDD in vitro (Table I). However, in colon cancer, 190 the diet and/or the microbiota can provide numerous AHR ligands.

191 To confirm these observations on murine cells, we infected WT and IL411-deficient (IL411 $^{-/}$) mice with

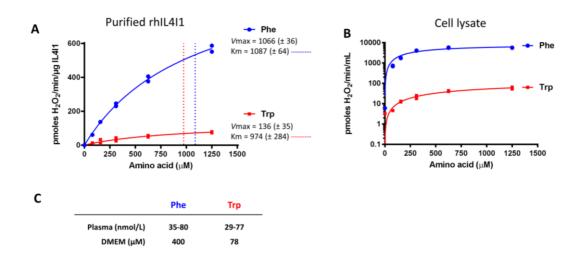
192 LCMV and sorted splenic DCs both at steady state and after infection (Fig. 2). Transcriptomic analysis did not show any relationship between IL4I1 expression and activation of the 45 AHR target genes.
 Despite vigorous induction of IL4I1 expression in response to LCMV, AHR-related genes were not
 significantly upregulated compared to the steady state. In addition, these genes were similarly
 expressed in DCs from both mouse strains. Thus, the relationship between IL4I1 expression and
 induction of the AHR pathway may be only indirect, implying that targeting of the AHR pathway and

198 IL411 for cancer treatment may be independent, and,199 potentially synergistic.

Fig. 2. Transcriptomic analysis of purified DCs from WT and IL411^{-/-}**mice at steady state and after 24 h of LCMV infection.** The heat map shows counts per million for the selected AHR-dependent genes and *IL411* (mean from three mice per group). A previous analysis of the cDNA library at steady state has been published in Puiffe et al. (*23*). PI: post-infection; KO: IL411^{-/-}.

222

223 IL4I1 degradation of tryptophan (Trp)


221

224 Sadik et al. demonstrate that IL411 degrades the essential amino acid Trp into indole-3-pyruvate 225 (I3P), which is immediately converted in vitro to kynurenic acid (KynA) and other derivatives. I3P, 226 KynA, and indole-3-aldehyde all activate AHR (11). A study contemporaneously published by Zhang et 227 al. also provides arguments for I3P production by IL411 activity (27). However, IL411 has a strong 228 preference towards Phe. A greater than five-fold higher Phe-degrading than Trp-degrading activity was initially observed using a relatively insensitive colorimetric test (3). Indeed, although 229 230 measurement of the Km using an optimized technique shows similar values for the two amino acids, 231 the Vmax of IL4I1 towards Phe is almost 10-fold higher than that towards Trp (Fig. 3A). We validated 232 these data on human cell lysates obtained from recombinant HEK cells expressing IL411 (Fig. 3B). The 233 difference between Phe and Trp catabolism was even greater than with the purified enzyme. This might 234 be due to different glycosylation, as commercial IL411 is produced in Chinese hamster ovary cells. 235 Moreover, in the human body, the concentration of Phe is equal to or slightly higher than that of Trp 236 and the concentration of Phe is substantially higher in classical culture media than that of Trp (Fig. 237 **3C**). Thus, the *in vitro* and *in vivo* catabolism of Trp by IL4I1 should be less than that of Phe and the 238 production of phenylpyruvate should overtake that of I3P. This also suggests that IDO1, whose 239 affinity for the Trp substrate is around 50 folds higher than IL4I1 (Trp Km~20 µM for IDO (28) versus 240 974 μ M for IL4I1) and which is often expressed concomitantly with IL4I1, as stated above, may 241 degrade Trp more efficiently than IL411. In accordance, a metabolomic study demonstrates a 242 significant increase in phenylpyruvate and phenyllactacte in ovarian cancer in comparison to normal ovary, but does not detect variations in indole compounds (29). Another indirect argument may come from a study in an orthotopic model of mouse pancreatic cancer. In this model, tumor regression after treatment with metformin and torin 2 (mTORC1 and mTORC2 inhibitors) was associated with a 4-fold increase of plasmatic phenylalanine (30). Finally, the use of a specific IL4I1 inhibitor in mouse with B16 melanoma led to significant decrease of phenylpyruvate levels in the tumors (31).

The I3P produced by IL4I1 in the presence of H_2O_2 (which is a byproduct of the enzymatic reaction) would spontaneously be degraded to KynA the main mediator of AHR activation (*11*). However, KynA could be produced independently of IL4I1 activity and experiments showing AHR activation *in vitro* required largely supraphysiological concentrations of the products (3.13 to 40 μ M I3P) and Trp consumption required five days of culture to be measured.

Overall, these observations raise questions about the *in vivo* relevance of Trp degradation by IL411, in particular, in comparison to the effect of IDO1 on the same substrate. In any case, treatment with IL411 inhibitors should block the enzyme, regardless of the amino-acid substrate, Phe, Trp, or even arginine, which has also been demonstrated to be a minor IL411 substrate (*14*).

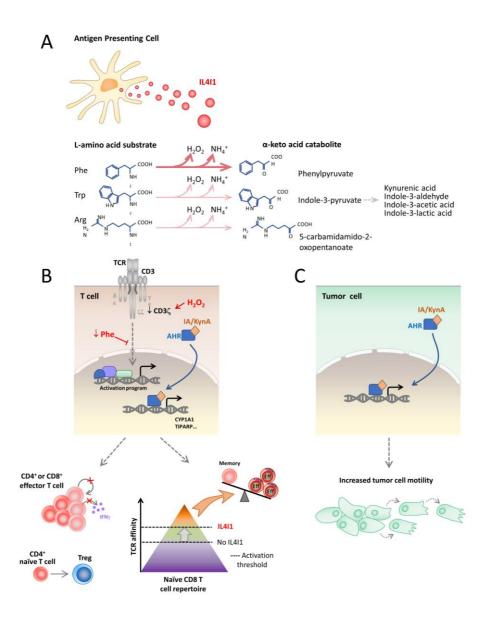
258

259

Fig. 3. IL411 activity towards phenylalanine (Phe) and tryptophan (Trp). (A) Hydrogen peroxide production from the activity of recombinant human IL411 was measured in two independent experiments performed in duplicate. Values for Km and Vmax (± SD) were determined. The blue and red dotted lines indicate Km for Phe and Trp, respectively. (B) IL411 activity was measured as in A on cell lysates from recombinant HEK cells expressing human IL411 (one experiment performed in duplicate). (C) Concentration of Phe and Trp in human plasma (reference values from the Mayo clinic) and in DMEM.

266

267 Implications for cancer of IL4I1 modulation of CD8 T cell priming


We recently dissected the effect of IL4I1 during the priming of naïve CD8 T cells using a model of 268 acute LCMV infection in WT and IL411^{-/-} mice (23). This work revealed unsuspected aspects of IL411 269 action. Somewhat counterintuitively, the effector CD8 T cell response was stronger in WT (IL411⁺) 270 271 mice than in IL411^{-/-} mice. Indeed, the genetic inactivation of *IL411* was associated with delayed and 272 slightly diminished expansion of functional short lived-effector CD8 T cells, but enhanced memory T 273 cell differentiation. These observations were not related to intrinsic differences of CD8 T cells between WT and IL411^{-/-} mice, but resulted from modulation of immune synapse formation and early 274 275 activation events by IL411-expressing DCs. Indeed, IL411 enhanced the T cell activation threshold, 276 thereby favoring the priming of high-affinity clones, restriction of the response to the most 277 immunodominant peptides and rapid acquisition of effector differentiation.

278 These effects, which are unrelated to AHR activation (Fig. 2), are relevant for the T-cell response 279 against cancer. Indeed, IL4I1 expression not only inhibits the proliferation and function of anti-tumor 280 effector T cells in the tumor microenvironment, as previously shown, but its presence in secondary 281 lymphoid organs may restrain the repertoire of primed anti-tumor CD8 T-cells, limiting control of 282 mutant tumor subclones. Moreover, as IL4I1 is associated with diminished differentiation of memory 283 CD8 T cells, it may limit the capacity to durably regenerate anti-tumor effector cells. Thus, inhibition 284 of IL411 should both improve the antitumor effector response and allow long-lasting revitalized 285 immunity against cancer.

286

287 Overall, it has been clearly demonstrated in the literature that IL4I1 alters the antitumor CD8 T-cell 288 response and that IL4I1-mediated immunoregulation facilitates cancer growth, affecting patient 289 survival and potentially fostering resistance to immune checkpoint inhibitors. Despite these new 290 advances, there are still uncertainties concerning the mechanism of the action of IL411 on the T-cell 291 response at the molecular and cellular levels. Recent data suggest that IL4I1 affects directly both CD8 292 T cells and tumor cells (Fig. 4). Indeed, IL411-dependent modulation of the affinity and functional 293 properties of the CD8 T-cell repertoire elicited at priming may interfere with its capacity to combat 294 tumor cells (23). In this case, IL411 effects on early T cell signaling and immune synapse formation are 295 too rapid to involve gene regulation. In particular contexts where sufficient Trp catabolites are 296 generated, IL4I1-mediated AHR activation may play a role in enhancing tumor-cell migration and 297 metastasis (11), or tumor cell survival, as I3P has also been recently proposed to elicit a cell 298 protective gene expression program (32). Pharmacological blockade of IL411 is therefore of high 299 interest.

In contrast to other immunoregulatory enzymes, IL4I1 is a secreted protein and is therefore easily accessible to pharmacological blockade (*33*). An orally-available compound with potent IL4I1 inhibitory activity *in vitro* has been recently developed (*31*). This compound limits the growth of several tumors in mouse models, without significant toxicity, opening the way to IL4I1 targeting in human cancer. Thus, a complete understanding of the actions of IL4I1 will be fundamental to facilitating clinical development and avoiding the failure that occurred with epacadostat (*2*).

306

307 308 Fig. 4. Mechanism of action of IL4I1 in the context of cancer. (A) IL4I1 is secreted into the synaptic cleft 309 between an antigen-presenting cell and a T cell. L-amino acid oxidation by IL411 produces an α -keto acid, while 310 liberating hydrogen peroxide (H₂O₂) and ammonia (NH₄⁺). Phe is the most rapidly degraded amino acid but Trp 311 and arginine (Arg) are also IL411 substrates. Sadik et al. showed that indole-3-pyruvate produced by Trp 312 degradation is not detectable, as it is rapidly converted into non AHR-stimulating indole derivatives and 313 kynurenic acid (KynA) and indole-3-aldehyde (IA), which are AHR agonists. (B) IL411 enzymatic activity is 314 responsible for the consumption of Phe, which deprives T cells of this essential amino acid, and potentially 315 participates in limiting the availability of Trp and Arg. This leads to decreased activation of the mTORC1 316 pathway downstream of the TCR and costimulatory receptors. T-cell signaling is also sensitive to hydrogen 317 peroxide, which reduces membrane exposure of the CD3 ζ chain. The mechanism of inhibition of early TCR 318 signaling (ZAP70 activation) is still unresolved. Phe depletion and IL411-produced second messengers limit 319 effector T-cell proliferation and favor regulatory T-cell differentiation from naïve CD4 T cells, individually or in 320 combination. As shown by Puiffe et al., IL411 also increases the threshold of CD8 T-cell activation, thus 321 restraining the primed repertoire to high-affinity clones and favoring the differentiation of effector cells at the 322 expense of memory cells. Cancer development is favored by the diminution of the quality and intensity of the 323 T-cell response. (C) Metastasis may also be promoted by increased tumor-cell motility induced by KynA and IA 324 stimulation of the AHR pathway in tumor cells.

325

326

327 Acknowledgement

We thank Carole Conejero from the Genomic Platform of IMRB and Denis Mestivier and Sidwell Rigade from the Bioinformatics Platform of IMRB. We are also indebted to Jérôme Gatineau, Aurélie Dupont and Marie-Line Puiffe for technical help. The manuscript has been professionally corrected by a native English speaker from the scientific editing and translation company, Alex Edelman & Associates.

- 333334 Bibliography
- 335

1. P. J. Murray, Amino acid auxotrophy as a system of immunological control nodes. *Nat. Immunol.* 17, 132–139 (2016).

B. J. Van den Eynde, N. van Baren, J.-F. Baurain, Is There a Clinical Future for IDO1 Inhibitors After the
Failure of Epacadostat in Melanoma? *Annu. Rev. Cancer Biol.* 4, 241–256 (2020).

M.-L. Boulland, J. Marquet, V. Molinier-Frenkel, P. Möller, C. Guiter, F. Lasoudris, C. Copie-Bergman,
 M. Baia, P. Gaulard, K. Leroy, F. Castellano, Human IL411 is a secreted L-phenylalanine oxidase expressed by
 mature dendritic cells that inhibits T-lymphocyte proliferation. *Blood*. 110, 220–227 (2007).

J. Marquet, F. Lasoudris, C. Cousin, M.-L. Puiffe, N. Martin-Garcia, V. Baud, F. Chereau, J.-P. Farcet, V.
 Molinier-Frenkel, F. Castellano, Dichotomy between factors inducing the immunosuppressive enzyme IL-4-

induced gene 1 (IL411) in B lymphocytes and mononuclear phagocytes. *Eur. J. Immunol.* 40, 2557–2568 (2010).
C. Cousin, A. Aubatin, S. Le Gouvello, L. Apetoh, F. Castellano, V. Molinier-Frenkel, The

347 immunosuppressive enzyme IL4I1 promotes FoxP3(+) regulatory T lymphocyte differentiation. *Eur. J. Immunol.* 348 45, 1772–1782 (2015).

349 6. A. Carbonnelle-Puscian, C. Copie-Bergman, M. Baia, N. Martin-Garcia, Y. Allory, C. Haioun, A.

Crémades, I. Abd-Alsamad, J.-P. Farcet, P. Gaulard, F. Castellano, V. Molinier-Frenkel, The novel

immunosuppressive enzyme IL4I1 is expressed by neoplastic cells of several B-cell lymphomas and by tumor associated macrophages. *Leukemia*. 23, 952–960 (2009).

B. Maier, A. M. Leader, S. T. Chen, N. Tung, C. Chang, J. LeBerichel, A. Chudnovskiy, S. Maskey, L.
 Walker, J. P. Finnigan, M. E. Kirkling, B. Reizis, S. Ghosh, N. R. D'Amore, N. Bhardwaj, C. V. Rothlin, A. Wolf, R.
 Flores, T. Marron, A. H. Rahman, E. Kenigsberg, B. D. Brown, M. Merad, A conserved dendritic-cell regulatory
 program limits antitumour immunity. *Nature*. 580, 257–262 (2020).

8. Y. Liu, S. He, X.-L. Wang, W. Peng, Q.-Y. Chen, D.-M. Chi, J.-R. Chen, B.-W. Han, G.-W. Lin, Y.-Q. Li, Q.-Y.
Wang, R.-J. Peng, P.-P. Wei, X. Guo, B. Li, X. Xia, H.-Q. Mai, X.-D. Hu, Z. Zhang, Y.-X. Zeng, J.-X. Bei, Tumour
heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. *Nat. Commun.* **12**, 741 (2021).

F. Lasoudris, C. Cousin, A. Prevost-Blondel, N. Martin-Garcia, I. Abd-Alsamad, N. Ortonne, J.-P. Farcet,
F. Castellano, V. Molinier-Frenkel, IL411: an inhibitor of the CD8+ antitumor T-cell response in vivo. *Eur. J. Immunol.* 41, 1629–1638 (2011).

L. Bod, R. Lengagne, L. Wrobel, J. P. Ramspott, M. Kato, M.-F. Avril, F. Castellano, V. Molinier-Frenkel,
A. Prévost-Blondel, IL4-induced gene 1 promotes tumor growth by shaping the immune microenvironment in
melanoma. *Oncoimmunology*. 6, e1278331 (2017).

A. Sadik, L. F. Somarribas Patterson, S. Öztürk, S. R. Mohapatra, V. Panitz, P. F. Secker, P. Pfänder, S.
Loth, H. Salem, M. T. Prentzell, B. Berdel, M. Iskar, E. Faessler, F. Reuter, I. Kirst, V. Kalter, K. I. Foerster, E.

Jäger, C. R. Guevara, M. Sobeh, T. Hielscher, G. Poschet, A. Reinhardt, J. C. Hassel, M. Zapatka, U. Hahn, A. von

Jager, C. R. Guevara, M. Soberi, T. Heischer, G. Poscher, A. Reimardt, J. C. Hassel, M. Zapatka, O. Hami, A. Vol
 Deimling, C. Hopf, R. Schlichting, B. I. Escher, J. Burhenne, W. E. Haefeli, N. Ishaque, A. Böhme, S. Schäuble, K.

371 Thedieck, S. Trump, M. Seiffert, C. A. Opitz, IL411 Is a Metabolic Immune Checkpoint that Activates the AHR and
 372 Promotes Tumor Progression. *Cell*, S0092867420309466 (2020).

373 12. J. P. Ramspott, F. Bekkat, L. Bod, M. Favier, B. Terris, A. Salomon, L. Djerroudi, K. S. Zaenker, Y. Richard,

V. Molinier-Frenkel, F. Castellano, M.-F. Avril, A. Prévost-Blondel, Emerging Role of IL-4-Induced Gene 1 as
a Prognostic Biomarker Affecting the Local T-Cell Response in Human Cutaneous Melanoma. *J. Invest. Dermatol.* 138, 2625–2634 (2018).

377 13. M. Liu, Q. Pan, R. Xiao, Y. Yu, W. Lu, L. Wang, A cluster of metabolism-related genes predict prognosis
378 and progression of clear cell renal cell carcinoma. *Sci. Rep.* 10, 12949 (2020).

379 14. V. Molinier-Frenkel, A. Prévost-Blondel, F. Castellano, The IL411 Enzyme: A New Player in the
 380 Immunosuppressive Tumor Microenvironment. *Cells*. 8 (2019), doi:10.3390/cells8070757.

Immunosuppressive Tumor Microenvironment. *Cells.* 8 (2019), doi:10.3390/cells8070757.
J. H. Lee, J. E. Lee, J. Y. Kahng, S. H. Kim, J. S. Park, S. J. Yoon, J.-Y. Um, W. K. Kim, J.-K. Lee, J. Park, E. H.

- Kim, J.-H. Lee, J.-H. Lee, W.-S. Chung, Y. S. Ju, S.-H. Park, J. H. Chang, S.-G. Kang, J. H. Lee, Human glioblastoma
 arises from subventricular zone cells with low-level driver mutations. *Nature*. 560, 243–247 (2018).
- 384 16. S. Wiemann, A. Kolb-Kokocinski, A. Poustka, Alternative pre-mRNA processing regulates cell-type
 385 specific expression of the IL411 and NUP62 genes. *BMC Biol.* 3, 16 (2005).
- Y. Gao, J. Mu, T. Xu, T. Linghu, H. Zhao, J. Tian, X. Qin, Metabolomic analysis of the hippocampus in a
 rat model of chronic mild unpredictable stress-induced depression based on a pathway crosstalk and network
 module approach. J. Pharm. Biomed. Anal. 193, 113755 (2021).
- 389 18. F. Castellano, V. Molinier-Frenkel, Control of T-cell activation and signaling by amino-acid catabolizing
 390 enzymes. *Front. Cell Dev. Biol.*
- 391 19. A. Paris, N. Tardif, M.-D. Galibert, S. Corre, AhR and Cancer: From Gene Profiling to Targeted Therapy.
 392 *Int. J. Mol. Sci.* 22, 752 (2021).
- A. D. Rouillard, G. W. Gundersen, N. F. Fernandez, Z. Wang, C. D. Monteiro, M. G. McDermott, A.
 Ma'ayan, The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about
 genes and proteins. *Database*. 2016, baw100 (2016).
- R. Lo, J. Matthews, High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq.
 Toxicol. Sci. Off. J. Soc. Toxicol. 130, 349–361 (2012).
- E. Oshchepkova, Y. Sizentsova, D. Wiebe, V. Mironova, N. Kolchanov, Meta-Analysis of Transcriptome
 Data Detected New Potential Players in Response to Dioxin Exposure in Humans. *Int. J. Mol. Sci.* 21 (2020),
 doi:10.3390/ijms21217858.
- 401 23. M.-L. Puiffe, A. Dupont, N. Sako, J. Gatineau, J. L. Cohen, D. Mestivier, A. Lebon, A. Prévost-Blondel, F.
 402 Castellano, V. Molinier-Frenkel, IL411 Accelerates the Expansion of Effector CD8+ T Cells at the Expense of
- 403 Memory Precursors by Increasing the Threshold of T-Cell Activation. *Front. Immunol.* 11, 600012 (2020).
 404 24. A. Aubatin, N. Sako, X. Decrouy, E. Donnadieu, V. Molinier-Frenkel, F. Castellano, IL4-induced gene 1 is
 405 secreted at the immune synapse and modulates TCR activation independently of its enzymatic activity. *Eur. J.*
- 406 *Immunol.* **48**, 106–119 (2018).
- 407 25. N. Riaz, J. J. Havel, V. Makarov, A. Desrichard, W. J. Urba, J. S. Sims, F. S. Hodi, S. Martín-Algarra, R.
- Mandal, W. H. Sharfman, S. Bhatia, W.-J. Hwu, T. F. Gajewski, C. L. Slingluff, D. Chowell, S. M. Kendall, H. Chang,
 R. Shah, F. Kuo, L. G. T. Morris, J.-W. Sidhom, J. P. Schneck, C. E. Horak, N. Weinhold, T. A. Chan, Tumor and
 Microenvironment Evolution during Immunotherapy with Nivolumab. *Cell*. **171**, 934-949.e16 (2017).
- 411 26. M. J. Goldman, B. Craft, M. Hastie, K. Repečka, F. McDade, A. Kamath, A. Banerjee, Y. Luo, D. Rogers,
 412 A. N. Brooks, J. Zhu, D. Haussler, Visualizing and interpreting cancer genomics data via the Xena platform. *Nat.*413 *Biotechnol.* 38, 675–678 (2020).
- 414 27. X. Zhang, M. Gan, J. Li, H. Li, M. Su, D. Tan, S. Wang, M. Jia, L. Zhang, G. Chen, *J. Agric. Food Chem.*, in 415 press, doi:10.1021/acs.jafc.0c03735.
- 416 28. L. Zhai, E. Ladomersky, A. Lenzen, B. Nguyen, R. Patel, K. L. Lauing, M. Wu, D. A. Wainwright, IDO1 in
 417 cancer: a Gemini of immune checkpoints. *Cell. Mol. Immunol.* **15**, 447–457 (2018).
- 418 29. M. Y. Fong, J. McDunn, S. S. Kakar, Identification of metabolites in the normal ovary and their 419 transformation in primary and metastatic ovarian cancer. *PloS One*. **6**, e19963 (2011).
- 420 30. G. A. Soliman, S. M. Steenson, A. H. Etekpo, Effects of Metformin and a Mammalian Target of
- 421 Rapamycin (mTOR) ATP-Competitive Inhibitor on Targeted Metabolomics in Pancreatic Cancer Cell Line.
- 422 *Metabolomics Open Access.* **6** (2016), doi:10.4172/2153-0769.1000183.
- 423 31. A. MacKinnon, D. Bhupathi, J. Chen, T. Huang, W. Li, Y. Ma, N. Sotirovska, S. Steggerda, W. Zhang, F.
- Parlati, 705 Anti-tumor activity of CB-668, a potent, selective and orally bioavailable small-molecule inhibitor of
 the immuno-suppressive enzyme Interleukin 4 (IL-4)-Induced Gene 1 (IL411). *J. Immunother. Cancer.* 8, A747–
 A747 (2020).
- 427 32. L. Zeitler, A. Fiore, C. Meyer, M. Russier, G. Zanella, S. Suppmann, M. Gargaro, S. S. Sidhu, S. Seshagiri,
- 428 C. Ohnmacht, T. Köcher, F. Fallarino, A. Linkermann, P. J. Murray, Anti-ferroptotic mechanism of IL4i1-mediated 429 amino acid metabolism. *eLife*. **10** (2021), doi:10.7554/eLife.64806.
- 430 33. M. Presset, D. Djordjevic, A. Dupont, E. Le Gall, V. Molinier-Frenkel, F. Castellano, Identification of 431 inhibitors of the immunosuppressive enzyme IL411. *Bioorganic Chem.* **94**, 103463 (2020).
- 432