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Abstract
Aim: Species shift their ranges as a consequence of climate change, hence modify-
ing the structure of local assemblages. This may have important consequences for 
ecosystem functioning in the case of ecosystem engineers such as earthworms, espe-
cially when community restructuring leads to an alteration of their functional diver-
sity. Here, we aimed to model the potential modification of the functional diversity of 
French earthworm assemblages in a context of climate change.
Location: Metropolitan France.
Methods: We fitted boosted regression trees to earthworm data collected using a 
standardized protocol across France in the 1960s. We used model projections con-
strained by a macroecological model of species richness to predict the composition of 
earthworm assemblages in the present and in two scenarios of climate change and two 
future time periods. We coupled these results with a large set of species traits to cal-
culate predicted changes in functional diversity, which we summarized by ecoregion.
Results: Models predicted a clear decline in functional richness between the period of 
sampling and nowadays which are expected to continue in the future, with substantial 
differences depending on ecoregions and on whether species will be able to disperse 
or not. However, predicted changes in functional evenness and divergence are much 
weaker, suggesting that climate change will not affect all facets of functional diversity 
in the same way.
Main Conclusions: Our results mostly pointed to a potential reduction of the func-
tional richness of earthworm communities in the future, but this predicted loss of 
diversity could be weaker if species are able to colonize new suitable sites or to persist 
in microclimate refugia. There are concerns, though, that these changes lead to an 
alteration of soil processes and of the ecosystem services they provide.
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1  |  INTRODUC TION

Studies of large-scale biodiversity trends often focus on the tax-
onomic identity of species to describe modifications in popula-
tions’ abundance, range areas or community composition (Ceballos 
et al., 2017; Pimm et al., 2014). One reason is that it is believed that 
these changes will translate into an alteration of the functionality 
of ecosystems and the services they provide to human well-being 
(Cardinale et al., 2012; Hooper et al., 2012). However, not all spe-
cies have equal actions on ecosystem processes. In fact, the role of 
organisms in ecosystems is closely related to their functional traits 
(Cadotte et al., 2011). Therefore, the impact of anthropogenic dis-
turbance on biodiversity would often be more efficiently character-
ized by the changes in the richness, redundancy or complementarity 
of species traits (Le Bagousse-Pinguet et al., 2019), that is the vari-
ous facets of functional diversity (Mason et al., 2005). There is evi-
dence that taxonomic diversity—the number and relative abundance 
of species as defined by taxonomic classification – is not necessarily 
a good proxy for functional diversity (Devictor et al., 2010). Because 
of this, many assessments of biodiversity changes in an era of rapid 
human-induced global transformations lack the functional perspec-
tive that would make them more useful to anticipate the impact they 
may have on ecosystems (Carmona et al., 2021).

Community composition and diversity in the soil compart-
ment have proved to be a key component of ecosystem processes 
(Bardgett & van der Putten, 2014). In this regard, a relationship be-
tween soil invertebrates’ traits and several ecosystem services such 
as climate and water regulation, soil stability and fertility, and pri-
mary production, has been established (de Bello et al., 2010; Setälä 
et al., 1998). At the same time, the functional diversity of soil com-
munities is often affected by environmental gradients and human 
disturbance (Pelosi et al., 2014; Santorufo et al., 2014; Vincent et al., 
2018). Among the many organisms that compose the soil biota, 
earthworms play an essential role in soil function and ecosystem 
services (Blouin et al., 2013; Liu et al., 2019). Some of these roles 
are directly dependent on species traits (Marichal et al., 2017). For 
instance, burrowing ability, which influences soil water retention 
and physical properties (Capowiez et al., 2014), can be linked to 
earthworm body size (Piearce, 1983; Quillin, 2000). Earthworms’ 
main ecological categories—anecics, epigeics and endogeics, which 
presumably describe how earthworms influence soil functioning 
[Bouché (1977), but see Bottinelli and Capowiez (2021)]—are also 
closely related to a number of morphological and life-history traits, 
for example variations in generation time or tegument thickness 
(Briones & Álvarez-Otero, 2018). In addition, some evidence shows 
that the diversity of functional traits within earthworm assemblages 
regulate some aspects of soil functioning such as plant litter decay 
and soil organic carbon level (Huang et al., 2020). For these reasons, 
future changes in the functional structure of earthworm communi-
ties may be among the most striking examples of the consequences 
of global changes on ecosystem functioning.

Although the impact of land use changes, such as agricul-
tural practices or pollution, on earthworm communities has been 

extensively studied (e.g. Jordan et al., 2004; Pelosi et al., 2014), cli-
mate change also has the potential to contribute to the restructuring 
of macrofauna functional diversity. Climate change affects the en-
vironmental conditions of organisms in such a way that, unless they 
adapt or are preadapted to their new climatic conditions (Hoffmann 
& Sgro, 2011), species must shift their distribution towards newly 
suitable habitats to remain in the climatic niche they are adapted to 
(Chen et al., 2011). Locally, it means that some species will go locally 
extinct if temperature conditions become unsuitable, while new spe-
cies may colonize sites that have become warm enough for them to 
survive (Parmesan, 2006). This process will thus result in a turnover 
of species within local assemblages, which reshuffles species ac-
cording to their climatic niche (Devictor et al., 2008). However, spe-
cies that go extinct or that colonize also harbour other non-climatic 
traits, leading to changes in the local composition of species traits 
and, potentially, in the functionality of the reshuffled communities 
(Fourcade et al., 2021; Wieczynski et al., 2019). Soil species mostly 
respond to the microclimatic conditions they experience locally 
rather than to macroclimate (Lembrechts et al., 2020). In this regard, 
the metabolism of earthworms is known to be largely dependent on 
soil temperature variation (e.g. Daniel et al., 1996; Eriksen-Hamel 
& Whalen, 2006). Nevertheless, large changes in macroclimatic 
regimes may affect soil properties through, for example, droughts 
that can affect soil macrofauna (Wang et al., 2020). There is also 
evidence that distribution pattern of earthworm communities has 
a large-scale spatial structure that is partially mediated by climatic 
factors (Phillips et al., 2019). Therefore, it is reasonable to assume 
that community assembly processes of soil organisms such as earth-
worms will be impacted by climate change (Singh et al., 2019).

Species range shifts in response to climate change can be inves-
tigated using methodological tools known as species distribution 
models (SDMs), or ecological niche models (ENMs). The general prin-
ciple of these approaches is to establish the statistical relationships 
between species’ presence and environmental predictors to model 
species’ niche and project it in space, producing a spatially-explicit 
assessment of environmental suitability (Elith & Leathwick, 2009). If 
predictors of the niche can be projected in time under various sce-
narios of climate change, models can be similarly projected in the fu-
ture to predict range shifts in a changing climate (Elith & Leathwick, 
2009). Fitting SDMs to soil biota can be challenging, because of the 
heterogeneity of soil habitats at various spatial scales and because 
of the existing feedbacks between the metabolism of soil organ-
isms and their habitat (Schröder, 2008). Such approach, though, has 
been successfully carried out for modelling the distributions of a 
few earthworm species and to identify their environmental drivers 
(De Wandeler et al., 2016; Marchán et al., 2015; Palm et al., 2013). 
Aggregating multiple single-species SDMs (a technique known as 
stacked SDMs) allows to model the current and future richness of 
assemblages (Biber et al., 2019), providing that their species richness 
is effectively calibrated (D’Amen et al., 2015). By associating the 
predicted composition of assemblages to the functional traits of the 
modelled species, stacked SDMs allow to predict current and future 
functional diversity of assemblages under various scenarios of global 



    |  3FOURCADE and VERCAUTEREN

change (e.g. Oliveira et al., 2019; Pradervand et al., 2014; Toro et al., 
2015). Such functional approach, though, is relatively rare compared 
to the profusion of SDM studies in the literature; to our knowledge, 
it has never been employed in the context of soil macrofauna.

To provide reliable predictions, SDMs must be based on solid 
field data reporting the presence, and optionally the absence, of 
the modelled species in a way that is as unbiased as possible (Costa 
et al., 2009; Kramer-Schadt et al., 2013). Generally, the amount of 
data available for soil organisms is scarce compared to above-ground 
biodiversity (Cameron et al., 2018). However, in France, a remark-
able inventory of earthworms has been compiled in the 1960s by 
Marcel Bouché, who sampled over 1300 sites evenly located across 
the whole country using a standardized protocol (Bouché, 1972). 
Because Bouché also reports a large number of morphological 
and anatomical traits, this constitutes an invaluable source of data 
to investigate the functional diversity of earthworm assemblages 
at a country-scale. Here, we fitted SDMs to Bouché’s (1972) data, 
using soil variables and bioclimatic predictors describing climatic 
conditions in the 1960s. Models were projected in time to map the 
potential composition of earthworm assemblages—defined as 2.5 
arc-min grid cells—in the present and under different scenarios of 
climate change. Using the database of species traits, we then cal-
culated three complementary descriptors of functional diversity 
within these assemblages. Evidence shows that earthworms are able 
to disperse rapidly (moving decision being triggered within days) into 
new suitable habitats in response to changes in population density 
and habitat quality (Mathieu et al., 2010), and can occasionally per-
form long-distance movements through passive dispersal (e.g. cross-
ing water bodies on floating wood; see Chen et al., 2021). However, 
it is also observed that French earthworm communities are not per-
fectly at equilibrium with current climate conditions, suggesting that 
colonization can be a long process at biogeographic scales (Mathieu 
& Davies, 2014). Therefore, we proposed predictions under two hy-
potheses: complete dispersal, where species are allowed to fill their 

entire potential niche, and no dispersal, where changes in climatic 
conditions can only result in local species extirpations. These results 
were used to describe potential changes in earthworm functional 
diversity in each French ecoregion depending on climate change 
scenarios.

2  |  METHODS

2.1  |  Data collection

We used data on the presence and absence of earthworm spe-
cies in France that were collected in the 1960s by Bouché (1972). 
More precisely, 1366 sites were sampled between 1966 and 1969, 
evenly spaced across the entire French European territory (Figure 1). 
Sampling sites were selected in order to represent the most com-
mon habitat types within each region, avoiding anthropogenic soils 
such as crops. Sampling was performed mostly in autumn and spring, 
which correspond to the period of maximum activity of adult earth-
worms. In each site, three or four soil samples were collected, each 
corresponding to a 1 × 1 m2 of ca. 30-cm depth. Soil fauna was ex-
tracted, earthworms isolated from other organisms, and all individu-
als were identified at the species level and counted twice, included 
juveniles that were reared until maturity. For our analyses, we used 
only the presence or absence of species, and discarded species that 
were found at less than 10 locations because their modelling would 
be unreliable. In total, 105 species were identified, which were re-
duced to 44 after filtering rare species.

In addition to distributional data, Bouché (1972) reported sev-
eral information regarding the morphology and internal anatomy 
of the species he collected. Complemented with data from Sims 
and Gerard (1985), this constitutes a large database of 36 species 
traits related to size, mobility, ecology and reproduction (Table 
S1), suitable to describe the diversity of earthworm communities 

F I G U R E  1  Location of sampling sites 
of earthworms conducted by Bouché 
(1972) across France, with the 14 French 
ecoregions represented as coloured 
polygons

N
0 100 200 300 km

Alps conifer and mixed forests

Atlantic mixed forests

Corsican montane broadleaf 
and mixed forests

Italian sclerophyllous 
and semi−deciduous forests

Northeastern Spain and Southern 
France Mediterranean forests

Pyrenees conifer and 
mixed forests

Tyrrhenian−Adriatic 
Sclerophyllous and 
mixed forests

Western European broadleaf forests

Cantabrian mixed forests
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in a way that is likely relevant for ecosystem functioning. Site 
locations, presence/absence and abundance of earthworms, as 
well as species traits, were all compiled by Mathieu and Davies 
(2014), and are available from the Dryad repository (https://doi.
org/10.5061/dryad.g7046).

We selected climate predictors from the 19  standard biocli-
matic variables (Booth et al., 1987) and the 18 ENVIREM variables 
that were developed recently to complement the former (Title & 
Bemmels, 2018). Because many of them are highly correlated, and 
because we had no a priori expectation regarding which could be 
the most influential for describing earthworms’ distributions, we 
retained only the eight variables that allowed for variance inflation 
factor to remain <4: isothermality (BIO3), mean temperature of the 
wettest quarter (BIO 8), precipitation seasonality (BIO 15), precipi-
tation of coldest quarter (BIO19), number of months with mean tem-
perature >10°C, potential evapotranspiration of the driest quarter, 
potential evapotranspiration of the coldest quarter and potential 
evapotranspiration of the warmest quarter. Using only a selection of 
those variables ensures that we avoid overfitting in SDMs that can 
be caused by multicollinearity (Dormann et al., 2013). Moreover, be-
cause there is evidence for a legacy of past climate in the structure 
of French earthworms’ communities (Mathieu & Davies, 2014), we 
also considered mean annual temperature (BIO1) and annual precip-
itation (BIO12) during the last glacial maximum (LGM). BIO1 during 
LGM was discarded because it was highly correlated with the con-
temporary climate variables.

All climatic variables were computed with functions in the 
“dismo” (Hijmans et al., 2020) and “envirem” (Title & Bemmels, 
2018) R packages, using temperature and precipitation data ob-
tained for different time periods from the CHELSA project (Karger 
et al., 2017). The CHELSA-TraCE21k dataset (Karger et al., 2021) 
was used to produce LGM variables, while the CHELSAcruts 
dataset (Karger & Zimmermann, 2018) served as a source of con-
temporary climate data: 1950–1960, in order to describe climatic 
conditions during the sampling period, and 2000–2016 to describe 
current climate. In addition, we downloaded future projections of 
the same variables for the years 2041–2060 and 2061–2080 (re-
spectively referred to as 2050 and 2070 later on) according to two 
representative concentration pathways (RCP 4.5 and RCP 8.5), 
modelled under the MIROC5  global circulation model. RCP 8.5 
is a very pessimistic scenario of climate change, which assumes 
that no mitigation measures will limit greenhouse gases emissions 
during the 21st century (Burgess et al., 2020; Schwalm et al., 
2020). RCP 4.5, on the other hand, is a more optimistic scenario 
in which temperature rise starts to level-off before the end of the 
century (Thomson et al., 2011).

In addition to climate, we included soil variables as predictors in 
our SDMs. Specifically, we used soil pH in water (Hengl, 2018) and 
soil organic carbon content (Hengl & Wheeler, 2018), obtained from 
the OpenLandMap project (openlandmap.org) where they were es-
timated through machine-learning. Both variables are available at 
different soil depths; to account for the uncertainty and variation 
of earthworms’ habitat, we averaged values of pH and soil organic 

carbon between the surface (0  cm) and 30-cm depth. Finally, we 
obtained land cover data from the CORINE project (https://land.
coper​nicus.eu/pan-europ​ean/corin​e-land-cover), which provides 
land cover maps of Europe derived from photo-interpretation of sat-
ellite images. Here, we used data from the year 1990 for training 
SDMs because it is the earliest dataset in the CORINE database. We 
projected models using land cover data for the year 2012 to repre-
sent present conditions, and using land cover in the year 2018 to 
represent future conditions because this is the last dataset in the 
CORINE database. All environmental predictors were cropped to 
the extent of Metropolitan France (mainland France and Corsica) 
and processed at a resolution of 30 arc-second, which corresponds 
to ca. 800 m in France.

In order to describe regional changes in diversity under the var-
ious modelling scenarios, we obtained a map of ecoregions from 
the World Wildlife Fund (WWF), which are biogeographical units 
describing distinct biota and habitats (Wikramanayake et al., 2002). 
Fourteen ecoregions are present in France, mostly separating west-
ern from eastern France, as well as highlighting mountainous and 
Mediterranean areas (Figure 1). Most of the country is included 
in the “Atlantic mixed forests” and “Western European broadleaf 
forests ecoregions.” Results for these ecoregions will thus have a 
broader impact on earthworm communities at the country scale, 
compared to smaller ecoregions.

2.2  |  Species distribution modelling

We fitted SDMs using boosted regression trees (BRTs), a statisti-
cal method suitable for training SDMs with presence/absence data, 
which can fit nonlinear relationships and handle interactions be-
tween predictors (Elith et al., 2008). There are several parameters 
that must be chosen in BRTs that control model complexity. To se-
lect the most appropriate settings, we fitted for each species several 
BRTs with all possible combinations of the following parameters: 
number of trees = from 50 to 500 in increments of 50, interaction 
depth = 1, 2, 3, 4, shrinkage = 0.005, 0.01, 0.05, 0.1, 0.15, 0.2. We 
retained among the set of models the one that yielded the highest 
predictive performance. The performance of models was evaluated 
through the area under the receiver operating curve (AUC) and the 
True Skill Statistics (TSS). AUC and TSS were estimated from parti-
tioning data in spatial blocks following a double “checkerboard” grid 
of 2.5 arc-min and 2.5° resolution, producing evaluation bins that 
were spatially independent from the training data (Muscarella et al., 
2014; Radosavljevic & Anderson, 2014). For later analyses, we kept 
only species with AUC > 0.7 and TSS > 0.4 to make predictions from 
reliably modelled species only.

We extracted variable importance using a permutation proce-
dure. It was further used to reduce the number of predictors when 
possible: from the 12 variables initially included in the SDMs (eight 
bioclimatic variables  +  precipitation during LGM  +  two soil vari-
ables +  land cover), those whose importance <10% were removed 
iteratively, and the new model was retained if its AUC was improved.

https://doi.org/10.5061/dryad.g7046
https://doi.org/10.5061/dryad.g7046
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover


    |  5FOURCADE and VERCAUTEREN

Models were projected in space over the entire area of 
Metropolitan France, and in time for the three periods for which 
we have climate data (present, 2050, 2070, in addition to the 
1960s), assuming that soil did not change, and using land cover 
data for the year 2012 (present) and 2018 (future). Future pro-
jections were computed for the RCP 4.5 and RCP 8.5 scenarios, 
resulting in a total of six outputs in the form of suitability maps 
with values ranging between 0 and 1. Here, we considered two 
hypotheses regarding the dispersal of species. First, assuming 
full dispersal of species following their climatic niche, we did not 
transform model predictions. Second, assuming that species are 
unable to disperse within the time frame of analysis, we restricted 
future projections of species distributions to the locations already 
predicted as suitable under the conditions of sampling (1960s). For 
this, suitability maps for the 1960s were converted to binary out-
puts of predicted presence or absence using the threshold that 
maximizes the sum of sensitivity and specificity (Liu et al., 2013). 
BRTs and parameter tuning were computed using the “SDMtune” 
R package (Vignali et al., 2020) and data partitioning used func-
tions from the “ENMeval” R package (Muscarella et al., 2014). The 
entire procedure was reported as an ODMAP protocol (Methods 
S1) as recommended by Zurell et al. (2020).

2.3  |  Macroecological constraints of 
species richness

Generally, stacked SDMs overestimate local species richness, be-
cause they ignore many local factors such as biotic interactions or 
dispersal limitations (D’Amen et al., 2018). Therefore, we imposed 
a limit to the number of species that can co-occur at a given loca-
tion, using a macroecological model of species richness (MEM). For 
this, we fitted a BRT model to the number of species observed at 
each sampling point, using the same variables as for SDMs but with 
a Poisson distribution. This model was then projected in space and 
time in the same way as the SDMs, providing spatially explicit pre-
dictions of species richness in the 1960s, in the present and in future 
scenarios of climate change. Predicted species richness was rounded 
to the upper integer to ensure that all grid cells have at least one 
species. We estimated the predictive ability of the MEM by calculat-
ing Spearman's correlation between observed and predicted species 
richness.

We combined the outputs of MEM and SDMs to predict the 
identity of co-occurring species. Because the calculations of func-
tional diversity were computationally intensive, all species distribu-
tion and species richness maps were aggregated at a resolution of 
2.5 arc-min, and later projected to ETRS89-LAEA coordinate sys-
tem (EPSG:3035). In each time period and scenario, we assumed 
that SDMs define the potential species pool constrained by abiotic 
drivers, and combined SDM predictions by applying a probability 
ranking rule such that the number of species was equal to MEM pre-
dictions, and species were selected based on decreasing suitability 
(D’Amen et al., 2015, 2018).

2.4  |  Functional diversity and post-hoc analyses

From the predicted species composition, we calculated within each 
grid cell and for each time period and scenario three complementary 
measures of functional diversity (Mason et al., 2005; Villéger et al., 
2008), estimating functional distance with Gower's distance based 
on the matrix of species’ traits. First, we computed functional rich-
ness (FRic), which corresponds to the volume occupied by a con-
vex hull polygon drawn in the species’ functional space. It is thus 
a measure of the total amount of trait variation within an assem-
blage. Second, we estimated the functional evenness of assemblages 
(FEve), which measures if species are regularly distributed within 
functional space or if there exist clusters of species sharing similar 
traits. Third, functional divergence (FDiv) is an estimate of whether 
species are mostly located at the centre or at the edge of functional 
space. Altogether, these three indices describe the functional diver-
sity of earthworm assemblages in all its aspects.

Functional diversity indices are known to be correlated with 
species richness (Mason et al., 2013). Therefore, in order to obtain 
measures of functional richness, evenness and divergence that are 
independent of species richness, we also calculated standardized 
effect sizes using a randomization procedure (ses.FRic, ses.FEve, 
ses.FDiv), where we randomized assemblages 500 times with an in-
dependent swap algorithm (Gotelli, 2000). Values of ses.FRic, ses.
FEve and ses.FDiv <0 can be interpretated as functional clustering 
while indices >0 correspond to assemblages that are functionally 
overdispersed (i.e. less—or more, respectively—variation in species 
traits than expected given the number of species). Functional diver-
sity indices were calculated using the “FD” R package (Laliberte & 
Legendre, 2010), and randomizations were carried out with the “pi-
cante” R package (Kembel et al., 2010).

In order to illustrate changes in individual traits, we chose to 
focus on species’ maximum weight, because it was strongly cor-
related to width and length, hence synthetizing species’ size. Using 
SDM predictions constrained by the MEM, we calculated for each 
time period and scenario the average maximum weight of all the 
species predicted to be present in each grid cell. This is analogous 
to a community-weighted mean where all species are given the 
same weight, since we have no information about their respective 
abundance. This way, we described changes in the mean size of 
earthworm communities in different scenarios of climate change 
compared to the size structure of communities in the 1960s.

We overlapped species richness and functional diversity maps 
with the map of French ecoregions, and extracted the mean values 
within each ecoregion, in addition to calculating mean values across 
the whole country. For the raw functional indices, we calculated 
the average change (in %) between values predicted in the 1960s 
(the period of sampling) and each temporal projection of diversity. 
This way, we estimated how much our models predicted changes in 
earthworm's functional diversity in each ecoregion of Metropolitan 
France, between the 1960s and the present, and between the 1960s 
and different scenarios of future climate change. For standardized 
functional indices, we analysed directly the values of ses.FRic, ses.
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FEve and ses.FDiv estimated at each time period in order to test 
whether some regions are predicted to experience a shift from func-
tional clustering to overdispersion, or vice versa.

3  |  RESULTS

Species distribution models varied in predictive performance, with a 
mean AUC of ca. 0.796 (minimum = 0.610 and maximum = 0.995), and 
a mean TSS of ca. 0.589 (minimum = 0.223 and maximum = 0.985) 
(Figure S1a–c). In total, 14  species were excluded from the analy-
ses of functional diversity because they did not reach the thresh-
olds of AUC = 0.7 and TSS = 0.4. There was a clear negative link 
between predictive performance and species’ prevalence (Figure 
S1d,e). Overall, the most important variable during SDM fitting was 
land cover, which had an average permutation importance of 19% 
(SEM  =  1.67) and was ranked as the most important variable for 
16 species out of 44. The second most important variable appeared 
to be BIO 3 (isothermality), which had a mean importance of 18% 
(SEM = 3.17) and ranked first for eight species. It was followed by 
potential evapotranspiration during the coldest quarter (mean im-
portance = 14.5, SEM = 2.91, ranked first for six species; see Figure 
S2).

Predictions from the macroecological model of species richness 
were correlated with observed richness (Spearman's correlation: 
ρ = 0.47, p < .001) and errors were centred on zero (mean = 0.003), 
which is similar to what has been found in comparable studies 
(D’Amen et al., 2015, 2018). Predicted species richness in the 1960s 
ranged from 2 to 6  species per grid cell, with a mean richness of 
4.27 species. Species richness was generally lower along the Atlantic 
coast and in the Mediterranean region, with maximum values along 
the English Channel (Figure 2). Compared to the 1960s, the MEM 
predicted in the present and in all future scenarios a decrease in spe-
cies richness overall, especially in the regions that already exhibited 
lower richness (western half of France and Mediterranean region) 
(Figure 2).

As expected, FRic was positively correlated with species richness, 
especially in scenarios of no dispersal, although this relationship re-
mained weak (R²  <  .15, Figure S3). Model projections predicted a 
strong increase (up to +90%) in FRic compared to the 1960s in some 
areas, especially in the “Italian sclerophyllous and semi-deciduous 
forests” ecoregion (Figures 3 and 4). However, at the country-scale 

and in the largest ecoregions (“Atlantic mixed forests” and “Western 
European broadleaf forests”), FRic is predicted to decline in the fu-
ture (Table 1; Figure 4). Interestingly, in the no dispersal hypothesis, 
we predicted that FRic will concentrate in a small region of north-
eastern France (Figure 3). FRic was clustered in the 1960s (ses.Fric 
<0) in all regions of France except in both Corsican ecoregions and 
in a narrow strip connecting the Atlantic and Mediterranean coasts 
where ses.FRic was >0 (Figure 5). Models predict in future climate 
a decrease in ses.Fric in most ecoregions, including the largest 
ones, leading to a functional richness that will be even more clus-
tered compared to the present and the 1960s (Table 1; Figure 6). 
Generally, we observed that ses.Fric is predicted to become more 
homogeneous across France in the future, especially in the “no dis-
persal” scenario (Figure 6).

Functional evenness was not related to species richness in the 
1960s, but we predicted that they will become slightly negatively 
correlated in future scenarios (Figure S3). Changes in functional 
evenness always remained <±15%, and models predicted that 
FEve will be mostly stable, or even slightly increasing, in the larg-
est ecoregions (“Atlantic mixed forests” and “Western European 
broadleaf forests”) (Table 1; Figures 3 and 4). We noted, however, 
that the strongest changes were predicted to occur in the southern 
and mountainous ecoregions: an increase of FEve in both Corsican 
ecoregions, while a decrease of FEve is predicted in all other south-
ern ecoregions, especially in the RCP 8.5  climate change scenario 
(Figure 4). Standardized functional evenness was distributed very 
similarly as ses.Fric in the 1960s (Figure 5): mostly clustered (ses.
FEve <0) across the country, except for a strip characterized by 
overdispersion (ses.FEve >0) in southwestern France, located in the 
“Atlantic mixed forests” ecoregion. There, as well as in the “Alps co-
nifer and mixed forests” ecoregion where ses.FEve was also overdis-
persed in the 1960s, models predicted a decrease of ses.FEve that 
in some scenarios will lead to a switch towards clustered functional 
evenness (ses.FEve <0). In the south-eastern ecoregions, ses.FEve 
is predicted to increase (up to ses.FEve >0). Overall, ses.FEve is 
predicted to decrease substantially in the “no dispersal” hypothe-
sis (Table 1), although in the largest ecoregion (“Western European 
broadleaf forests”), it is predicted to remain approximately stable in 
all scenarios (Figure 6).

We observed a weak negative correlation between FDiv and 
species richness in the 1960s and in the present, which is predicted 
to become slightly positive in the future (Figure S3). Generally, we 

F I G U R E  2  Earthworm species richness predicted by a macroecological model trained in the 1960s (the time of data collection), and 
projected in the present and in future climate following two scenarios of climate change and two time periods
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predicted that FDiv will differ only little compared to the 1960s, 
with changes < ±10% (Figures 3 and 4), although it will likely de-
crease compared to the 1960s, especially if species are unable to 
disperse (Table 1). Interestingly, models predicted an increase in 
FDiv in the mountainous ecoregions (“Alps conifer and mixed for-
ests” and “Pyrenees conifer and mixed forests”) in almost all disper-
sal and climate change scenarios. Mediterranean ecoregions show 
a clear tendency for a decrease in FDiv in future climate. Changes 

in the largest ecoregions, though, are more uncertain and will likely 
remain of limited magnitude (Figure 4). In the 1960s, standardized 
FDiv showed evidence of clustering (ses.FDiv <0) in the western 
and Mediterranean areas (“Western European broadleaf forests,” 
“Northeastern Spain and Southern France Mediterranean forests” 
and " Italian sclerophyllous and semi-deciduous forests” ecoregions), 
while eastern ecoregions were generally characterized by ses.FDiv 
>0 ("Alps conifer and mixed forests” and “Atlantic mixed Forests;” 

F I G U R E  3  Earthworm functional diversity predicted by species distribution models in the 1960s (the time of data collection), and 
projected in the present and in future climate following two scenarios of climate change and two time periods. Three complementary 
descriptors of functional diversity were calculated within each 2.5 arc-min grid cell: (a) functional richness, (b) functional evenness and 
(c) functional divergence. For each metrics, projections either assume that species fill their predicted climatic niche (top row) or that they 
cannot disperse (bottom row), while the maximum number of co-occurring species is limited following the macroecological model of species 
richness shown in Figure 2
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ecoregions) (Figures 5 and 6). In the largest ecoregions (“Atlantic 
mixed Forests” and “Western European broadleaf forests”), models 
predicted either a stable or a slightly decreasing ses.FDiv in future 
climate. Overall, ses.FDiv is predicted to decrease more strongly in 
the “full dispersal” hypothesis (Table 1). The most notable predicted 
changes were a strong increase in ses.FDiv in the “Alps conifer and 
mixed forests” ecoregion and a strong decline in the “Northeastern 
Spain and Southern France Mediterranean forests” ecoregion 
(Figure 6).

Predictions of average species’ weight indicated that in the 1960s, 
the heaviest earthworm communities were clustered in a small area in 

southern France (Figure S4a). Future predictions revealed a shift to-
wards heavier communities on average in all ecoregions in the stron-
gest scenarios of climate change (Figure S4b). In this case, though, the 
heaviest communities are predicted to remain in roughly the same, 
albeit larger, region of southern France (Figure S4a).

4  |  DISCUSSION

Climate-driven range shifts are responsible for changes in the local 
composition of assemblages (Devictor et al., 2008; Parmesan, 2006), 

F I G U R E  4  Predicted changes in functional diversity, separated into FRic (a), functional evenness (b) and functional divergence (c), 
compared to the 1960s. Values are presented as mean percent change within each French ecoregion, coloured as in Figure 1
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potentially affecting the distribution of functional traits within bio-
logical communities (Wieczynski et al., 2019). In this study, we used 
a comprehensive sampling of earthworms carried out in metropoli-
tan France to predict potential changes in the functional diversity of 
earthworms’ assemblages in future climate. We observed that diver-
sity is expected to have changed, both in terms of raw numbers and 
regarding its spatial distribution in France, between the period of 
sampling (1960s) and nowadays. Projections in scenarios of climate 
change predicted that this modification of the functional diversity 

of assemblages is expected to continue in the future, with stronger 
changes in the most extreme scenarios of climate change. There 
were substantial differences depending on the region considered 
and on whether species will be able to disperse and track climate 
change.

The first noticeable results we obtained concern the estimated 
accuracy of SDMs. We noticed a clear relationship between perfor-
mance metrics and species’ prevalence, a pattern that has already 
been described (Lobo et al., 2008) and that suggests that both AUC 

F I G U R E  5  Earthworm-standardized functional diversity indices [(a) functional richness, (b) functional evenness, (c) functional divergence] 
predicted by species distribution models in the 1960s, and projected in the present and in future climate following two scenarios of climate 
change and two time periods. Compared with Figure 3, these measures are independent from species richness and can be interpreted as 
functional clustering (values <0) or overdispersion (values >0). For each metrics, projections either assume that species fill their predicted 
climatic niche (top row) or that they cannot disperse (bottom row), while the maximum number of co-occurring species is limited following 
the macroecological model of species richness shown in Figure 2
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and TSS provide a poor measure of the actual predictive perfor-
mance of SDMs, even trained with presence-absence data obtained 
from high-quality sampling. In any case, we emphasize that the ap-
proach used in this study is designed to provide general trajectories 

under some specific hypotheses and scenarios, and should not 
be interpreted as a prediction of the true diversity of earthworm 
communities at a precise location. Given the performance and data 
quantity thresholds that we imposed to incorporate species into 

F I G U R E  6  Predicted changes in standardized functional diversity obtained from randomization (mean within each French ecoregion, 
coloured as in Figure 1), separated into standardized functional richness, standardized functional evenness and standardized functional 
divergence. Models were fitted with data from the 1960s, and projected in the present and in the future climate (2050 and 2070) following 
two scenarios of climate change (RCP 4.5: plain lines; RCP 8.5: dotted lines). For each metrics, projections either assume that species can or 
cannot disperse, while the maximum number of co-occurring species is limited following a macroecological model of species richness
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our predictions of functional diversity, only a handful of earthworm 
species (30/105) were actually included in the analyses. Therefore, 
it must be kept in mind that the true diversity of earthworm com-
munities that will be present in the field may differ strongly from 
our predictions. It is also important to acknowledge that we most 
likely missed several important predictors of earthworms’ distri-
butions because they are relevant at a finer scale than our study. 
Incorporating microclimate and chemical conditions within the soil 
layer, for example, would have certainly improved model perfor-
mance, although such variables are difficult to map at fine scale and 
to project in the future.

We fitted here SDMs using climate, soil and land cover variables, 
with the drawback that we did not have future projections of soil 
pH, soil organic carbon and land cover changes. Since earthworms 
are soil-dwelling organisms, that moreover are ecosystem engineers 
that contribute to many soil processes, we know that feedbacks 
exist between earthworms’ activity and soil structure (Blouin et al., 
2013; Liu et al., 2019). This could have resulted in an apparent strong 
relationship between soil variables and species’ presence/absence, 
making it difficult to infer the effect of climate change on their dis-
tributions. Here, we observed instead that most species were asso-
ciated with variations in land cover or climate variables. It is probable 
that a relationship between soil properties and the distribution of 
earthworm species could have been detected at a smaller scale. For 
example, it is known that soil pH can be a limiting factor for the colo-
nization of some earthworm species (e.g. Chan & Mead, 2003). There 
is also evidence that soil environmental variability—including pH and 
soil organic carbon concentration—contributes to earthworms’ dis-
tribution at a scale of a few meters (Jiménez et al., 2011), far finer 
that the 30 arc-second resolution of our country-wide variables.

The fact that land cover appeared as the primary driver of earth-
worms’ distribution in our models is consistent with the results of 
Rutgers et al. (2016), who observed that earthworm abundance and 
diversity were related to the presence or absence of some land cover 
types (grasslands, croplands, forests, heathlands, vineyards) across 
Europe. This reflects the habitat preference of earthworm species, 
as well as the fact that land use intensity is known to have a large im-
pact on earthworm communities (Smith et al., 2008; Spurgeon et al., 
2013). Currently, this variable accounted for country-scale variation 
in habitat types and anthropogenic activity. Our predictions may 
have been refined by incorporating models of land use change under 
various socioeconomic and climate scenarios; however, such projec-
tions are currently available at a coarser scale than the predictors we 
employed (Chen et al., 2020; Hurtt et al., 2020).

The most influential climate variables (BIO3, PET of the cold-
est quarter) revealed the importance of temperature for determin-
ing earthworms’ distribution at the scale of France. An increase in 
the frequency and intensity of extreme temperature events is one 
of the most often observed (Perkins-Kirkpatrick & Lewis, 2020) 
and predicted (Meehl & Tebaldi, 2004) consequence of climate 
change. Similarly, precipitation extremes are predicted to intensify 
in response to a warming climate (O’Gorman, 2015). Therefore, it 
seems likely that climate change will play (and probably have already 

played) a role in the distribution of earthworm species and hence in 
the structure of communities. The projections we produced confirm 
that, providing that the association between earthworm species and 
climate we detected is legit, climate change has the potential to be 
responsible for strong shifts in the functional diversity of earthworm 
assemblages.

Besides abiotic factors, it is evident that species interactions 
are partly responsible for the structure of earthworm communi-
ties (Uvarov, 2009). However, again, this effect must be limited in 
space to the fine scale relevant to processes of interspecific com-
petition. Looking at the scale of whole species ranges, large-scale 
factors such as climate are usually recognized as the primary drivers 
shaping range limits (Soberon & Nakamura, 2009). In this regard, a 
number of studies have reported an effect of temperature variation 
on earthworms’ activity and survival (Singh et al., 2019), and a global 
mapping of earthworm diversity also concluded that climate vari-
ables were more important in shaping earthworm communities than 
soil properties (Phillips et al., 2019). Therefore, we are confident that 
our models provide useful projections of the potential impact of cli-
mate change on the diversity of French earthworm's assemblages. 
However, these predictions must be understood at the relevant 
scale of analysis: they represent the expected diversity within 2.5 
arc-min grid cells and cannot be used to predict community compo-
sition within a local sampling plot.

The predicted changes in diversity we obtained were partly de-
pendent on the imposition of a dispersal limit or not. There were, on 
average, larger changes (especially declines) in functional diversity 
when we constrained species to remain in their historical ranges, 
most notably for functional richness. However, differences were 
rather limited, as evidenced by prediction maps that looked largely 
similar in both hypotheses (see Figures 3 and 5). The fact that we ex-
cluded from our analyses all species that were observed in less than 
10 sites has possibly influenced the difference (or lack thereof) be-
tween full and no dispersal scenarios. By removing narrowly distrib-
uted and rare species, we could not identify a potential expansion of 
these species that could occur if conditions become more suitable 
for them in the future. Here, we simply assumed that species either 
moved freely to fill their entire niche, or on the contrary were so 
slow dispersers that they could not colonize new grid cells under the 
time frame of the study. Although active or passive dispersal defi-
nitely occurs in earthworms (see e.g. Caro et al., 2013), we know for 
sure that large-scale colonizations take time, as evidenced by the 
imprint glaciation has left of earthworm community structuring in 
France (Mathieu & Davies, 2014). Thus, the real changes in commu-
nity composition at a scale of a few decades must be closer to the 
“no dispersal” scenario, even though knowing the actual dispersal 
ability of each species would certainly improve predictions.

We predicted a rather strong decrease in both species and FRic 
in the future, in most regions of France. In the most extreme scenario 
and in the absence of dispersal, climate change is expected to be 
responsible for a reduction of FRic of ca. 50% in the eastern half of 
the country (“Western European broadleaf forests” and “Alps conifer 
and mixed forests” ecoregions). Given the many effects earthworms 
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have on ecosystem services (Blouin et al., 2013; Liu et al., 2019), this 
may profoundly change the functioning of soil processes in the areas 
affected by this decline, potentially with deleterious consequences 
on natural and agroecosystems. Experimental removal of earthworm 
species in mesocosms could provide empirical evidence of this effect 
in controlled conditions (e.g. Heemsbergen et al., 2004). Generally, 
climate change is expected to lead to a loss of rare species traits 
and to a functional homogenization. Loss of specialist species and 
functional homogenization of communities driven by climate change 
has already been empirically observed in other taxa (e.g. Fourcade 
et al., 2021; Gauzere et al., 2015). Functional differences among 
soil species is generally a factor that promotes biodiversity effects 
on many aspects of ecosystem functionality (Heemsbergen et al., 
2004; Huang et al., 2020). Therefore, there is a risk that this loss 
of diversity result in the loss—or decrease—of some key aspects of 
ecosystem processes, for example because a key but rare trait will 
be missing from climate-altered earthworm communities. Since spe-
cies and FRic are known to be correlated (Villéger et al., 2008), we 
produced standardized estimates that are independent of species 
richness. This revealed that FRic was mostly clustered in the 1960s, 
indicating that functionally similar species were generally present in 
the same grid cells (whether they actually co-occurred at the plot 
scale is something we could not estimate here). In most scenarios of 
climate change, FRic is predicted to become even more clustered, 
that is there will be even less variation of functional traits than ex-
pected given species richness.

Results for functional evenness and divergence give a different 
picture than richness. First of all, it appears that these indices of di-
versity will be less affected by climate change, since the predicted 
changes in the present and future conditions, compared to the 
1960s, remain limited. We observe that, in the largest French ecore-
gions, functional evenness may slightly increase in the scenarios of 
strongest climate change (RCP 8.5 in 2070), while it is predicted to 
decrease in mountainous regions. On the contrary, FDiv should de-
crease in most of the country, except in the mountains where an 
increase in future climate is predicted. In the latter regions, ses.FDiv 
is also predicted to increase, showing that, even in a declining func-
tional richness, climate change will lead in mountainous areas to a 
greater dispersion of functional traits around the mean trait values. 
Since higher FDiv is a sign of greater niche differentiation, it may 
contribute to increase ecosystem functioning thanks to a more effi-
cient use of resources (Mason et al., 2005). Standardized functional 
evenness should remain largely stable in all ecoregions, showing that 
despite changes in species and functional richness, functional space 
is predicted to remain evenly utilized.

The predicted changes in diversity we describe in this study are 
not spatially homogeneous across France but exhibit clear regional 
differences. Some of this heterogeneity corresponds to known 
patterns in climate change ecology. Here, we predicted a clear re-
duction in species richness in southern France, which likely reflects 
the retraction of species’ ranges at their southern edge (Lenoir & 
Svenning, 2014). Training models at a larger scale could have allowed 
to identify the colonization of climate-tracking species coming from 

southern Europe (Chen et al., 2011; Devictor et al., 2008; Parmesan, 
2006), but only under the hypothesis that earthworms are able 
to perform long-distance range shifts in this time frame. We also 
observed that some mountainous regions show a slower decrease 
in species richness than in lowlands (see e.g. the Alps and Massif 
Central in Figure 2). This is typical of climate refugia, which are areas 
where climatic conditions will remain relatively colder than else-
where, even in a global trajectory of warming. These regions have 
the potential to buffer the effects of climate change because they 
allow the persistence or the colonization of species that would have 
been extirpated otherwise (Morelli et al., 2020). Since declines in 
species richness drive the large changes we predicted for functional 
richness, it is important to consider these climate refugia for pre-
dicting future functional diversity. We note here in this regard that 
the “Alps conifer and mixed forests” ecoregion is the only one where 
standardized FDiv is predicted to increase in the future, despite a 
general trend of decreasing species and functional richness. There 
are other possible climate refugia that are not accounted for here, 
though. Colder microclimates may be created by the interaction be-
tween landscape structure, biological processes, topographical fea-
tures and weather (Lembrechts et al., 2020), in such a way that the 
temperature conditions experienced at fine scale may be different 
from those observed from macroclimate variables. Therefore, there 
probably exist microclimatic refugia such as in shady landscapes or 
north-oriented slopes where species may persist longer than pre-
dicted by our models. Similarly, soil conditions may provide a buffer-
ing effect from macroclimatic warming that increases with depth; in 
this case, endogeic species may be less sensitive to climate change 
that species that live closer to the surface.

5  |  CONCLUSION

In conclusion, we showed here how the functional diversity of a 
key group of ecosystem engineers may change in the future as 
a consequence of climate change. Our results mostly pointed to 
a strong potential reduction of species and functional richness. 
Although we were able to model only ca. one third of the species 
present in the country, it is likely that earthworm communities will 
be significantly altered by climate change in terms of their rich-
ness, size structure and distribution of traits. Since distinct func-
tional groups of earthworms differ in their activity in the soil, there 
are concerns that changes in community structure may lead to an 
alteration of soil processes and of the ecosystem services they 
provide (Blouin et al., 2013; Heemsbergen et al., 2004). However, 
we also predicted that, relatively to species richness, standardized 
functional diversity indices may increase in some specific regions 
of France. In addition to the observation that functional evenness 
and divergence will remain relatively stable overall, this indicates 
that declines in species and FRic may be partially compensated. 
The approach of using stacked SDMs coupled with species’ traits 
to predict functional diversity in a changing climate is not new (see 
e.g. D’Amen et al., 2018; Pradervand et al., 2014), but this is the 
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first time it is applied to belowground taxa. Here, we used data 
from the 1960s (Bouché, 1972) and projected models in time, in-
cluding in the present. Field-validation of our models may be pos-
sible in the future thanks to a resampling of Bouché’s (1972) sites 
that is currently underway.
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SUPPORTING INFORMATION 

Table S1: Summary of species traits used to compute functional diversity indices. For each trait, we 

show the mean, minimum and maximum value across all species, or the proportion of species in each 

category. 

Trait Summary of trait values Type of trait 

Maximum length (mm) 174.69 [18 - 1050] General morphology 

Maximum width (mm) 5.867 [1 - 25] General morphology 

Maximum weight (mg) 6566 [20 - 106000] General morphology 

Body shape 
cylindrical (90%), cylindrical to subtrapezoidal (1%), 
cylindrical with puberculus enlargement (1%), 
quadrangular (2%), subtrapezoidal (6%) 

General morphology 

Prostomium shape 
absent (1%),  epilobic (76%),  prolobic (13%), 
tanylobic (9%) 

General morphology 

Flat tail no (54%), yes (46%) General morphology 

Heart position (segment no.) 4 (1%), 5 (2%), 6 (62%), 7 (31%), 9 (1%),10 (3%) Anatomy 

Heart size 2 (1%), 3 (3%), 4 (3%), 5 (90%), 6 (1%), 7 (2%) Anatomy 

Body color none (34%), melanic (35%), green (1%), red (30%) General morphology 

Longitudinal color gradient yes (52%), no (48%) General morphology 

Transversal color gradient yes (51%), no (49%) General morphology 

Epidermis thickness (ranked 1-3) 2.17 [1 - 3] Anatomy 

Epidermis smoothness (ranked 1-3) 1.73 [1 - 3] Anatomy 

Mucus quantity normal (85%), abondant (15%) Anatomy 

Muscle type 
elementary (22%), intermediate (12%), squamous 
(7%), pinnate (47%), radial (11%) 

Anatomy 

Septa thickness (ranked 0-6) 3.44 [0 - 6] Anatomy 

Longitudinal furrows yes (41%), no (59%) General morphology 

Transverse furrows yes (91%), no (9%) General morphology 

Male pores position 6.63 [0 - 13.5] Reproduction 

Setae proximity 0.16 [0 - 1] General morphology 

Crop presence yes (6%), no (94%) Digestion 

Morren gland presence yes (91%), small or absent (2%), no (7%) Digestion 

Typhlosole location (segment no.) 21.23 [0 - 28] Digestion 

Typhlosole complexity (ranked 1-3)  1.89 [1 - 3] Digestion 

Clitellum shape 
annular (5%), annular to saddle (1%), saddle-shaped 
(94%) 

Reproduction 

Clitellum size 9.51 [2 - 27] Reproduction 

Flat clitellum yes (55%), little flat (1%), slightly flat (1%), no (43%) Reproduction 

Tubercula shape gutter (42%), band (29%), other (29%) Reproduction 

Tubercula presence yes (90%), no (10%) Reproduction 

Seminal vesicles complexity (ranked 1-3) 1.15 [1 - 3] Reproduction 

Seminal vesicles location 9.58 [0 - 14] Reproduction 

Spermathecal pore size (ranked 0-3) 2.20 [0 - 3] Reproduction 

Female pore location 14.54 [14.17 - 17.55] Reproduction 

Spermathecal pore location 15.60 [13.5 - 22.3] Reproduction 

Spermathecal pore area A [2%], B [98%] Reproduction 

Nephridiopore distribution aligned (65%), not aligned (35%) Reproduction 
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Methods S1: ODMAP protocol for reporting details about the SDM procedure 

OVERVIEW 

Title of study: Potential decrease in earthworm functional diversity caused by climate change 

Authorship: Yoan Fourcade, Mathias Vercauteren 

Contact:  Univ. Paris Est Creteil, Sorbonne Université, CNRS, INRAE, IRD, Université de 
Paris, Institute of Ecology and Environmental Sciences Paris iEES, 94010 
Créteil, France 

  yoan.fourcade@u-pec.fr 

MODEL OBJECTIVE 

Model objective: Forecast and transfer 

Target output: Functional diversity of earthworm assemblages 

Focal Taxon:  Earthworms (44 species) 

LOCATION 

Location:  Metropolitan France 

SCALE OF ANALYSIS 

Spatial extent:  -4.77, 9.57, 41.38, 51.09 (xmin, xmax, ymin, ymax) 

Spatial resolution:  30 arc-sec 

Temporal extent:  1960s, present (2000-2016), future (2040-2060 and 2060-2080) 

Boundary:  Political 

BIODIVERSITY DATA 

Observation type:  Standardized monitoring data 

Response data type:  Presence/absence 

PREDICTORS 

Predictor types:  Climatic, edaphic, land cover 

ASSUMPTIONS 

Model assumptions:  We assumed that at the scale of the study, earthworms’ species distributions 
are mostly controlled by climate, although we still include soil and land cover 
predictors. We adopted two alternative hypotheses regarding dispersal: no 
dispersal or full dispersal, and combined individual models according to the 
species richness estimated by a macroecological model. 

ALGORITHMS 

Modelling techniques: Boosted regression trees (BRT) 

Model complexity:  All possible combinations of the following parameters were tested: number of 
trees = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, interaction depth = 1, 
2, 3, 4, shrinkage = 0.005, 0.01, 0.05, 0.1, 0.15, 0.2. The final models were the 
ones that provided the highest AUC. 

Model averaging:  No 

WORKFLOW 

Model workflow:  (1) Variables were cropped to the extent of France, (2) presence/absence data 
were obtained from a standardized protocol of soil sampling conducted in the 
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1960s, (3) BRTs were fitted to each earthworm species with hyperparameters 
chosen based on AUC, (4) models were projected in the present and in two 
future scenarios of climate change and two time periods, (5) functional diversity 
indices were calculated from stacked predictions at 2.5 arc-min resolution, with 
a probability ranking rule to limit the number of co-occurring species to the 
predictions of a macroecological model of species richness. 

SOFTWARE 

Software:  SDMtune package in R 

Code availability: Can be provided upon request  

Data availability:  Climate variables: https://chelsa-climate.org/ 
 Soil pH: https://zenodo.org/record/2525664 
Soil organic carbon content: https://zenodo.org/record/2525553  
Land cover: https://land.copernicus.eu/pan-european/corine-land-cover 
Earthworm data: https://doi.org/10.5061/dryad.g7046  

DATA 

BIODIVERSITY DATA 

Taxon names: 44 earthworm species 

Ecological level :  Species 

Data sources :   Data from Bouché MB (1972) Lombriciens de France  : écologie et 
systématique. INRA, Paris. Available at: https://doi.org/10.5061/dryad.g7046  

Sampling design:  1366 sites regularly spaced across France 

Sample size:  Prevalence from 0.008 to 0.702 (mean = 0.086) 

Clipping:  Metropolitan France 

Cleaning:  Only species with > 10 presence locations were used 

Absence data: Input data included absence data 

Background data: NA  

Data partitioning 

Training data:   Spatial blocks in a double ‘checkerboard’ grid of 1.5 arc-min and 2.5° resolution 

Validation data:  Spatial blocks in a double ‘checkerboard’ grid of 1.5 arc-min and 2.5° resolution 

Predictor variables 

Predictor variables: Isothermality (BIO3), mean temperature of the wettest quarter (BIO 8), 
precipitation seasonality (BIO 15), precipitation of coldest quarter (BIO19), 
number of months with mean temperature > 10°C, potential evapotranspiration 
of the driest quarter, potential evapotranspiration of the coldest quarter and 
potential evapotranspiration of the warmest quarter, annual precipitation 
(BIO12) during the last glacial maximum, land cover. 

 The number of predictors was reduced by removing variables whose 
importance was < 10% if the AUC of the model was improved. 

Data sources:  CHELSA (climate):  https://chelsa-climate.org/,  

 OpenLandMap (soil):  https://zenodo.org/record/2525664 
https://zenodo.org/record/2525553  

 Copernicus (land cover): https://land.copernicus.eu/pan-european/corine-land-
cover 

https://chelsa-climate.org/
https://zenodo.org/record/2525664
https://zenodo.org/record/2525553
https://land.copernicus.eu/pan-european/corine-land-cover
https://doi.org/10.5061/dryad.g7046
https://doi.org/10.5061/dryad.g7046
https://chelsa-climate.org/
https://zenodo.org/record/2525664
https://zenodo.org/record/2525553
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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Spatial extent:  -4.77, 9.57, 41.38, 51.09 (xmin, xmax, ymin, ymax) 

Spatial resolution:  30 arc-sec 

Coordinate  
reference system:  Initially EPSG 4326, model predictions were projected to EPSG 3035 

Temporal extent:  Climate:    1960s 
Past climate:  last glacial maximum 
Soil:   1950-2017 
Land cover:  1990 

Data processing: Bioclimatic variables have been created from rasters of monthly minimum 
temperature, maximum temperature and precipitation. Variables were cropped 
to the extent of Metropolitan France. 

Transfer data 

Data sources:  CHELSA (climate): https://chelsa-climate.org/ 

Spatial extent :  -4.77, 9.57, 41.38, 51.09 (xmin, xmax, ymin, ymax) 

Spatial resolution:  30 arc-sec 

Temporal extent:  Climate: 2000-2016 (present), 2041-2060, 2061-2080 
Land-cover: 2012 (present), 2018 (future) 

Models and  
scenarios:  Global circulation model:   MIROC 5 

 Climate change scenarios:  RCP 4.5 and RCP 8.5 

Data processing: Rasters were cropped to the extent of Metropolitan France, including Corsica 

Quantification of  
Novelty:  none 

MODEL 

Multicollinearity 

Multicollinearity:  We removed all variables that had a variance inflation factor > 4 

Model settings 

Distribution: Bernoulli 

nTrees: 20-500 depending on species 

interactionDepth: 2-4 depending on species 

Shrinkage: 0.005-0.2 depending on species 

bagFraction:  0.2 

Threshold selection 

Threshold selection:  Based on the threshold that maximizes the sum of sensitivity and specificity 

ASSESSMENT 

Performance statistics 

Performance on  Area under the ROC curve (AUC) calculated from spatial block 
validation data:  partitioning following a double ‘checkerboard’ grid of 2.5 arc-min and 2.5° 
 resolution 

Plausibility check 

https://chelsa-climate.org/
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Response shapes: Not extracted  

Expert judgement: Visualization of output binary maps  

PREDICTION 

Prediction output 

Prediction unit:  Continuous suitability maps 

 Binary presence/absence maps used for limiting dispersal 

Post-processing:  We stacked models in 2.5 arc-min grid cells following probability ranking rule to 
limit the number of co-occurring species to the predictions of a macroecological 
model of species richness, then calculated functional diversity (raw and 
standardized values) from species traits within each grid cell 

Uncertainty quantification 

Scenario uncertainty: Projection into two scenarios and two time periods; two dispersal hypotheses 

Novel environments: Not quantified   
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Figure S1: Distribution of AUC (a) and TSS (b) values obtained from the species distribution models 

trained on 44 species, and relationship between AUC and TSS (c). Panels (d-e) show the relationship 

between AUC (d) or TSS (e) and species prevalence, with the regression line and its standard-error 

obtained from a linear model between fitted between AUC or TSS and the logarithm of prevalence. 
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Figure S2: Summary of variable importance obtained from permutation for the 44 modelled species. In 

(a) is shown the mean and standard-error of variable importance across all species; in (b) is shown the 

number of species for which each variable was ranked as the most important in model training. 
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Figure S3: Scatterplots of the relationship between species richness and the three indices of functional diversity, for 5000 random grid cells. Plots are shown 

with regression lines, along with the corresponding R². 
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Figure S4: (a) Mean community values of maximum species weight as predicted by stacked BRT 

species distribution models in the 1960s (the time of data collection), and projected in the present and 

in future climate following two scenarios of climate change and two time periods. Models are projected 

in space and time by allowing species to fill their predicted climatic niche (top row), or assuming that 

they cannot disperse (bottom row), while maximum species richness is constrained by a 

macroecological model (see Figure 2). (b) Predicted changes in mean community values of maximum 

species weight compared to the 1960s. Values are presented as mean percent change within each 

French ecoregion, coloured as in Figure 1. 

a 

 

b 

 


