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Abstract 15 

The presence of anti-human leucocyte antigen (HLA) antibodies in the potential solid organ 16 

transplant recipient’s blood is one of the main barriers to access to a transplantation. The HLA 17 

sensitization is associated with longer waitlist time, antibody mediated rejection and transplant lost 18 

leading to increased recipient’s morbidity and mortality. However, solid organ transplantation across 19 

the HLA immunological barriers have been reported in recipients who were highly sensitized to HLA 20 

using desensitization protocols. These desensitization regimens are focused on the reduction of 21 

circulating HLA antibodies. Despite those strategies improve rates of transplantation, it remains 22 

several limitations including persistent high rejection rate and worse long-term outcomes when 23 

compare with non-sensitized recipient population. Currently, interest is growing in the development 24 

of new desensitization approaches which, beyond targeting antibodies, would be based on the 25 

modulation of alloimmune pathways. Plasma cells appears as an interesting target given their critical 26 

role in antibody production. In the last decade, CD38-targeting immunotherapies, such as 27 

daratumumab, have been recognized as a key component in the treatment of myeloma by inducing an 28 

important plasma cell depletion. This review focuses on an emerging concept based on targeting 29 

CD38 to desensitize in the field of transplantation.  30 
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Introduction 31 

HLA sensitization and antibody-mediated rejection  32 

Solid organ transplantation (SOT) has become the best therapeutic option for end-stage organ 33 

disease but faces two major issues: the limited transplant supply and the poor long-term transplants 34 

outcome which have not improved over the past 30 years (1–3). This observation is related to the 35 

occurrence of antibody-mediated rejection (ABMR) which remains the death-censored leading cause 36 

of transplant loss across all solid organ transplants (3,4). ABMR is defined on the association of 37 

histologic lesions (microvascular inflammation), histologic evidence of alloantibodies – endothelium 38 

interaction (c4d staining) and circulating donor-specific antibodies mostly directed against human 39 

leucocyte antigens (HLA) (3–10). Following blood transfusion, pregnancy or previous graft failure, 40 

candidates for organ transplantation can become sensitized against HLA and produce circulating anti-41 

HLA antibodies (11,12). In particular, pending on their properties donor-specific anti-HLA 42 

antibodies (DSA),  are responsible  for  ABMR leading to allograft dysfunction and graft loss (13–43 

18). Currently, immunomotoring of the  transplant candidate’s is routinely performed  in order  to 44 

stratify the immunological risk by determining the presence and specificity of anti-HLA antibodies 45 

and potential DSA (11,16). The highly sensitized patients have longer waitlist times with significant 46 

adverse effect on both quality and quantity of life (1,2). Several strategies are applied to limit the 47 

time on the waiting list of highly immunized patients such as prioritization in transplant’s access, 48 

promotion of transplantation from living-donor allografts, development of kidney paired donation 49 

and desensitization.  50 

 51 

Desensitization and solid organ transplantation’s outcome  52 

Current desensitization strategies have been developed in kidney transplantation and extended 53 

to other solid organ transplantation (17–21). The goal of desensitization regimens in presensitized 54 

transplant candidates is twofold including the reduction of anti-HLA level to allow transplantation 55 

and the improvement of transplantation outcome through the prevention of ABMR (22). A stepwise 56 

approach is commonly used to desensitize including, (i)  either high-dose intravenous 57 

immunoglobulin (IVIG) or low dose IVIG in association with plasmapheresis to remove antibodies 58 

and, (ii)  anti-CD20 targeting agent, such as rituximab, to prevent rebound antibodies development 59 

by B cell depletion (23–27). Regarding the kidney transplantation field, despite the desensitizing 60 

effect, the subsequent transplantation is associated with higher rate of rejection and higher rate of 61 

hospital readmission after transplantation (28–30). However, long term outcomes for patient and 62 

graft survival have been reported to be similar to that of non-sensitized patients (31). Furthermore, 63 

the benefit of desensitization compared to remaining on the transplant waiting list has been evaluated 64 

only in few large studies and their results remain controversial (32,33). Montgomery et al. and 65 

Orandi et al. reported a survival benefit at five years after kidney transplantation in 211 and 1025 66 

desensitized patients respectively compared to patients remaining on the waiting list (34,35). 67 

Interestingly, in a study performed on 213 desensitized recipients of living donor transplants, 68 

Manook et al. showed that desensitization was not associated with a survival benefit compared to 69 

matched sensitized control patients who were waitlisted (36). On the other hand, keeping patients a 70 

long time on dialysis represent a considerable financial burden while decreasing the quality and 71 

length of life for affected patients (32,33).Thus, it appear as necessary to develop novel therapeutic 72 

approaches in order to prevent ABMR and improve long-term survival of transplanted organs in 73 

highly immunized recipient. 74 

 75 

Desensitization regimens targeting plasma cells  76 

The available therapeutic tools to manage the humoral response appears modestly successful 77 

in the context of SOT and alloimmunity. Indeed, antibody rebound due to plasma cells (PC), which 78 
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do not express CD20, limit the efficacy of the most commonly used strategy combining IGIV, 79 

plasmapheresis and B cell depletion by anti-CD20 depleting agent. Targeting PC with new 80 

pharmacological tool from autoimmunity and cancer research could allow a better management of the 81 

humoral response in desensitization protocols (37). In the germinal center, after the enhancement of 82 

alloantigen responses by T follicular helper (Tfh), activated B cells develop into memory-B cells, 83 

progress to plasmablasts and ultimately to andibody-producing PC (38,39). These PC are the long-84 

lived mediators of lasting humoral immunity and persist in medullary niche where they can secrete 85 

high-affinity complement-activating DSAs (38,40). Several emerging strategies aim to deplete PCs 86 

compartment in order to prevent ABMR (37,41). First, Interleukin 6 (IL-6) is a cytokine promoting 87 

Tfh and enhancing the progression of B cells to high-affinity antibodies producing PC (42). 88 

Tocilizumab, a first-in-class humanized monoclonal antibody (mAb) with specificity for IL-6R, 89 

reduce inflammation within the allograft during ABMR in heart and kidney transplantation (43) and 90 

induce circulating DSA reduction (44). Clazakizumab is a humanized IgG1 mAb with specificity for 91 

IL6 which can also induce circulating DSA reduction (45). Both Tocilizumab and Clazakizumab are 92 

pharmacological agents with major interest in the development of desensitization strategies targeting 93 

PC (37,46). On another hand, proteasome inhibitors represent one of the most promising solution to 94 

deplete PC in the setting of desensitization, targeting more selectively PCs population. Bortezomib 95 

and carfilzomib have been evaluated in desensitization trials, lacking control group, leading to 96 

controversial results (47,48). Both induce significant PCs depletion whereas DSA level did not 97 

significantly decrease or rebound occurred rapidly. In fact, targeting PC may lead to rapid germinal 98 

center activation by deleting the negative feedback usually provided by PC and rebound humoral 99 

immunity and compensation (49). Therefore, dual targeting approach (combining PCs depletion with 100 

proteasome inhibitors and costimulation blockade) may silence the germinal center and prevent 101 

humoral compensation. This strategy has been recently evaluated using carfilzomib and belatacept as 102 

desensitization in highly sensitized non-human primate model with a reduction of bone marrow PC, 103 

DSA levels reduction, and prolongation of allograft survival. Most animals experienced ABMR with 104 

humoral-response rebound, suggesting desensitization must be maintained after transplantation using 105 

ongoing suppression of the B cell response (50,51). An emerging therapy to induce DSA reduction 106 

and to prevent rebound DSA development is the use of antiplasma cell therapies such as anti-CD38, 107 

anti-CD19 or bispecific anti-CD3 / anti-BCMA (B cell maturation antigen). In this review, we 108 

propose to focus on anti-CD38 as a desensitization regimen in SOT.   109 
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CD38-Targeting strategies  110 

 111 
CD38 and CD38-targeting antibodies  112 

 The protein CD38 is a type II transmembrane glycoprotein known as a multifunctional 113 

molecule. CD38 play dual roles as receptors and ectoenzymes (52). The CD38/CD31 interactions are 114 

crucial to leukocyte adhesion and transmigration through the endothelium (53). CD38 is also an 115 

enzyme that catalyzes several reactions leading to the regulation of cytoplasmic calcium fluxes and a 116 

wide range of others physiological functions such as cellular metabolism (52). CD38, found 117 

throughout the immune system especially natural killer and PC, is highly expressed in multiple 118 

myeloma cells (54). Altogether, this has triggered the development of several CD38 antibodies to 119 

treat multiple myeloma (54–56). Daratumumab (DARZALEX®, Janssen), fully human IgG1-kappa, 120 

was the first CD38 antibody that was recognized as an emerging therapy against myeloma in the last 121 

decade (57). Daratumumab have multiple effects including Fc-dependent immune-effector 122 

mechanisms and direct effects. The Fc-dependent immune-effector mechanisms include antibody-123 

dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-124 

dependent cytotoxicity (54,55). Direct effects include induction of apoptosis, as well as inhibition of 125 

CD38 ectoenzyme function, which may lead to disruption of the PCs niche. Those Fc-dependent 126 

effects and direct effects are associated with deep and sustained CD38
+ 

cells depletion, mostly PC 127 

and NK cells (54,55,58). The ability of daratumumab to efficacy deplete PCs compartment permit to 128 

use it as an new agent in therapeutic armamentarium for multiple myeloma (56). Large clinical trials 129 

have demonstrated significant improvements in the outcome of patients with relapsed multiple 130 

myeloma with use of daratumumab and it has been recently approved in front-line regimens (56–60). 131 

Isatuximab (SARCLISA®, Sanofi) is a chimeric IgG1-kappa which has stronger direct effects than 132 

daratumumab but lower ability to induce Fc-dependent immune-effector mechanisms, while it 133 

remains unknown whether these functional differences observed between different CD38 antibodies 134 

affect their therapeutic utility (55,61). Many other strategies targeting CD38 are under development 135 

and a selection is listed in Table 1. The CD38-targeting antibodies generally represent a safe 136 

treatment. Indeed, the most reported toxicity is infusion related reactions which remain successfully 137 

controlled by premedication and infusion rate management with low frequency of recurrence during 138 

subsequent injections (62). A higher rate of viral infections in patients treated with daratumumab has 139 

been reported in some studies leading to a recommended administration of valaciclovir during the 140 

administration of anti-CD38 antibodies (62). 141 

 142 

Immunomodulatory effects of CD38-targeting antibodies  143 

CD38-targeting antibodies have immunomodulatory effects such as improving the host-anti-144 

tumor immune response (63). Krejcik et al. showed that daratumumab monotherapy against myeloma 145 

was associated with both CD4+ and CD8+ T cell expansion(64). This increase in T-helper cells and 146 

cytotoxic T-cell was associated with functional modification including elevated antiviral and 147 

alloreactive functional responses, and significantly greater increases in T-cell clonality as measured 148 

by T-cell receptor sequencing (63,64). These modifications are associated with depletion of CD38
+
 149 

immunosuppressive cells including regulatory T cells, regulatory B cells, and myeloid-derived 150 

suppressor cells. It is well known that such regulatory cells inhibit the host-anti-tumor immune 151 

response in the context of several malignancies including multiple myeloma (65–67). Altogether, this 152 

immunomodulatory activity of CD38 antibodies may be essential to their therapeutic efficacy. 153 

Indeed, it has been highlighted in clinical trials showing that expansion of effector T-cells and 154 

eradication of immune suppressors cells by daratumumab used against refractory and newly 155 

diagnosed multiple myeloma was correlated to a marked improvement in response and progression-156 

free survival (57,59,63,67). It might be hypothesized that these immunomodulatory abilities have 157 

important implication for sustained control of the tumor and further deepening of response (63). As a 158 



 

 
6 

result of these pleiotropic immune modulation, CD38 antibodies also enhance anti-tumor activity of 159 

others anti-cancer drugs with several studies highlighting that CD38-targeting antibodies have strong 160 

synergistic activity, such as combination to lenalidomide as well as to PD1/PD-L1 inhibitors (56,68). 161 

Besides effect on immune cells, CD38 antibodies may also modulate immunometabolic pathway. 162 

Indeed, CD38-targeting agent’s exposure could lead to lower adenosine level in tumoral 163 

microenvironment, which is known as immunosuppressive metabolite (69,70). All these properties 164 

enhancing the anti-tumoral response are of major interest in the field of oncology while it could be 165 

problematic in immunosuppressive strategies such as autoimmune diseases treatment or 166 

desensitization and SOT’s context.  167 



 

 
7 

CD38 antibodies in solid organ transplantation 168 
 169 

CD38 antibodies in non tumoral context 170 

 In the last decade, several strategies to handle with autoimmune or alloimmune pathologic 171 

situations include CD38 antibodies (71–73). Indeed, long-lived plasma cells, which produce 172 

pathogenic antibodies, are unresponsive to standard immunosuppression. Besides PC depletion and 173 

immunomodulatory effect, CD38 expression on PCs from patients with autoimmune condition (74) 174 

and reduction of auto-antibodies in patients exposed to daratumumab (75) support the evaluation of 175 

daratumumab in patients with autoantibody-dependent disorders and, in extension, to alloimmune 176 

situation such as SOT. Available evidence about CD38 antibodies efficacy in these situations are 177 

mostly cases reports of daratumumab use against immune cytopenia. Daratumumab were used to 178 

treat warm autoimmune hemolytic anemia post-hematopoietic stem cell transplant (76), refractory 179 

cold agglutinin disease (77), Evans syndrome (78) and pure red cell aplasia (79) with improvement in 180 

the majority of cases. Regarding other autoimmune disease, the administration of daratumumab in 181 

two patients with refractory lupus was recently described exhibiting clinical responses associated 182 

with  significant depletion of long-lived plasma cells and modulation of effector T-cell responses 183 

(80). As regard as autoimmune encephalitis, targeting CD38 was achieved with daratumumab in one 184 

case of life-threatening anti-NMDA receptor encephalitis and in one case of refractory anti-CASPR2 185 

encephalitis with improvements of neurological sequelae (81,82). In the last case, severe septicemia 186 

leading to patient death highlight an unmet need of rigorous clinical investigation to determine the 187 

efficacy and tolerance of CD38-targeting agent in autoimmune disease.   188 

 189 

CD38 antibodies and ABMR treatment   190 

In antibody-mediated non-neoplastic diseases, alloimmune situation such as SOT represent a 191 

field where targeting CD38 is promising. As alloantibody-producing PC express CD38 at a higher 192 

level than other CD38
+
 hematopoietic cells and CD38 antibodies induce a profound depletion of 193 

CD38
+
 PC, CD38 appears as a rational target to handle with harmful alloantibodies such as DSA 194 

(83,84). Currently, only few studies have been published regarding the use of CD38 antibodies for 195 

desensitization in patients awaiting transplantation or for treatment of ABMR. Concerning treatment 196 

of ABMR, the first report was in a patient with refractory early active ABMR caused by anti-A 197 

isohemagglutinins after kidney transplantation from his ABO-incompatible sister (85) . Based on the 198 

efficacy of daratumumab in the treatment of pure red cell aplasia following ABO-incompatible 199 

hematopoietic stem cell (79) and non-response of several therapies; daratumumab were tested as a 200 

rescue solution leading to a significant decrease of the pathogenic isohemagglutinins and resolution 201 

of tissue damage in the kidney biopsy. Kwun and colleagues also published a case report of 202 

daratumumab as a therapeutic strategy for refractory heart and kidney rejection in a patient who 203 

received heart and kidney transplants due to systemic lupus (72). Both transplant biopsy showed T 204 

cell–mediated rejection, ABMR and diffuse PC infiltration associated to the presence of several 205 

DSA. To face refractory cardiogenic shock and acute kidney failure dependent to dialysis, a 206 

compassionate use of daratumumab lead to the resolution of both allograft function, improvement in 207 

acute kidney lesions with decreased PCs infiltrate and dramatic decline for the majority of DSA. A 208 

recurrent acute PC-rich rejection on kidney biopsy and significant ascension of DSA were 209 

successfully managed with daratumumab. Recently, two others cases were reported: one refractory 210 

ABMR after a heart transplant successfully treated with daratumumab and one chronic active ABMR 211 

in a kidney allograft recipient diagnosed with myeloma exposed to daratumumab (73,86). In the last 212 

one, the exhaustive immuno-monitoring showed that the main mode of action seems to be based on 213 

PC depletion, with profound PCs reduction in the bone marrow and peripheral blood and the 214 

abrogation of in vitro alloantibody production by PC enriched from bone marrow aspirates, leading 215 

to significant reduction in DSA levels (73). Another observation is that daratumumab led to depletion 216 
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of NK cells infiltrating the allograft and circulating NK cells, which is major interest knowing the 217 

potential role of NK cells in microvasculature inflammation through engagement of their Fc gamma 218 

receptor IIIA with endothelium-bound DSA (87). Interestingly, while follow up biopsy showed 219 

resolution of humoral activity, it was observed tubulointerstitial inflammation which prompted 220 

steroid treatment. The author highlighted that the molecular signature of this infiltrate was not similar 221 

to signature of T-cell mediated rejection leading to question the trigger of this infiltrate not associated 222 

with graft dysfunction. Indeed, daratumumab may trigger T-cell alloresponse, even if circulating 223 

regulatory T cells were not reduced in the patient’s blood which is not necessarily correlated to the 224 

modification of immune cell populations at a tissue level. Moreover, the authors recently reported 225 

long term data of this case without evidence of ABMR rebound after daratumumab discontinuation 226 

(88).  Although it is difficult to decipher the role of a rescue with daratumumab added to a complex 227 

antirejection therapy, a drug that specifically deplete PC with a favorable safety profile could 228 

represent a step forward in the field.  229 

 230 

CD38 antibodies and desensitization   231 

 The ability of CD38 to desensitize has been evaluated in both preclinical and clinical contexts 232 

and published in the same study (72). The preclinical study was based on the use of daratumumab in 233 

a non-human primate model which has the most biological similarity to humans for solid organ 234 

transplant biology (41,89). The authors paired donors and recipients for maximal HLA mismatching 235 

and practiced, for allosensitization, two serial skin grafts before transplantation with a kidney from 236 

paired skin graft donor (72). Daratumumab and plerixafor (anti‐ CXCR4), known to induce 237 

mobilization of PC from bone marrow to peripheral blood, were given as desensitization therapy with 238 

an initiation 8-12 weeks after sensitization and 8 weeks before kidney transplantation. Animals 239 

received for induction anti-CD4 and anti-CD8 antibodies and for maintenance immunosuppression 240 

tacrolimus, mycophenolate mofetil and a methylprednisolone taper. This desensitization regimen 241 

reduced significantly preformed DSA, with more than 50% reduction compared with the pretreatment 242 

time point, and prolonged graft survival with a depletion of PC without altering the germinal center 243 

response since the Tfh population was not eliminated (72). However, desensitized monkeys showed 244 

delayed ABMR associated to DSA rebound and T cell–mediated rejection perhaps due to immune 245 

deviation. Indeed, the authors observed a reduction of regulatory B and T cells after desensitization 246 

with rapid emergence of activated T cells after kidney transplantation. This observation could be 247 

related to immunomodulatory effects of daratumumab but CXCR4 inhibition, due to plerixafor, is 248 

also known to limit regulatory compartment and to promote effector cells with a potential role in 249 

these cell‐ mediated rejection (90). Thus, in transplant recipients following desensitization with 250 

daratumumab, it would be interesting to elaborate new strategies than current immunosuppressive 251 

regimens in order to manage these DSA rebounds and the risk of T cell–mediated rejection. 252 

Concerning the clinical setting, the authors used daratumumab in a heart transplant candidate 253 

remaining highly sensitized after multiple courses of plasmapheresis, high-dose IVIG, and rituximab. 254 

It was observed a significant and persistent decrease of allosensitization allowing a heart 255 

transplantation six months after daratumumab infusion (72). Currently, based on these promising 256 

results, daratumumab are under investigation for desensitization in patients awaiting solid-organ 257 

transplantation in two clinical trial, one ruled by the nephrology department of Henri Mondor 258 

Hospital (Créteil, France) and another one directed by Stanford University (ClinicalTrials.gov, 259 

NCT04204980  and NCT04088903 (91,92)). Regarding the trial in kidney transplantation, sensitized 260 

patients with calculated panel reactive antibodies (cPRA) > 95% awaiting on the French National 261 

kidney allograft waiting-list for at least three years are eligible for the study and are randomly 262 

assigned to one of the two steps : (step 1) dose-escalation with 4 mg/kg of daratumumab weekly for 263 

four weeks, then with 8 mg/kg weekly for four weeks and then 16 mg/kg weekly for four weeks; 264 

(step 2) expansion cohort with eight weekly doses of 16 mg/kg. The primary outcomes are defined 265 
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as: adverse events, intra-patient variation of cPRA and anti-HLA levels. Several other outcomes are 266 

also of interest such as percentage of patients engrafted, and intra-patient variation of ABO antibody 267 

titers (91).  268 
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Conclusion 269 
 270 

Therapeutic improvement is required for both prevention and treatment of humoral 271 

alloresponse in solid organ transplantation. CD38 antibodies are a promising solution to profoundly 272 

deplete high affinity anti-HLA producing plasma cells. Preclinical and clinical experimental results 273 

suggests that daratumumab is a potentially therapeutic strategy to reduce DSA production and 274 

prevent and/or treat antibody-mediated rejection. However, CD38-targeting agent induce immune 275 

deviation which could be deleterious for solid organ transplants enhancing cellular-mediated 276 

rejection. Clinical studies are now needed to clarify the indications and efficacy of these promising 277 

therapeutic strategies. 278 

  279 
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Tables  541 
 542 

Table 1. Selection of therapeutical regimens targeting CD38 543 
 544 

Anti-CD38 strategies Nature and mechanism Statut NCT number 

Daratumumab 

Janssen 
Fully human IgG1-kappa anti-CD38 mAb Approved 

X 

 

Isatuximab 

Sanofi 
Chimeric IgG1-kappa anti-CD38 mAb Approved X 

Felzartamab - MOR202 

MorphoSys AG 
Fully human IgG1-lambda anti-CD38 mAb 

Ongoing in auto-

immune field 

NCT04733040 

NCT04145440 

Mezagitamab - TAK-079 

Takeda 
Fully human IgG1-lambda anti-CD38 mAb 

Ongoing in hemato-

oncology 
NCT03439280 

CID-103 

CASI Pharmaceuticals 
Fully human IgG1 anti-CD38 mAb 

Ongoing in hemato-

oncology 
NCT04758767 

ISB 1342 

Glennmark Phamaceuticals 

CD3xCD38 bispecific antibody to redirect cytotoxic potential 

of T cells to CD38
+
 cells 

Ongoing in hemato-

oncology 
NCT03309111 

TAK-169 

Takeda 

Antibody drugs conjugates: anti-CD38 Ab fragment combined 

to a Shiga-like toxin (payload: ribosome inactivation) 

Ongoing in hemato-

oncology 
NCT04017130 

TAK-573 

Takeda 

Antibody drugs conjugates: humanized IgG4 anti-CD38 mAb 

combined to interferon   (payload: anti-proliferative effects) 

Ongoing in hemato-

oncology 
NCT03215030 

²¹¹At-OKT10-B10 

Fred Hutchinson Cancer 

Research Center 

Antibody drugs conjugates: anti-CD38 mAb combined to 

radioactive Astatine ²¹¹At (payload: radiation) 

Ongoing in hemato-

oncology 

NCT04579523 

NCT04466475 

STI-6129 

Sorrento Therapeutics 

Antibody drugs conjugates: anti-CD38 mAb combined to 

Duostatin5 (payload: tubulin inhibition) 

Ongoing in hemato-

oncology 
NCT04316442 

KP1237 

Kleo Pharmaceuticals 

Endogenous-antibodies recruiting molecule targeting CD38 in 

order to enhance antibody-dependant destruction mechanism 

Ongoing in hemato-

oncology 
NCT04634435 

Anti-CD38 CAR-T Cells 

Sorrento Therapeutics 

Imunne cell therapy based on autologous T cells modified into 

anti-C38 CAR-T cells 

Ongoing in hemato-

oncology 
NCT03464916 

 545 
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Table 2. CD38 antibody use in solid organ transplantation 547 

 548 
ABMR: antibody mediated rejection, ATG: anti-human thymocytes globulins, DSA: donor specific 549 

antibodies, IVIG: intravenous immunoglobulins, MMF: mycophenolate mofetil, NHP: non-human 550 

primate, PC: plasma cells, Ref. : reference, TCMR: T cell mediated rejection, Tx: transplantation 551 

  552 

 553 

  554 

ABMR Treatment 
Ref. Transplant Sensitization IS strategy Immune event Treatment AntiCD38 use Evolution Observation 

72 Heart + Kidney Immunized:  

Preformed DSA 

- Induction: ATG 

-Maintenance:  
+ Tacrolimus 

+ MMF  

+ Steroid 

-Delay post-Tx: 17 months 

-Clinical findings: Cardiogenic shock and 
acute kidney injury requiring dialysis 

-Anti-HLA: de novo DSA and one preformed 

DSA 

-Histology: TCMR and ABMR with PC-

predominant infiltration in both transplants 

Steroid pulses  

+ ATG 
+ Plasmapheresis  

+ IVIG  

+ Rituximab  

+ Eculizumab 

Daratumumab: 

- 16 mg/kg 
- 8 weekly infusions 

-Clinical: Heart allograft function returned to baseline + 

no more need of dialysis 
-Anti-HLA: Dramatic decline of MFI for majority of DSA 

at 3 months  

-Histology: Significant improvement in acute lesions and 

the PC infiltrate significantly decreased 

-20 weeks after: recurrent acute PC-

rich rejection on kidney biopsy 
-Significant reascension of the MFI of 

two class 2 DSAs  

-New series of Daratumumab 

infusions with kidney allograft 

function improvement  

73 Kidney Immunized:  

Preformed DSA 

- Induction: ? 

-Maintenance:  

+ Tacrolimus 

+ MMF  

+ Steroid 

-Delay post-Tx: 13 years 

-Clinical findings: Progressive graft 

dysfunction and proteinuria in the context of 

newly diagnosed myeloma 

-Anti-HLA: 1 DSA 

-Histology: chronic active ABMR 

None other treatment Daratumumab:  

 - 16 mg/kg 

 - 8 weekly 

infusions  

 + 8 fortnightly 

infusions 

+ 1 monthly 

infusion thereafter 

for 9 months 

-Clinical: Stabilization of renal function and proteinuria 

-Anti-HLA: DSA levels became undetectable after 14 

weeks 

-Histology: Abrogation  of  microvascular inflammation 

with a decrease of intragraft NK cells densities 

-3 months after: subclinical borderline 

rejection  

- High-grade tubulitis and mild 

interstitial infiltrates which were 

dominated by T-cells 

-Improvement with high-dose 

intravenous steroid.  

85 Kidney Immunized:  

ABOi (Anti-A) 

- Induction:  

+ Basiliximab 
+ Rituximab 

-Maintenance:  

+ Tacrolimus 

+ MMF  

+ Steroid 

-Delay post-Tx: 30 days 

-Clinical findings: acute kidney failure 
-Antibodies: rise in Anti-A titers 

-Histology: ABMR 

Steroid pulses  

+ ATG  
+ Immunoadsorption  

+ Eculizumab 

Daratumumab:   

 - 16 mg/kg 
 - 6 weekly 

infusions 

-Clinical: Recovering of kidney function at baseline 

-Anti-A: Reduction in Anti-A titers leading to 
discontinuation of  immunoadsorption 

-Histology: No lesion 

 

86 Heart  Immunized:  

History ABMR  

Preformed DSA 

- Induction: ? 

-Maintenance:  

+ Tacrolimus 

+ MMF  

+ Steroid 

-Delay post-Tx: 13 years 

-Clinical findings: congestive heart failure  

-Anti-HLA: increase of DSA titers 

-Histology: ABMR 

Steroid pulses  

+ Immunoadsorption 

Daratumumab:  

 - 16 mg/kg 

 - 8 weekly 

infusions  

+ 8 fortnightly 

infusions 

+ 1 monthly 

infusion thereafter 
for 9 months 

-Clinical: Renal  and  cardiac  improvement  in 4 weeks 

-Anti-HLA: DSA titers are only slightly reduced 

-Histology: No lesions 

 

Desensitization 
Ref. Status Transplantation  AntiCD38 use Other treatment Efficacy AE IS strategy Observation 

72 Preclinical:  

NHP 

Kidney Daratumumab: 

-16 mg/kg 

-4 weekly infusions 

(8 weeks before Tx) 

Plerixafor (anti‐ CXCR4): 

-0.24 mg/kg 

-same frequency 

Significant reduction of 

DSA levels and 

prolonged graft survival 

None Induction: anti-CD4 + anti-CD8 

Maintenance: Tacrolimus + MMF + Steroid 

-Delayed ABMR 

-DSA rebound  

-TCMR 

 

-Reduction of Breg and Treg  
-Emergence of  activated T cells after 

kidney transplantation in the 

desensitization group 

72 Clinical Heart Daratumumab: 

-16 mg/kg 

-8 weekly infusions 

Plasmapheresis  

+ high-dose IVIG  

+ Rituximab 

Significant and 

persistent reduction of 

DSA levels and heart 

transplant access at 6 

months 

None NA Died from surgical complication 
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Figures 555 

 556 

Figure 1. Immune effects of anti-CD38 antibody in the context of solid organ transplantation.  557 

 558 

ABMR: antibody mediated rejection, Breg: regulatory B cell, DSA: donor specific antibodies, PC: 559 

plasma cell, TCMR: T cell mediated rejection, Treg: regulatory T cell.  560 

  561 



 

 
20 

1 Conflict of Interest 562 

The authors declare that the review was conducted in the absence of any commercial or financial 563 

relationships that could be construed as a potential conflict of interest. 564 

2 Author Contributions 565 

NJ, MM and PG designed the review, collected and interpreted data from literature, and wrote the 566 

manuscript. 567 

3 Funding 568 

None. 569 


