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Abstract: The interaction of isavuconazole with immunosuppressors (tacrolimus, cyclosporin A, or
sirolimus) against 30 Aspergillus isolates belonging to the most common species responsible for invasive
aspergillosis in humans (Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger,
and Aspergillus terreus) was evaluated in vitro by a microdilution checkerboard technique based
on the EUCAST reference method for antifungal susceptibility testing. The interpretation of the
results was performed based on the fractional inhibitory concentration index. The combination of
isavuconazole with tacrolimus, cyclosporin A, or sirolimus, was synergistic for 56, 20, or 10% of the
isolates, respectively. Interestingly synergy of the combination of isavuconazole with tacrolimus was
also achieved for the majority of azole-resistant isolates of A. fumigatus, and for all A. niger isolates
with isavuconazole minimal inhibitory concentrations ≥ 8 µg/mL. Antagonistic interactions were
never observed for any combination tested.

Keywords: antifungal combination; in vitro; aspergillosis; Aspergillus; isavuconazole;
immunosuppressor; EUCAST

1. Introduction

Invasive aspergillosis is a devastating disease in immunocompromised patients associated with a
high mortality rate of about 35% [1]. It mostly affects patients with hematological malignancies,
especially those with severe and prolonged neutropenia [2], but is also encountered in solid
organ transplant recipients [3–5]. Voriconazole has long been the treatment of choice for invasive
aspergillosis [6], and recently isavuconazole expanded the portfolio of first-line treatments [7],
but azole-resistance is increasingly reported in Aspergillus fumigatus [8]. In a prospective multicenter
international surveillance study, a total of 3788 Aspergillus isolates were screened in 22 centers from
19 countries. Azole-resistant A. fumigatus isolates were found in 3.2% of the cases [9]. The majority
of azole-resistant A. fumigatus isolates are resistant due to the TR34/L98H mutation in the cyp51A
gene [10]. The mutation TR34/L98H is also found in A. fumigatus isolates cultured from soil and compost.
These isolates are cross resistant to azole fungicides and genetically related to clinical azole-resistant
aspergilli, showing that the fungicides used for the protection of crops and other plants contribute to the
emergence of azole-resistance in A. fumigatus [11]. The high mortality rate among patients with invasive
aspergillosis due to multiple triazole resistant A. fumigatus isolates, and the possibility of the worldwide
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spread of these resistant isolates by the use of fungicides in agriculture, make azole-resistance in
A. fumigatus a major health problem [12]. Isavuconazole is a new board-spectrum azole antifungal
drug with excellent activity against most Aspergillus species [13]. Isavuconazole or voriconazole are
currently recommended as first-line therapies for pulmonary aspergillosis in Europe [14]. It has been
shown that isavuconazole-resistant Aspergillus isolates can be cross-resistant to voriconazole [15,16].
Therefore, combination with antifungals or non-antifungal drugs may be interesting to overcome
this resistance. Calcineurin inhibitors (e.g., tacrolimus and cyclosporin A) or inhibitors of the mTOR
pathway (e.g., sirolimus) are anti-rejection drugs widely used in organ transplant patients [17], and to
prevent graft-versus-host disease in allogeneic stem cell recipients [18], but these immunosuppressive
drugs also possess intrinsic antifungal activity against selected fungi, including Candida albicans [19],
Cryptococcus neoformans [19,20], A. fumigatus [21], Rhizopus arrhizus [22], and Coccidioides immitis [23].
Calcineurin inhibitors have even exhibited synergy in combination with amphotericin B, posaconazole
or isavuconazole against Mucorales [24,25]. Therefore, it is not only of clinical interest, not only if the
synergy can also be achieved for Aspergillus species, but also to evaluate calcineurin inhibitors as a
potential new antifungal class.

Invasive aspergillosis is a devastating disease in immunocompromised patients associated with a
high mortality rate of about 35% [1]. It mostly affects patients with hematological malignancies,
especially those with severe and prolonged neutropenia [2], but is also encountered in solid
organ transplant recipients [3–5]. Voriconazole has long been the treatment of choice for invasive
aspergillosis [6], and recently isavuconazole expanded the portfolio of first-line treatments [7],
but azole-resistance is increasingly reported in Aspergillus fumigatus [8]. In a prospective multicenter
international surveillance study, a total of 3788 Aspergillus isolates were screened in 22 centers from
19 countries. Azole-resistant A. fumigatus isolates were found in 3.2% of the cases [9]. The majority
of azole-resistant A. fumigatus isolates are resistant due to the TR34/L98H mutation in the cyp51A
gene [10]. The mutation TR34/L98H is also found in A. fumigatus isolates cultured from soil and compost.
These isolates are cross resistant to azole fungicides and genetically related to clinical azole-resistant
aspergilli, showing that the fungicides used for the protection of crops and other plants contribute to
the emergence of azole-resistance in A. fumigatus [11]. The high mortality rate among patients with
invasive aspergillosis due to multiple triazole resistant A. fumigatus isolates and the possibility of the
worldwide spread of these resistant isolates by the use of fungicides in agriculture make azole-resistance
in A. fumigatus a major health problem [12]. Isavuconazole is a new board-spectrum azole antifungal
drug with excellent activity against most Aspergillus species [13]. Isavuconazole or voriconazole are
currently recommended as first-line therapies for pulmonary aspergillosis in Europe [14]. It has been
shown that isavuconazole-resistant Aspergillus isolates can be cross-resistant to voriconazole [15,16].
Therefore, combination with antifungals or non-antifungal drugs may be interesting to overcome
this resistance. Calcineurin inhibitors (e.g., tacrolimus and cyclosporin A) or inhibitors of the mTOR
pathway (e.g., sirolimus) are anti-rejection drugs widely used in organ transplant patients [17] and to
prevent graft-versus-host disease in allogeneic stem cell recipients [18], but these immunosuppressive
drugs also possess intrinsic antifungal activity against selected fungi, including Candida albicans [19],
Cryptococcus neoformans [19,20], A. fumigatus [21], Rhizopus arrhizus [22], and Coccidioides immitis [23].
Calcineurin inhibitors have even exhibited synergy in combination with amphotericin B, posaconazole,
or isavuconazole against Mucorales [24,25]. Therefore, it is not only of clinical interest, not only if the
synergy can also be achieved for Aspergillus species but also to evaluate calcineurin inhibitors as a
potential new antifungal class.

2. Materials and Methods

2.1. Isolates

A panel of 30 clinical Aspergillus isolates, from the collection of the parasitology/mycology unit of
Hôpital Européen Georges-Pompidou (HEGP), belonging to 5 species responsible for human invasive
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aspergillosis was used for the experiments (5 Aspergillus flavus, 10 A. fumigatus, 5 Aspergillus nidulans,
5 Aspergillus niger, and 5 Aspergillus terreus). The isolates of A. fumigatus included 5 azole resistant
strains (four with TR34/L98H alterations (HEGP-5780, HEGP-4083, HEGP-2659, and HEGP-2664) and
one with a G54W mutation (HEGP-4020)). For the other species, isolates were randomly selected to
be representative of the species and none of the isolates were known to have specific mechanisms
of antifungal resistance. Isolates were subcultured from frozen stocks on Sabouraud dextrose agar
slants (Bio-Rad, Feldkirchen, Germany) for 7 days at 35 ◦C to ensure purity and viability. The reference
strains Candida krusei ATCC 6258 and Candida parapsilosis ATCC 22019 were included in each series of
experiments as quality controls.

2.2. Medium Preparation

Roswell Park Memorial Institute 1640 (RPMI) medium (with L-glutamine, and pH indicator,
but without bicarbonate) (Merck, Darmstadt, Germany) supplemented with dextrose to a final
concentration of 2%, buffered with MOPS (Merck) at a final concentration of 0.165 mol/L, and adjusted
to pH 7.0 with 1 M sodium hydroxide was used as a test medium. The medium was prepared at
double strength to allow a two-fold dilution. After preparation, the medium was sterilized by vacuum
filtration through a 0.22 µm pore size filter (Merck).

2.3. Drugs and Microplate Preparation

Drug combinations were tested using the EUCAST guidelines for the antifungal susceptibility
testing of molds with modifications for a broth microdilution checkerboard procedure, using
Nunclon™ delta surface 96-wells microtiter plates for adherent cells (Thermo Fisher Scientific,
Darmstadt, Germany). The included drugs were isavuconazole (Pfizer, Berlin, Germany), tacrolimus
(Selleck Chemicals, Munich, Germany), cyclosporin A (Selleck), and sirolimus (Selleck). Stock solutions
of drugs were prepared in DMSO. Drug dilutions were performed to four times the final concentrations
in double strength RPMI medium. All the combinations were studied on a two-dimensional
checkerboard with two-fold dilutions. The final concentrations for isavuconazole were 0.03 to
16 µg/mL. The final concentrations for the immunosuppressors were 0.125 to 8 µg/mL. Fifty microliters
of each concentration were distributed from Rows 1 to 8 for isavuconazole and from Columns 1 to 11
for the immunosuppressive agents. Column 12 was used a as growth control and contained 100 µL of
double strength RMPI medium with DMSO.

2.4. Inoculum Preparation and Inoculation of Microplates

Before inoculum preparation, isolates were subcultured a second time on Sabouraud dextrose
agar slants and incubated at 35 ◦C under 95% humidity for 7 days. Spores were transferred to a sterile
tube containing water supplemented with 0.1% of Tween 80 by using a wet cotton swab immersed in
sterile water. The suspension was counted in a hemocytometer and adjusted to 2 × 105 conidia/mL
with sterile water containing 0.1% of Tween 80 in order to prevent the growth of fungi on the surfaces
inside the wells [26]. One hundred microliters of the final inoculum were distributed in each well to
inoculate the microdilution plates. The inoculum was further diluted and 100 µL were spread twice
on Sabouraud dextrose agar plates with a sterile Drigalski spatula. After 24–48 h of incubation at
35 ◦C, the colony forming units were counted to ensure the inoculum size and the viability of the
conidia. The microplates were incubated at 35 ◦C under 95% humidity, and the minimal inhibitory
concentrations (MICs) were determined spectrophotometrically at 48 h at a wavelength of 530 nm with
the spectrometer MultiSkan FC (Thermo Fisher Scientific). All the experiments were run in duplicate.

2.5. Interpretation of the Results

The MICs alone and in combination were determined as the lowest concentrations that caused
a complete inhibition as measured by a 90% of inhibition compared to the control according to
spectrophotometric reading. For the calculation of the MIC50, the MIC90, and the geometric mean of
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isavuconazole, the MICs of all three sets were pooled together. For the calculation of the fractional
inhibition concentration index (FICI), high off-scale MICs were converted to the next log2 dilutions.
The FICI data were interpreted in the following way: FICI ≤ 0.5 = synergy, FICI > 0.5–4 = no interaction,
and FICI > 4.0 = antagonism.

3. Results

For the combinations of isavuconazole with tacrolimus, cyclosporin A, or sirolimus tested against
the 30 Aspergillus isolates by the checkerboard procedure, the MICs of the drugs alone, the MICs in
combination, and the corresponding interaction for the lowest FIC indices are presented in Table 1.
A summary of the results for all the combinations is presented in Table 2. The thirty isolates exhibited
MICs for isavuconazole alone ranging from 0.25 to 16 µg/mL (Table 1) with a MIC50, MIC90, and
geometric mean MIC of 1, 16, and 2.06 µg/mL, respectively. Isavuconazole MICs for A. flavus,
A. fumigatus, A. nidulans, A. niger, and A. terreus ranged from 2 to 4, 1 to 16, 0.25 to 0.5, 4 to 16, and
0.5 to 1 µg/ml, respectively. Between experiments, the isavuconazole MICs were within +/− 1 log2

dilutions in 100% of the cases. Immunosuppressive drugs alone did not exhibit in vitro activity, except
for four isolates. The tacrolimus MICs were >8 µg/mL, except for one A. niger (HEGP-6917) and two
A. terreus (HEGP-6398, HEGP-6625) isolates. The cyclosporin A MICs were >8 µg/mL, except for one
A. niger (HEGP-6917) and two A. terreus (HEGP-5599, HEGP-6398) isolates. For sirolimus, all the
isolates exhibited MICs > 8 µg/mL. The interactions of isavuconazole with tacrolimus were synergistic
for 50% of the isolates with FICIs ranging from 0.015 to 0.5. A. fumigatus isolates with mechanisms
of resistance to azoles showed synergy for 60% of the isolates (three out of five isolates) and 100%
synergy for all the A. niger isolates with isavuconazole MICs ≥ 8 µg/mL (four out of four isolates).
For the other A. niger isolate (HEGP-6917) and two A. terreus isolates (HEGP-6398 and HEGP-6625),
synergy was not detectable with the tacrolimus concentrations used on the microplates, because the
MICs of tacrolimus alone were too low (0.25 µg/mL). Therefore, these isolates were excluded from
the calculation of percentages of interaction of Table 2. For the combination of isavuconazole with
cyclosporin A synergistic interactions were observed for 20% of the isolates. (FICI ranging from 0.13 to
0.5). Synergy was seen for 80% of the A. niger isolates; similar to what was observed for the combination
with tacrolimus, synergy was obtained despite high MICs to isavuconazole of ≥8 µg/mL. For A. terreus
synergy was seen for 40% of the isolates. For the combination of isavuconazole with sirolimus synergy
was obtained for 10% of the isolates (FICI ranging from 0.19 to 0.38), comprising two A. flavus isolates
and one A. terreus isolate. Antagonistic interactions were never observed for any combination tested.
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Table 1. Interaction of isavuconazole with tacrolimus, cyclosporin A, or sirolimus against Aspergillus species.

Species Collection Number
MIC (µg/mL) MIC (µg/mL) MIC (µg/mL)

IVZ TAC d IVZ/TAC FICI INTPN IVZ CYA d IVZ/CYA FICI INTPN IVZ SLM d IVZ/SLM FICI INTPN

A. flavus HEGP-6097 4 16 2/1 0.5625 IND 4 16 4/0.12 1.0078 IND 4 16 1/2 0.375 SYN
A. flavus HEGP-5899 4 16 0.5/8 0.625 IND 4 16 4/0.12 1.0078 IND 4 16 2/0.25 0.5156 IND
A. flavus HEGP-4536 2 16 0.06/4 0.2813 SYN 2 16 2/0.12 1.0078 IND 2 16 1/1 0.5625 IND
A. flavus HEGP-4251 2 16 0.03/4 0.2656 SYN 4 16 2/0.12 0.5078 IND 2 16 0.5/1 0.3125 SYN
A. flavus HEGP-4114 2 16 0.5/4 0.5 SYN 2 16 2/0.25 1.0156 IND 2 16 1/1 0.5625 IND

A. fumigatus HEGP-5780 b 16 16 8/1 0.5625 IND 8 16 16/0.12 2.0078 IND 16 16 8/2 0.625 IND
A. fumigatus HEGP-4020 c 1 16 0.5/2 0.625 IND 2 16 1/0.12 0.5078 IND 1 16 0.5/2 0.625 IND
A. fumigatus HEGP-4083 b 16 16 4/4 0.5 SYN 16 16 16/0.12 1.0078 IND 16 16 16/0.12 1.0078 IND
A. fumigatus HEGP-2659 b 16 16 4/2 0.375 SYN 8 16 16/0.12 2.0078 IND 16 16 8/8 1.0 IND
A. fumigatus HEGP-2664 b 8 16 2/4 0.5 SYN 8 16 8/0.12 1.0078 IND 16 16 8/0.12 0.5078 IND
A. fumigatus HEGP-R117 1 16 0.25/2 0.375 SYN 1 16 1/0.12 1.0078 IND 1 16 1/0.12 1.0078 IND
A. fumigatus HEGP-R279 1 16 0.5/4 0.75 IND 1 16 1/0.12 1.0078 IND 1 16 0.5/0.12 0.75 IND
A. fumigatus HEGP-R285 1 16 0.5/1 0.5625 IND 1 16 1/0.12 1.0078 IND 1 16 1/0.12 1.0078 IND
A. fumigatus HEGP-R290 2 16 1/0.5 0.5313 IND 1 16 1/8 1.5 IND 2 16 1/8 1.0 IND
A. fumigatus HEGP-R291 1 16 0.5/2 0.625 IND 1 16 1/0.12 1.0078 IND 1 16 1/0.12 1.0078 IND
A. nidulans HEGP-5711 0.25 16 0.12/4 0.75 IND 0.5 16 0.25/2 0.625 IND 0.5 16 0.5/0.12 1.0078 IND
A. nidulans HEGP-6169 0.5 16 0.12/4 0.5 SYN 0.5 16 0.25/2 0.625 IND 0.5 16 0.5/0.12 1.0078 IND
A. nidulans HEGP-5492 0.5 16 0.25/1 0.5625 IND 0.5 16 0.25/2 0.625 IND 0.5 16 0.5/0.12 1.0078 IND
A. nidulans HEGP-5521 0.5 16 0.25/0.5 0.5313 IND 0.5 16 0.25/4 0.75 IND 0.5 16 0.5/0.12 1.0078 IND
A. nidulans HEGP-5329 0.5 16 0.25/1 0.5625 IND 0.5 16 0.25/2 0.625 IND 0.5 16 0.5/0.12 1.0078 IND

A. niger HEGP-6071 16 16 0.25/0.25 0.0313 SYN 16 16 0.25/2 0.1406 SYN 16 16 16/0.12 1.0078 IND
A. niger HEGP-6217 8 16 0.06/0.25 0.0234 SYN 8 16 1/2 0.25 SYN 8 16 4/2 0.625 IND
A. niger HEGP-6475 16 16 0.06/0.25 0.0195 SYN 16 16 0.12/2 0.1328 SYN 16 16 8/0.12 0.5078 IND
A. niger HEGP-6562 16 16 0.12/0.12 0.0156 SYN 16 16 0.25/2 0.1406 SYN 16 16 8/0.12 0.5078 IND
A. niger HEGP-6917 4 0.25 0.03/0.25 1.0078 - a 4 4 2/2 1.0 IND 8 16 4/0.12 0.5078 IND

A. terreus HEGP-6625 0.5 0.25 0.12/0.12 0.75 - a 1 16 0.06/2 0.1875 SYN 1 16 0.5/0.12 0.5078 IND
A. terreus HEGP-6055 1 16 0.25/2 0.375 SYN 1 16 0.25/4 0.5 SYN 1 16 0.5/8 1.0 IND
A. terreus HEGP-5599 0.5 16 0.03/0.12 0.0703 SYN 0.5 1 0.25/0.5 1.0 IND 0.25 16 0.12/8 1.0 IND
A. terreus HEGP-5169 0.5 16 0.12/0.5 0.2813 SYN 0.5 16 0.25/2 0.625 IND 0.5 16 0.25/0.5 0.5313 IND
A. terreus HEGP-6398 0.5 0.25 0.03/0.12 0.5625 - a 0.5 1 0.06/0.5 0.625 IND 0.5 16 0.06/1 0.1875 SYN

MIC, minimal inhibitory concentration; FICI, fractional inhibitory concentration index; INTPN, interpretation; SYN, synergy (FICI ≤ 0.5); IND, no interaction (0.5 < FICI ≤ 4), ANT,
antagonism (FICI > 4). IVZ, isavuconazole; TAC, tacrolimus; CYA, cyclosporin A; SLM, sirolimus; HEGP, Hôpital Européen Georges-Pompidou; a differentiation between synergy
and no interaction not possible, as MICs of immune suppressors alone were too low (isolate excluded); b isolate with TR34/L98H alteration; c isolate with G54W mutation; d MICs for
immunosuppressors reported as 16 µg/mL were >8 µg/mL.
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Table 2. Summary of interactions of isavuconazole with tacrolimus, cyclosporin A, or sirolimus against
Aspergillus species interpreted based on the fractional inhibitory concentration index.

Species (Number of Isolates)

% of Isolates with the Following Interaction a

Synergy No Interaction Antagonism

TAC CYA SLM TAC CYA SLM TAC CYA SLM

A. flavus (5) 60 0 40 40 100 60 0 0 0
A. fumigatus (10) 40 0 0 60 100 100 0 0 0

A. nidulans (5) 20 0 0 80 100 100 0 0 0
A. niger (5) 100 b 80 0 0 20 100 0 0 0

A. terreus (5) 100 b 40 20 0 60 80 0 0 0
All (30) 56 b 20 10 44 b 80 90 0 0 0

a all immunosuppressive agents were combined with isavuconazole; TAC, tacrolimus; CYA, cyclosporin A; SLM,
sirolimus; b for the calculation of percentages 1 A. niger and 2 A. terreus isolates were excluded, as differentiation
between synergy and no interaction was not possible with the concentrations of tacrolimus chosen on the plates.

4. Discussion

Immunosuppressive drugs such as calcineurin or mTOR pathway inhibitors are used as
anti-rejection drugs in organ transplant, and allogeneic stem cell recipients. The calcineurin inhibitors
lead to a reduced activity of cytokine genes, finally leading to the reduced proliferation of T
lymphocytes [27,28]. Inhibitors of the mTOR pathway lead to an arrest of the cell-cycle in the late G1/S
phase of T and B lymphocytes, preventing proliferation [29]. Beside these anti-proliferative properties,
the drugs also possess intrinsic antifungal activity against yeasts [19,20] and filamentous [21,22] and
dimorphic fungi [23]. Here, we found that immunosuppressors had no antifungal activity alone,
except for four isolates (A. niger and A. terreus). It would be interesting to test a higher number of
isolates to know if this is species or strain specific.

In vitro synergy between antifungals and immune suppressive drugs has been found for
yeasts [30–36], and filamentous fungi such as the Mucorales [24,25,37,38], and Aspergillus species [39,40].
Nevertheless, in vitro indifference [21,41] and even antagonism has been reported for the combinations
of voriconazole with tacrolimus or cyclosporin A against four A. fumigatus isolates and one
A. fumigatus isolate, respectively [41]. Indifference has also been reported for the combinations
of posaconazole or itraconazole with tacrolimus against Aspergillus biofilms [39]. One of the two
studies demonstrating in vitro synergy between antifungals and immunosuppressors evaluated the
combination of caspofungin in combination with tacrolimus, cyclosporin A, sirolimus, or other
calcineurin inhibitors by a disc diffusion assay against 13 Aspergillus, mostly A. fumigatus isolates.
The inhibition zones for tacrolimus or sirolimus in combination with caspofungin were significantly
larger compared to those for caspofungin alone for the 10 A. fumigatus isolates at 48 h. The same
results were seen for one A. terreus isolate, but for neither the other A. terreus isolate nor for the
A. flavus isolate [40]. In this study, the immunosuppressive drugs showed poor in vitro activity when
tested alone, in contrast with previous reports [21,42]. This could be related to differences in the
technique used, and particularly, to the more stringent endpoint (90% inhibition) used in our study.
The isavuconazole MICs of the tested Aspergillus isolates determined by ECUAST methodology were
in the same range as previously reported [43]. The combination of isavuconazole with tacrolimus
exhibited a synergistic effect (56% of the isolates) against Aspergillus species, including 60% of
A. fumigatus isolates with mechanisms of resistance to azoles and all A. niger isolates with isavuconazole
MICs ≥ 8 µg/mL. As tacrolimus is a known inhibitor of efflux pumps [44], it could be speculated
that synergy may be more frequent in azole-resistant strains with an overexpression of efflux pumps.
Therefore, it could be of interest to determine the level of expression of efflux pumps in our isolates.
The presence of a known mechanism of resistance in our azole-resistant A. fumigatus strains (with cyp51A
mutations and promotor alteration) did not rule out the possibility of higher efflux in these isolates.
Our results are in accordance with a study that evaluated the interaction of voriconazole with tacrolimus
against Aspergillus biofilms. The combination was tested against twenty Aspergillus biofilms and ten
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A. fumigatus, eight A. flavus, and two A. terreus isolates. Overall synergy was achieved for 60% of
the tested isolates [39]. Why combinations of tacrolimus with isavuconazole or voriconazole exhibit
synergy and combinations of tacrolimus with posaconazole or itraconazole exhibit only indifference
remains unknown. It is possible that the different interactions are related to the steric structures of
the molecules. Synergistic interactions between tacrolimus and isavuconazole may be of particular
interest when tacrolimus analogs with lower immunosuppressive activity become available [45,46].
The combination of isavuconazole with cyclosporin A led to less synergistic interactions (20% of the
isolates) than the combination with tacrolimus. The combination of isavuconazole with sirolimus
was synergistic for 10% of the isolates. Similar results have already been seen for voriconazole in
combination with the three immunosuppressors used in this study against A. fumigatus. All the
interactions were indifferent [21].

It has to be pointed out that the concentrations for which synergistic interactions were achieved
for tacrolimus, cyclosporin, and sirolimus in this study, were above the peak drug levels in clinical
practice of 0.025 µg/mL, 1.2 µg/mL, and 0.02 µg/mL, respectively [47,48]. Nevertheless, analyses of the
fractional inhibitory concentration indices are limited to the exploration of the MIC endpoints and
the tested concentrations on the microplates. From these data, it cannot be excluded that synergistic
interactions could be present at lower concentrations than those tested on the microplate. In another
study, tacrolimus was tested by the same technique used in this study at subtherapeutic concentrations
of 0.04–25 µg/mL in combination with amphotericin B or fluconazole. Synergy was obtained for 90 and
82% of the isolates, respectively. In the same study, the outcomes in solid organ transplant recipients
with cryptococcosis receiving tacrolimus long-term therapy and amphotericin B or fluconazole were
significantly better, regarding survival, than those of patients receiving only amphotericin B or
fluconazole therapy without tacrolimus [49].

In summary, immunosuppressors can enhance the in vitro activity of isavuconazole against
Aspergillus species. The best activity was seen for the combination of tacrolimus with isavuconazole.
The combination was active against all the tested species, including A. fumigatus isolates with resistance
to azoles and A. niger isolates with high isavuconazole MICs. The combination of cyclosporin with
isavuconazole was active against all the A. niger isolates with high isavuconazole MICs. These in vitro
results warrant further animal experiments.
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