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ABSTRACT The in vitro activities of two novel azole compounds (aryl-1,2,4-triazol-
3-ylthio analogues of fluconazole [ATTAFs]) and five comparator antifungal
agents against 52 clinical Candida isolates from 5 different species were deter-
mined. The novel azole compounds had the lowest geometric mean MICs, fol-
lowed by fluconazole. Moreover, combinations of these compounds with flucona-
zole exhibited synergistic effects against fluconazole-susceptible (22 of 23 isolates),
fluconazole-susceptible dose-dependent (10 of 13 isolates), and fluconazole-resistant
(1 of 16 isolates) Candida isolates.

KEYWORDS In vitro susceptibility, triazole derivatives, Candida species

Candidiasis is a serious life-threatening infection that is associated with significant
morbidity and mortality rates. The incidence of this infection has increased in

recent years, especially among immunocompromised patients (1, 2). Candida species
are the fourth most common agent of hospital-acquired candidemia (3–5). Guidelines
for the management of candidiasis have recommended the use of azoles, polyenes, and
echinocandins (6, 7). However, toxic effects of amphotericin B and resistance to azoles
and echinocandins in Candida species have recently become serious clinical challenges
(8–10). Fluconazole is the most commonly used agent for systemic candidiasis, given its
low toxicity, high solubility, and wide tissue distribution (11). However, the use of
fluconazole for prophylaxis and treatment is thought to be a potential risk factor,
leading to the gradual development of azole-resistant species (12). Accordingly, there
is an urgent need for the introduction of a novel class of antifungal agents with potent
activities and new mechanisms of action, to improve the management of Candida
infections (13).

Replacement of one triazole ring in the fluconazole structure with other heterocyclic
moieties for the purpose of developing new antifungal agents has received particular
attention in medicinal chemistry. We previously designed and synthesized numerous
triazole alcohols by replacing the 1,2,4-triazol-1-yl group in the fluconazole structure
with a 4-amino-5-aryl-3-mercapto-1,2,4-triazole motif (14, 15). Since this newly intro-
duced motif represented a new type of side chain in triazole alcohol antifungals, we
focused on structural refinement of the primary lead compound and removed the
amino group from the structure to obtain new entities, namely, aryl-1,2,4-triazol-3-
ylthio analogues of fluconazole (ATTAFs). In particular, the compounds ATTAF-1 and ATTAF-2,
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containing a (2,4-dichlorophenyl)-1,2,4-triazol-3-ylthio moiety (Fig. 1), were found to be
potential agents against Candida species, with no significant cytotoxicity against the
HepG2 cell line (15). Although ATTAF-1 and ATTAF-2 are triazole alcohol-derived
analogues, their increased antifungal activity, in comparison with fluconazole, might be
attributable to the presence of the (2,4-dichlorophenyl)-1,2,4-triazol-3-ylthio scaffold as
an additional pharmacophoric structure, with a mechanism of action distinct from that
of fluconazole. Therefore, we aimed to determine the in vitro activity of ATTAF-1 and
ATTAF-2, in comparison with five clinically important antifungal drugs, against
fluconazole-susceptible and -resistant Candida isolates. Moreover, we investigated the
combination of these compounds with fluconazole.

Compounds ATTAF-1 and ATTAF-2 were synthesized and characterized as in our
previous study (15). Fluconazole (Pfizer, Groton, CT, USA), itraconazole (Janssen Re-
search Foundation, Beerse, Belgium), voriconazole (Pfizer Central Research, Sandwich,
United Kingdom), amphotericin B (Sigma, St. Louis, MO, USA), and anidulafungin (Pfizer)
were obtained as reagent-grade powders from the respective manufacturers and were
used for preparation of the CLSI microdilution trays.

Fifty-two Candida isolates from five different species, including fluconazole-susceptible
isolates (n � 23), fluconazole-susceptible dose-dependent isolates (n � 13), and
fluconazole-resistant isolates (n � 16) (according to the new CLSI species-specific
clinical breakpoints for fluconazole against Candida species [16]), were obtained from
the reference culture collection of the Invasive Fungi Research Center (Mazandaran
University of Medical Sciences, Sari, Iran) (Table 1). Isolates had been identified previ-
ously through sequencing of the internal transcribed spacer (ITS) ribosomal DNA (rDNA)
region. Antifungal susceptibility testing was performed according to CLSI guidelines
(17, 18), and MICs were determined after 24 h of incubation at 35°C. The antifungal
agents were prepared at final concentrations of 0.016 to 16 �g/ml for amphotericin B,
itraconazole, and voriconazole, 0.063 to 64 �g/ml for fluconazole, ATTAF-1, and
ATTAF-2, and 0.008 to 8 �g/ml for anidulafungin. The MIC endpoints were defined as
100% inhibition for amphotericin B and �50% inhibition for the other drugs. For
calculations, high off-scale MICs were raised to the next log2 dilution step, while low
off-scale MICs were left unchanged (19, 20). Differences in mean values were deter-
mined by using Kruskal-Wallis and Mann-Whitney tests, with the SPSS statistical pack-
age (version 7.0). P values of �0.05 were considered statistically significant. In addition,
the interactions of ATTAF-1 and ATTAF-2 with fluconazole were investigated by using
a microdilution checkerboard technique with 96-well microtiter plates (21). The con-
centration ranges used depended on the MIC results for each isolate, i.e., the maximum
concentration was 2 times the MIC and then serial dilutions were performed. In vitro
combinations of fluconazole with voriconazole were tested as controls against 11
Candida isolates from 5 different species (fluconazole-susceptible isolates [n � 5],
fluconazole-susceptible dose-dependent isolates [n � 3], and fluconazole-resistant
isolates [n � 3]) to compare the interactions of the newly synthesized azole compounds
with fluconazole. To assess the interactions of combinations of drugs, further analysis
was conducted using the fractional inhibitory concentration index (FICI). The interac-
tion was defined as synergistic if the FICI was �0.5, indifferent if the FICI was �0.5 to
�4.0, and antagonistic if the FICI was �4 (21).

FIG 1 Chemical structures of fluconazole, ATTAF-1, and ATTAF-2.
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Table 1 summarizes the MIC range, mode, and geometric mean (GM), MIC50, and
MIC90 for ATTAF-1 and ATTAF-2 and five comparators against 52 clinical Candida
isolates from 5 different species. In terms of GM MIC values, anidulafungin, followed by
the newly synthesized azole compounds, exhibited potent activity against all Candida
isolates (n � 52). Interestingly, the widest range (0.5 to 128 �g/ml) and highest MIC90

(128 �g/ml) value for fluconazole was observed against Candida albicans. The GM MIC
values against C. albicans were 0.01, 0.21, 0.22, 0.25, 0.46, 0.74, and 2 �g/ml for
anidulafungin, ATTAF-1, ATTAF-2, voriconazole, itraconazole, amphotericin B, and flu-
conazole, respectively. The GM MIC values of ATTAF-1 and ATTAF-2 were lower than
that of fluconazole against Candida glabrata, and the MIC50 of ATTAF-1 (0.25 �g/ml)
was 5 log2 dilution steps lower than that of fluconazole (8 �g/ml). The checkerboard
analysis of the tested compounds is summarized in Table 2. The FICI results revealed
synergistic effects against fluconazole-susceptible (22 of 23 isolates), fluconazole-
susceptible dose-dependent (10 of 13 isolates), and fluconazole-resistant (1 of 16
isolates) Candida isolates when ATTAF-1 and ATTAF-2 were combined with fluconazole.
Remarkably, ATTAF-1 and ATTAF-2 were more active than fluconazole against C.
albicans isolates and showed synergistic activity against 16 isolates (76.1%) (Table 2).

TABLE 1 In vitro susceptibilities of five antifungal drugs and two novel azole compounds (ATTAF-1 and ATTAF-2) against 52 Candida
isolates from five different species

Species and
compound/agent

No. of isolates with MIC (�g/ml) ofa:
MIC range
(�g/ml)

MIC50

(�g/ml)
MIC90

(�g/ml)
MIC mode
(�g/ml)

MIC GM
(�g/ml)<0.008 0.016 0.031 0.063 0.125 0.25 0.5 1 2 4 8 16 32 64 >64

C. albicans (n � 21)
ATTAF-1 1 11 2 1 1 1 1 2 1 0.031–16 0.063 8 0.063 0.21
ATTAF-2 14 1 1 1 1 1 2 0.063–32 0.063 16 0.063 0.22
Fluconazole 8 5 1 4 3 0.5–128 1 128 0.5 2
Itraconazole 2 7 7 2 1 1 1 0.063–8 0.5 2 0.5 0.46
Voriconazole 2 6 8 2 1 2 0.063–2 0.25 1 0.25 0.25
Anidulafungin 11 8 1 1 0.008–0.063 0.008 0.016 0.008 0.01
Amphotericin B 1 11 5 4 0.25–2 0.5 2 0.5 0.74

C. glabrata (n � 10)
ATTAF-1 1 3 4 1 1 0.063–32 0.25 32 0.25 0.5
ATTAF-2 5 1 1 1 1 1 0.063–64 0.125 64 0.063 0.35
Fluconazole 1 3 2 4 2–128 8 128 128 17.14
Itraconazole 1 4 2 1 2 0.25–4 1 4 0.5 0.93
Voriconazole 2 1 5 2 0.125–2 0.5 2 0.5 0.46
Anidulafungin 6 3 1 0.008–0.031 0.008 0.031 0.008 0.01
Amphotericin B 1 1 2 2 1 2 1 0.031–2 0.25 2 1 0.25

C. krusei (n � 9)
ATTAF-1 1 1 4 1 1 1 0.063–16 NDb ND ND ND
ATTAF-2 1 1 1 3 1 2 0.031–64 ND ND ND ND
Fluconazole 1 3 2 1 2 1–128 ND ND ND ND
Itraconazole 1 2 3 1 2 0.125–16 ND ND ND ND
Voriconazole 3 1 2 1 1 1 0.125–8 ND ND ND ND
Anidulafungin 6 1 1 1 0.008–0.125 ND ND ND ND
Amphotericin B 2 1 2 1 2 1 0.063–2 ND ND ND ND

C. parapsilosis (n � 8)
ATTAF-1 3 2 2 1 0.031–0.25 ND ND ND ND
ATTAF-2 3 4 1 0.031–0.25 ND ND ND ND
Fluconazole 3 1 1 3 0.5–4 ND ND ND ND
Itraconazole 4 1 2 1 0.063–0.5 ND ND ND ND
Voriconazole 2 3 2 1 0.031–0.5 ND ND ND ND
Anidulafungin 1 7 0.031–0.063 ND ND ND ND
Amphotericin B 6 2 0.008–0.016 ND ND ND ND

C. tropicalis (n � 4)
ATTAF-1 3 1 0.063–0.125 ND ND ND ND
ATTAF-2 3 1 0.063–0.125 ND ND ND ND
Fluconazole 2 1 1 0.5–2 ND ND ND ND
Itraconazole 2 1 1 0.063–0.5 ND ND ND ND
Voriconazole 2 1 1 0.063–0.5 ND ND ND ND
Anidulafungin 3 1 0.008–0.016 ND ND ND ND
Amphotericin B 2 1 1 0.063–0.5 ND ND ND ND

aNumbers in bold are modal values.
bND, not determined.
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TABLE 2 Interactions between fluconazole and the novel compounds (ATTAF-1 and ATTAF-2) against Candida isolates

Species and isolate

ATTAF-1 studya ATTAF-2 study

MIC (�g/ml)

FICI/INT

MIC (�g/ml)

FICI/INTFLC ATTAF-1 FLC/ATTAF-1 FLC ATTAF-2 FLC/ATTAF-2

C. albicans (n � 21)
IFRC 25 0.5 0.063 0.031/0.016 0.31/SYN 0.5 0.125 0.125/0.031 0.5/SYN
IFRC 27 0.5 0.063 0.063/0.016 0.37/SYN 0.5 0.063 0.063/0.016 0.37/SYN
IFRC 37 0.5 0.063 0.063/0.016 0.37/SYN 0.5 0.25 0.125/0.031 0.37/SYN
IFRC 600 0.5 0.063 0.031/0.016 0.31/SYN 0.5 0.063 0.031/0.016 0.31/SYN
IFRC 604 0.5 0.063 0.031/0.016 0.25/SYN 0.5 0.063 0.016/0.016 0.28/SYN
IFRC 120 1 0.25 0.125/0.031 0.25/SYN 1 0.125 0.125/0.031 0.37/SYN
IFRC 614 1 0.063 0.031/0.016 0.28/SYN 1 0.125 0.063/0.016 0.19/SYN
IFRC 1055 1 0.063 0.25/0.016 0.5/SYN 1 0.125 0.125/0.016 0.25/SYN
IFRC 10 1 0.25 0.125/0.063 0.37/SYN 1 0.125 0.125/0.031 0.37/SYN
IFRC 13 1 0.125 0.125/0.031 0.37/SYN 1 0.125 0.063/0.031 0.31/SYN
IFRC 15 1 0.125 0.063/0.031 0.31/SYN 1 0.25 0.063/0.031 0.18/SYN
IFRC 24 2 0.063 0.063/0.016 0.28/SYN 2 0.25 0.125/0.063 0.31/SYN
IFRC 14 2 0.25 0.5/0.125 0.75/IND 2 0.125 0.25/0.063 0.63/IND
IFRC 18 2 0.125 0.125/0.031 0.31/SYN 2 0.125 0.125/0.031 0.31/SYN
IFRC 38 4 1 0.25/0.063 0.12/SYN 4 1 0.25/0.125 0.18/SYN
IFRC 26 4 0.5 0.5/0.063 0.25/SYN 4 0.125 0.25/0.031 0.31/SYN
IFRC 603 4 1 1/0.5 0.75/IND 4 4 2/2 1/IND
IFRC 616 4 0.25 0.063/0.063 0.26/SYN 4 1 0.25/0.125 0.18/SYN
IFRC 1260 �64 8 16/4 0.62/IND �64 32 16/16 0.62/IND
IFRC 1261 �64 16 16/16 1.12/IND �64 32 16/16 0.62/IND
IFRC 1262 �64 8 16/4 0.62/IND �64 16 32/8 0.75/IND

C. glabrata (n � 10)
IFRC 1276 2 0.125 0.125/0.031 0.31/SYN 2 0.125 0.5/0.031 0.5/SYN
IFRC 1274 4 0.25 1/0.031 0.37/SYN 4 0.5 1/0.063 0.37/SYN
IFRC 1275 4 0.125 0.5/0.031 0.37/SYN 4 0.25 0.5/0.031 0.25/SYN
IFRC 671 4 0.25 0.5/0.063 0.25/SYN 4 0.063 0.25/0.016 0.31/SYN
IFRC 680 8 0.25 2/0.125 1.25/IND 8 0.063 2/0.063 1.25/IND
IFRC 339 8 0.125 4/0.063 1/IND 8 0.063 4/0.063 1.25/IND
IFRC 648 �64 32 32/8 0.5/SYN �64 64 32/16 0.5/SYN
IFRC 1063 �64 16 64/16 1.5/IND �64 16 64/16 1.5/IND
IFRC 1065 �64 32 64/8 0.72/IND �64 32 32/16 0.72/IND
IFRC 704 �64 16 64/16 1.5/IND �64 16 64/16 1.5/IND

C. krusei (n � 9)
IFRC 1251 4 0.125 1/0.031 0.5/SYN 4 0.25 1/0.031 0.37/SYN
IFRC 1052 4 0.25 1/0.031 0.37/SYN 4 0.5 1/0.063 0.37/SYN
IFRC 1058 4 1 1/0.125 0.37/SYN 4 1 1/0.063 0.31/SYN
IFRC 85 4 4 1/1 0.5/SYN 4 2 0.5/0.125 0.18/SYN
IFRC 1013 4 4 1/2 0.75/IND 4 4 1/2 0.75/IND
IFRC 1012 4 1 1/0.5 0.75/IND 4 2 1/1 0.75/IND
IFRC 1014 16 4 4/2 0.75/IND 16 2 4/1 0.75/IND
IFRC 1280 �64 8 32/4 0.72/IND �64 64 64/64 1.5/IND
IFRC 1281 �64 16 32/16 1.25/IND �64 64 64/64 1.5/IND

C. parapsilosis (n � 8)
IFRC 1015 0.5 0.125 0.031/0.031 0.31/SYN 0.5 0.125 0.125/0.031 0.5/SYN
IFRC 1269 0.5 0.125 0.031/0.031 0.31/SYN 0.5 0.125 0.063/0.031 0.37/SYN
IFRC 1270 0.5 0.125 0.031/0.031 0.31/SYN 0.5 0.125 0.125/0.031 0.5/SYN
IFRC 1271 1 0. 25 0.125/0.031 0.25/SYN 1 0.25 0.25/0.031 0.37/SYN
IFRC 1059 2 0.125 0.25/0.031 0.37/SYN 2 0.25 0.5/0.063 0.5/SYN
IFRC 261 4 0.5 2/0.25 1/IND 4 0.5 2/0.125 0.75/IND
IFRC 1017 4 0.125 4/0.125 2/IND 4 0.25 4/0.25 2/IND
IFRC 1016 4 0.25 2/0.125 1/IND 4 0.5 4/0.5 2/IND

C. tropicalis (n � 4)
IFRC 32 0.5 0.125 0.063/0.031 0.37/SYN 0.5 0.125 0.063/0.031 0.37/SYN
IFRC 1060 1 0.125 0.125/0.031 0.37/SYN 1 0.125 0.25/0.031 0.5/SYN
IFRC 1057 2 0.25 0.5/0.063 0.37/SYN 2 0.25 0.5/0.063 0.5/SYN
IFRC 1058 2 0.5 0.25/0.063 0.25/SYN 2 0.125 0.25/0.031 0.37/SYN

aFLC, fluconazole; FICI, fractional inhibitory concentration index; INT, interpretation; IND, indifference; SYN, synergy.
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Moreover, synergistic activity against C. glabrata, Candida parapsilosis, Candida krusei,
and Candida tropicalis was observed with 5 strains (50%), 5 strains (62.5%), 4 strains
(44.4%), and 4 strains (100%), respectively. Overall, no antagonistic effects were ob-
served against Candida isolates with these combinations. Remarkably combinations of
fluconazole with voriconazole (used as controls) revealed unfavorable antifungal effects
against 11 Candida isolates, with a high FICI range of 1.5 to 4, in comparison with FICI
ranges of 0.25 to 2 and 0.31 to 2 for ATTAF-1 and ATTAF-2, respectively. Based on the
findings, there were no significant differences in the activities of ATTAF-1 and ATTAF-2
against specific Candida isolates (P � 0.05).

With advances in modern medicine, leading to the availability and indiscriminate
use of chemotherapeutic, immunosuppressive, and broad-spectrum antifungal agents,
the increased incidence of severe candidiasis has been recently attributed to the large
population of high-risk individuals (1, 2). Although fluconazole is the drug of choice for
prophylaxis and treatment of candidiasis, prolonged use of this agent has contributed
to the development of drug resistance in Candida isolates (20). Accordingly, novel
therapeutic strategies, such as combination therapy, are essential for increasing the
efficacy and reducing the toxicity of antifungal agents. Major attempts have been made
to develop potent and safe antifungal agents with unique mechanisms of action (20).
Fluconazole analogues with a triazole-modified scaffold display enhanced activity
against Candida and Cryptococcus species, compared to filamentous fungi (15, 22). In
the current study, ATTAF-1 and ATTAF-2, two promising novel azole compounds, could
show potent activity against all Candida species when used alone or in combination
with fluconazole. In line with the present results, Shi et al. (23) and Ramírez et al. (24)
showed that the newly synthesized azole-based compounds were more active than
fluconazole and the combination of these compounds with fluconazole could exert
synergistic effects. Moreover, Ji et al. (25) synthesized triazole derivatives based on the
structure of lanosterol 14�-demethylase (CYP51) and revealed that these compounds
have better activity against C. albicans than does fluconazole. ATTAF-1 and ATTAF-2
share general structural features with the triazole alcohol class of antifungal agents,
while exhibiting novel and distinct characteristics. The increased antifungal potency of
these compounds might be due to secondary activities or actions within Candida
isolates not shared by fluconazole. In previous studies, the mechanisms of azole
resistance in different Candida isolates, including decreased intracellular concentrations
of the target enzyme, changes in the drug target, and increased production of
lanosterol 14�-demethylase, have been identified (26). The mechanisms of action of
azole compounds and their derivatives have been precisely determined and estab-
lished. Although our newly synthesized azole compounds showed more potent anti-
fungal activities than did fluconazole, the mechanism of action involved might differ
from that of fluconazole; moreover, synergistic activities apparently did not have major
potential significance, since these interactions were observed mostly for isolates that
were not resistant to fluconazole, and the synergistic mechanisms remained unclear.
Therefore, we need to determine which subsets of events and mechanisms are primar-
ily responsible for the observed growth inhibition with the synergistic use of azole
compounds. Further analysis of the differences between different compounds and
fluconazole could elucidate the underlying mechanisms of action. In conclusion, al-
though ATTAF-1 and ATTAF-2 exhibited potent activities against clinical Candida
isolates, their effectiveness, alone or in combination with fluconazole, for the treatment
of Candida infections needs to be determined; in addition, the underlying mechanisms
of action should be investigated.
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