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Abstract
1.	 Multiple studies revealed an effect of climate change on biodiversity by investi-

gating long-term changes in species distributions and community composition. 
However, many taxa do not benefit from systematic long-term monitoring pro-
grammes, leaving gaps in our current knowledge of climate-induced community 
turnover.

2.	 We used data extracted from the Global Biodiversity Information Facility to 
characterize community reorganization under climate change for nine animal 
taxonomic groups (ants, bats, bees, birds, butterflies, earthworms, frogs, ro-
dents and salamanders), which, for most of them, had never been studied be-
fore in this regard. Using a presence-only community temperature index (CTI), 
reflecting the relative proportion of warm- and cold-adapted species, we tested 
whether and how species' assemblages were affected by climate change over 
the last 30 years.

3.	 Across Europe and North America, we observed an average increase in CTI, 
consistent with a gradual species turnover driven by climate change.

4.	 At the local scale, we could observe that the composition of most species as-
semblages changed according to temperature variations. However, this change 
in composition always occurred with a lag compared to climate change, sug-
gesting that communities are experiencing a climatic debt. Results suggest that 
anthropization may play a role in the decoupling between the change in CTI and 
the change in local temperature.

5.	 The results of our study highlight an overall thermophilization of assemblages as 
a response of temperature warming. We demonstrated that this response may 
exist for a large range of understudied terrestrial animals, and we introduced a 
framework that can be used in a broader context, opening new opportunities for 
global change research.
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1  |  INTRODUCTION

Climate change is manifested by a strong increase in average global 
temperatures. Between 1880 and 2012, despite local disparities, the 
Earth's climate warmed by 0.85°C on average (IPCC, 2015). Among 
the various global changes currently underway, climate change is 
emerging as a growing threat to biodiversity (Sala et al., 2000), with 
effects at all scales of organization, from individual to ecosystem 
(Bellard et al., 2012). For example, climate change has been shown 
to alter the phenology and abundance of species (Parmesan, 2006). 
Changes in climatic conditions also cause shifts in the geographi-
cal distribution of species (Chen et al.,  2011; Parmesan,  2006). 
A number of studies have shown that, as temperatures increase, 
species tend to expand their upper range limits to higher latitudes 
and altitudes (Barton et al., 2016; Hickling et al., 2005; La Sorte & 
Thompson, 2007).

At the local scale, changes in species distribution and abun-
dance induce changes in the composition of biological communities, 
thus creating a temporal turnover of species present at a given site 
(Jackson & Sax, 2010). Indeed, within an assemblage, increasing tem-
peratures are responsible for the progressive decrease in abundance 
of relatively cold-adapted species, until their local extinction. On the 
contrary, relatively warm-adapted species increase in abundance 
and tend to colonize habitats where temperature has become fa-
vourable to them. This gradual reshuffling of biological assemblages 
can be detected by an increase in the community temperature index 
(CTI, Devictor et al., 2008), a community-weighted mean of the av-
erage temperature to which species are adapted.

To date, several studies have demonstrated this phenomenon 
of community change in response to climate warming (e.g. Devictor 
et al., 2012; Martin et al., 2019). However, the vast majority of these 
have focused on taxa with long-term systematic monitoring pro-
grammes, such as birds and butterflies (Devictor et al., 2008, 2012; 
Fourcade et al., 2021; Gaüzère et al., 2015; Lehikoinen et al., 2021). 
In contrast, most taxonomic groups do not have such programmes 
and as a consequence have not been studied in this aspect yet. Thus, 
our general knowledge of the modification of species assemblages 
under climate change currently remains very limited. Moreover, 
there is evidence that community restructuring in relation to cli-
mate generally happens with a debt, that is, there is a lag between 
the pace of species turnover and the velocity of climate change 
(Devictor et al., 2012). This debt has been shown to be partly driven 
by anthropogenic activity that prevents species to shift their range 
(Fourcade et al.,  2021; Gaüzère et al.,  2017). However, again, our 
understanding of the impact of human disturbance on community 
response to climate change remain limited to the few taxa that ben-
efit from long-term monitoring schemes.

The geographical distribution of most species on Earth is un-
known (Jetz et al.,  2012). This lack of knowledge, referred to as 
the Wallacean shortfall (Lomolino,  2004), is largely caused by the 
scattering and uneven availability of the many existing data sources. 
However, the development of public biodiversity databases is help-
ing to fill this gap (Beck et al., 2013). The largest initiative to date 

is the Global Biodiversity Information Facility (GBIF, www.gbif.org). 
This international database compiles millions of geo-referenced and 
dated species observations, accessible to all and derived from a va-
riety of sources such as museum collections, scientific protocols or 
citizen science programmes (Edwards, 2004). Public databases have 
been used extensively to describe spatial patterns of biodiversity 
(e.g. Gomes et al.,  2018), but until very recently had never been 
exploited to infer temporal changes in community composition. 
Duchenne et al. (2021) were probably the first to estimate the effect 
of climate change on the composition of plant species assemblages, 
and to quantify their climate debt using data from GBIF. It is then 
interesting to extend this practice to other taxa, especially animals, 
to understand the impact of global warming on communities in a 
more comprehensive way and to be able to compare the responses 
of different groups. However, although GBIF provides information 
on the distribution of a large number of species, the quality of data 
is often inferior to that from specific programmes. Therefore, it can 
be challenging to infer accurately biodiversity trends from such un-
structured datasets, and statistical analyses must take into account 
the uncertain nature of GBIF occurrence data (Beck et al., 2014).

In this study, we used occurrence data from GBIF from Europe 
and North America to assess the effect of climate change on the as-
semblages of a variety of animal taxonomic groups that are common 
study systems in ecology but that do not necessarily benefit from 
long-term and large-scale monitoring programmes (frogs [Anura], 
bees [Apidae], birds [Aves], bats [Chiroptera], ants [Formicidae], but-
terflies [Lepidoptera], earthworms [Lumbricidae], rodents [Rodentia] 
and salamanders [Urodela]). The study had two main objectives. 
First, we aimed to assess temporal changes in community composi-
tion in relation to climate change for a large number of taxa, most of 
which have never been studied before in the regard, and for a large 
spatial and temporal scale. Second, another goal of the study was to 
explore the opportunities and limitations of using data from a public 
database to detect temporal dynamics of communities.

We attempted to answer the following questions:

Q1: Are the observed changes in community composition com-
patible with a response to climate change? Here, we estimated 
change in CTI over time, expecting it to increase because of 
warming temperatures (Devictor et al., 2008).
Q2: Can community restructuring be related to the recorded 
local temperature variations? For this, we tested the relationship 
between the local trend in CTI and the observed local trend in 
temperature, which should be positive if the increase in CTI is 
correlated with local temperature change (Devictor et al., 2012; 
Gaüzère et al., 2017).
Q3: Are communities better adjusted to climate change in natu-
ral or anthropogenic environments? This was studied by inves-
tigating whether community adjustment to climate change is 
dependent on anthropogenic disturbance. We hypothesized that 
species would have a better ability to move in more natural en-
vironments, where ecological connectivity is higher (Sonntag & 
Fourcade, 2022).
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Q4: Is community reorganization in response to climate change 
primarily due to the gain of warm-adapted species or the loss of 
cold-adapted species in assemblages?
Q5: Is the magnitude of the observed community response to 
climate change influenced by the quantity and quality of the data 
used? This question was explored by repeating analyses of CTI 
trend after filtering regions that contain too little data points ac-
cording to several criteria.

2  | MATERIALS AND METHODS

2.1  | Data

2.1.1  |  Occurrence data

Geo-referenced observation data were extracted from the GBIF da-
tabase (www.gbif.org). We chose to study nine animal taxonomic 
groups, which have long driven attention in ecology owing to their role 
in ecosystem functioning or because they have served as examples of 
the current biodiversity decline, and for which we assumed that the 
amount of data on GBIF was sufficiently large to allow the detection 
of temporal changes in community composition. For seven out of the 
nine selected taxa, our study is the first, to our knowledge, that inves-
tigates reorganization of communities caused by climate change; at the 
family level: ants (Formicidae; GBIF, 2022a), earthworms (Lumbricidae; 
GBIF, 2022b), bees (Apidae; GBIF, 2022c; the genus Bombus has al-
ready been studied in this regard, see e.g. Fourcade et al., 2019), at 
the order level: rodents (Rodentia; GBIF,  2022d), bats (Chiroptera; 
GBIF, 2022e), frogs (Anura; GBIF, 2022f) and salamanders (Urodela; 
GBIF, 2022g). The last two taxa, the order of butterflies (Lepidoptera; 
GBIF, 2022h) and the class of birds (Aves; GBIF, 2022i, 2022j), have 
already been analysed several times with regard to their response to 
climate change, but not using data from GBIF. Since recent evidence 
showed that wintering and breeding bird communities respond dif-
ferently to climate change (Lehikoinen et al.,  2021), we separated 
the birds data into winter (December–January) and summer (March–
September). Because some butterfly species can exhibit complex mi-
gratory patterns, we kept only occurrences from the breeding season 
(March–September).

Since GBIF data are prone to a few common and recurrent error 
types, we performed a first automatic step of occurrence cleaning. For 
this, we used the R package ‘CoordinateCleaner’ (Zizka et al., 2019) to 
remove occurrences whose coordinates correspond to the centroid 
of capitals, countries, GBIF headquarters or known biodiversity insti-
tutions, were located in oceans or had equal or exactly 0 latitude and 
longitude. Moreover, some taxonomic groups have been filtered for 
species or occurrences. We have removed rats Rattus norvegicus and 
domestic mice Mus musculus from the rodent dataset, as well as honey-
bees Apis mellifera from the Apidae data, as these species largely depend 
on human presence, more than on natural environmental conditions.

Since most of the data from GBIF are posterior to 1990, we de-
cided to conduct this study over the period 1990–2019 (30 years), 

which should also be long enough to reveal temporal changes in 
community composition. We divided it into six periods of 5 years, 
to aggregate more data for calculations and analyses. We used data 
from all North America (including Central America) and Europe, two 
continents that differ in climate and habitat types, but remain rela-
tively comparable, being located in the northern hemisphere, and for 
which the production of GBIF data should be similar.

In opportunistic ecological data, the same individuals may be 
counted multiple times, and certain areas near roads or cities, and 
thus easily accessible, may be overrepresented (Mair & Ruete, 2016). 
Thus, to avoid such bias, we subsampled our dataset by randomly 
sampling only one occurrence of the same species within cells of a 
5 km × 5 km resolution grid, separately for each 5-year time period. 
The 5-km distance was chosen because it is large enough to avoid 
clumping but small enough not to lose too much data.

To quantify changes in sampling effort and spatial coverage over 
the study period, we plotted, for each taxon, the number of occur-
rences and the number of assemblages (defined according to the 
method outlined in Section 2.2) over the years. We also produced 
maps of occurrence density in each time period and for each taxon. 
Because we aimed to assess the suitability of GBIF data to detect 
changes in community composition, as opposed to standardized pro-
tocols, we calculated and plotted the proportion of data attributed 
to each providing organism.

2.1.2  |  Climate data and human influence index

We obtained monthly average land temperatures, covering the se-
lected time period (1990–2019), in the form of raster grids with a 0.5° 
resolution. These climate data are derived from the Climatic Research 
Unit Gridded Time Series (CRU TS) dataset (Harris et al., 2020) and 
are produced by interpolating monthly temperature anomalies, cal-
culated from weather station observations. We produced rasters of 
mean temperature for each of the six 5-year periods, using March–
September months (for breeding birds and butterflies), December–
January months (wintering birds) or all 12 months (for all other taxa).

To assess the effect of human disturbance on the ability of com-
munities to track climate change, we used a human influence index 
(Sanderson et al., 2002). This index was created by assembling nine 
layers of data that provide information on the anthropization of the 
environment, such as human population density, land use or the 
presence of infrastructure. The global, 30 arc-sec resolution, human 
influence index grid for the period 1995–2004 was obtained from 
the Last of the Wild collection of the SEDAC (Socio-Economic Data 
and Applications Center) database.

2.2  |  Sliding windows

To create species assemblages with as many occurrences as pos-
sible, we followed a sliding window approach inspired by Gaüzère 
et al.  (2015). Around the centroids of 1° resolution grid cells, we 
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created buffers with a radius of 200 km and extracted all occur-
rences (Figure 1a), which we will refer to as sliding windows from 
now on. This allows to consider more data within each community 
while not relying on subjective boundaries for delineating assem-
blages. Within each sliding window that contained records from at 
least two species (5997 windows in total), we calculated community 
indices (see Section 2.3) and the mean values of human influence 
index and temperature (Figure 1b). We also estimated the observed 
local temporal trends in temperature over the study period. To do 
this, within each sliding window, we performed linear regressions of 
temperature against median years of the 5-year periods.

2.3  |  Community and species temperature indices

For each taxonomic group, we extracted temperature at each occur-
rence from the temperature grids, considering both its location and 
its year of observation. A temperature index was computed for each 
species (species temperature index [STI]) as the mean temperature 
recorded across all cleaned and spatially subsampled occurrences. 
This should correspond to the average temperature experienced by 
species within their range and therefore be indicative of their ther-
mal adaptation (Devictor et al., 2008).

Then, within each sliding window and for each 5-year period, 
a CTI was calculated as the arithmetic mean of the STI values for 
each species present in the assemblage (Figure 1b). The use of GBIF 
data did not allow for the calculation of an abundance-weighted CTI, 
but only a presence-absence CTI based on the identity of species 
recorded in a sliding window. Temporal trends in CTI, reflecting 
community rearrangement in response to climate change, are ex-
pected to correlate with temporal trends in temperature variation 
at local scale, and to be positive because of warming temperatures 
(Figure 1c). In theory, a perfect adjustment of communities to tem-
perature change would lead to a regression coefficient of 1 be-
tween CTI trend and temperature trend. A weaker or non-existent 
relationship means that the observed changes in community mean 
temperature do not correspond well to temporal changes in local 
temperature, which could potentially be caused by human distur-
bance (Figure 1c).

2.4  |  Temporal community change

To assess changes in CTI over time (Q1), CTI—calculated for each 
sliding window and each time period—was modelled (separately for 
each taxon) as a function of the median year of the 5-year periods, 

F IGURE  1 Summary diagram of the methods. (a) Portion of the study area showing as an example the ant dataset in Europe (species 
in different colours) with a sliding window. The real sliding windows have a 200-km radius and are interspaced by 1° (b) zooming in on a 
sliding window: For each 5-year period, occurrences of different species (figured by different colours) were used to calculate community 
temperature index (CTI), while mean local temperature and human influence index (HII) were also extracted. (c) Expected relationships 
between CTI and time (top), and local CTI trend and local temperature trend in interaction with human influence index (bottom).
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incorporated as a continuous fixed-effect variable, using linear 
mixed models. We also considered the fixed effects of the continent, 
as well as mean temperature calculated within each window. We in-
cluded sliding window identity as a random intercept, and allowed 
random slopes of time depending on sliding window. We incorpo-
rated as an additional random intercept the identity of the largest 
ecoregion contained within each sliding window, extracted from the 
WWF's Terrestrial Ecoregions of the World (Olson et al., 2001). We 
found these model settings to be sufficient to control for spatial au-
tocorrelation, as verified by spline correlograms of model residuals, 
while explicitly modelling spatial covariance structure was almost 
computationally intractable. Models were weighted by the logarithm 
(to limit skewness) of the number of occurrences in each sliding win-
dow and each year, therefore controlling for variation in sampling 
effort and sliding windows' area (which is reduced in coastal regions). 
We reported for each taxonomic group the estimate and 95% confi-
dence interval of the temporal trend in CTI.

To determine whether the temporal change in CTI was related 
to observed temperature variations (Q2), we modelled the local 
temporal trend in CTI as a function of the local temporal trend in 
temperature, in interaction with average temperature because this 
relationship may differ depending on baseline climatic conditions. 
Local CTI temporal trends were extracted from the random slopes 
of the relationship between CTI and time. We also aimed to inves-
tigate whether the ability of communities to track climate change 
depended on human disturbance (Q3). For this reason, we included 
in the model the interaction between local temporal trend in tem-
perature and the human influence index. In addition, the model in-
cluded continent as an additional covariable, as well as ecoregion 
as a random intercept. In addition, it was also weighted by the log-
transformed number of occurrences used to produce CTI estimates 
in each sliding window. Here, we extracted the estimate and 95% 
confidence interval of the relationship between the temporal trend 
in CTI and the temporal trend in local temperature for three con-
trasted values of the human influence index, corresponding to the 
25th percentile, median and 75th percentile of observed values.

For each of the models described above, we calculated meta-
analytic means and confidence intervals using the rma function in 
the metafor R package (Viechtbauer, 2010), to estimate the average 
community change over time for all taxa studied, as well as the av-
erage relationships between CTI and temperature trends (for low, 
medium and high values of human influence index).

2.5  |  Species turnover

To understand the species-level processes that lead to CTI change 
over time (Q4), we assessed the respective contribution of species to 
changes in CTI. An increase in CTI is due to either the loss of cold-
adapted species or the gain of warm-adapted species. In each time 
interval [t – t-1] and for each sliding window, we identified the spe-
cies that were gained and those that were lost. Note that, given the 
nature of data, we cannot be certain that these species were new 

colonizers or truly went extinct. For each of these species, we then 
calculated a relative STI (rSTI, following Fourcade et al., 2021) as the 
difference between the species' STI and the CTI at year t − 1 of the 
interval. A species with rSTI >0, that is, STI greater than the CTI of 
the assemblage at year t − 1, is warm adapted in its local environment. 
Conversely, a species with rSTI < 0 can be considered cold adapted. 
For each taxonomic group, we calculated the average rSTI of lost and 
gained species. Comparing rSTI between species gained and species 
lost indicates whether the change in CTI is mostly due to the gain of 
warm-adapted species or the loss of cool-adapted species.

2.6  |  Effect of data quantity

Finally, we assessed the effect of the amount of data on the estimated 
response of different taxa to climate change (Q5). For this purpose, 
we reanalysed the temporal change in CTI after applying additional 
filtering criteria to keep only sliding windows that contained a certain 
minimum number of occurrences across all species (50, 75, 100, 125 
or 150) or that contained data for a minimum of two, three, four or five 
5-year time periods. We compared the overall slope of the relation-
ship between CTI and time with the slopes estimated from the full 
dataset, using Pearson correlation tests. We also extracted, from the 
random slopes of the model, the local CTI trends in each sliding win-
dow, and calculated the absolute difference in CTI trends between the 
filtered and full datasets. We tested the effects of taxon, the minimum 
number of occurrences and the minimum number of 5-year periods, as 
well as their three-way interaction, using a linear mixed model with the 
identity of sliding windows as a random intercept. We graphically ex-
plored the results by plotting the predicted outcome across the range 
of observed values of the explanatory variables.

3  |  RESULTS

3.1  | Data quantity and sources

In total, our data contained 24,376 butterfly species, 2724 summer 
bird species, 2352 wintering bird species, 2283 ant species, 1307 
bee species, 753 frog species, 560 rodent species, 481 urodele spe-
cies, 270 bat species and 87 earthworm species. The number of oc-
currences increased exponentially over the study period for all taxa 
studied, except earthworms for which it reached a plateau in the last 
5-year periods (Figure 2a). The number of sliding windows containing 
occurrences, that is, the number of species assemblages that were 
considered in analyses, also increased over the years (Figure  2b). 
Occurrence density was consistently higher in Western/Northern 
Europe than in any other region. There was no strong change in 
spatial coverage overall, but we observed a notable increase in data 
quantity in North America during the last time periods (Supporting 
Information, Figure S1).

Biodiversity data from public databases are characterized by the 
aggregation of a multitude of different sources. For all taxa but rodents 
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and ants, the largest ‘provider’ was in fact unknown, that is, this infor-
mation is missing from the GBIF database. It represents ca. 50% of 
all occurrence data for earthworms and wintering birds (Figure 2c). 
Generally, a few data providers represented a large proportion of the 

available occurrences, especially for birds where the top-ranked orga-
nization (Artdatabanken) provided 38% (summer birds) and 25% (win-
ter birds) of all data. Salamanders had the most equitable distribution 
of sources, with 20 organisms providing more than 1% of the total 
amount of data (15% for the first one, Figure 2c).

3.2  |  Community dynamics

During the study period (1990–2019), we observed overall a posi-
tive temporal change in CTI (βmeta = 0.0099°C year−1 [CI95%: 0.0057–
0.0141]), signifying that communities were increasingly composed of 
species relatively adapted to elevated temperatures (Figure  3a), al-
though with spatial variation (Figure S2). CTI increased very significantly 
for 9 out of the 10 taxonomic groups studied: ants (β = 0.0226 [CI95%: 
0.0208–0.0244]), butterflies (β = 0.0179 [CI95%: 0.0170–0.0189]), ro-
dents (β = 0.0144 [CI95%: 0.0119–0.0169]), bees (β = 0.0095 [CI95%: 
0.0077–0.0133]), summer birds (β = 0.0088 [CI95%: 0.0074–0.0101]), 
bats (β  =  0.0087 [CI95%: 0.0067–0.0107]), earthworms (β  =  0.0076 
[CI95%: 0.0053–0.0098]), frogs (β  =  0.0067 [CI95%: 0.0055–0.0080]) 
and salamanders (β = 0.0031 [CI95%: 0.0016–0.0046]). However, win-
ter birds did not experience a significant variation in CTI over the study 
period (β = −0.0001 [CI95%: −0.0021–0.0019]; Figure 3a).

At the scale of sliding windows, it was less clear whether the 
temporal trend in CTI was positively correlated with the trend in 
temperature, since it was overall positive as expected but with wide 
confidence intervals that include 0 (Figure 3b, βmeta = 0.0200–0.1083 
[°C year−1]CTI/[°C year−1]temperature depending on human influence 
index). This relationship was significantly positive, for median value of 
human influence index, for bats (β = 0.3081 [CI95%: 0.2289–0.3873]), 
summer birds (β = 0.1778 [CI95%: 0.1416–0.2140]), ants (β = 0.0786 
[CI95%: 0.0534–0.1038]), winter birds (β  =  0.0727 [CI95%: 0.0347–
0.1107]), butterflies (β  =  0.0617 [CI95%: 0.0364–0.0869]) and frogs 
(β  =  0.0322 [CI95%: 0.0019–0.0625]). There was no significant link 
between CTI and temperature trends for salamanders (β  =  0.0468 
[CI95%: −0.0023–0.0959]), earthworms (β = 0.0068 [CI95%: −0.0041–
0.0177]) and bees (β = 0. 0028 [CI95%: −0.0002–0.0058]). At median 
value of human influence index, we found a negative relationship for 
rodents (β = −0.3074 [CI95%: −0.4096 to −0.2052]) only (Figure 3b).

The interaction between temperature trends and human influ-
ence index was significant for bees, birds (winter & summer), bats 
and ants only (Table S1b). For all these taxa, the relationship between 
CTI and temperature trends was weaker with high values of the 
human influence index (Figure 3b), meaning that these assemblages 
did not track climate change as efficiently in anthropized areas.

3.3  |  Contribution of species to community 
reorganization

We found that in most taxa the mean rSTI was >0 for both lost and 
gained species (Figure  4a), which means that the species that ap-
peared or disappeared from the data between two time periods 

F IGURE  2 Characteristics of Global Biodiversity Information 
Facility (GBIF) data extracted in this study. (a, b) Temporal change in 
sampling effort after occurrence cleaning and spatial subsampling 
(number of occurrences per year, a) and spatial coverage (number 
of sliding windows containing data, b). (c) Heterogeneity of 
data sources, shown as the proportion of data per providing 
organizations in decreasing rank order. For graphical visualization, 
only the 10 first ranks were kept for each taxon. Unknown data 
providers are represented as triangles.
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were mainly those adapted to warmer climates than species previ-
ously present in the assemblages. In bats and butterflies, however, 
lost species had a mean rSTI < 0. In birds (both winter and summer), 
lost species had a significantly higher rSTI than gained species, 
contrary to all other taxa where gained species had higher mean 

rSTI (except earthworms for which confidence intervals of rSTIs of 
gained and lost species overlapped).

In all taxa, the majority of species gained between two time pe-
riods had positive rSTI. Interestingly, we also found that >50% of 
species lost between two time periods had positive rSTI, expect for 

F IGURE  3 Community response to climate change for each taxon. Slopes and 95% confidence intervals of the relationship between (a) 
community temperature index (CTI) and time (i.e. 5-year periods), (b) local CTI trend and local temperature trend, shown for three levels of 
human influence index (25th percentile, median, and 75th percentile of values, from bottom to top). The brown dots at the bottom represent 
the meta-analytical mean responses across all taxa.
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F IGURE  4 (a) Mean relative species temperature index (rSTI) of species lost (dark blue triangles) and gained (pink dots) between each time 
period. (b) Proportion of gained and lost species that had positive (red) or negative (blue) rSTI. For a given species, its rSTI represents the 
difference between the STI and the community temperature index of the assemblage it colonizes or from which it is extirpated, therefore 
reflecting whether it is locally warm (rSTI > 0) or cold (rSTI < 0) adapted.

Relative STI (rSTI, mean ± 95% CI)

Gained species Lost species

0% 50
%

10
0% 0% 50

%
10

0%

Proportion

rSTI < 0

rSTI > 0

(a) (b)

Formicidae

Lepidoptera

Apidae

Urodela

Aves (winter)

0.0 0.2 0.4 0.6 0.8

Gained species
Lost species

Anura

Aves (summer)

Chiroptera

Lumbricidae

Rodentia

 13652656, 2023, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2656.13854 by U

niversité Paris-E
st C

réteil, W
iley O

nline L
ibrary on [28/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



398  |   Journal of Animal Ecology LAJEUNESSE and FOURCADE

butterflies where species with rSTI < 0 accounted for 51% of lost 
species (Figure 4b).

3.4  |  Effect of data quantity on observed 
community response to climate change

We found a strong agreement in the overall estimates of CTI tem-
poral trend whatever the level of data filtering; in all cases, we ob-
served a correlation of ca. 0.9 between estimates obtained from the 
full datasets and from the datasets filtered for a certain minimum of 
time periods or occurrences by sliding window (Figure 5a).

At the scale of each sliding window, we observed that, although 
estimates of CTI trends could vary with data filtering, the differ-
ence with the estimates obtained from the whole dataset remained 
overall centred around zero (Figure S3). Still, for bats and even more 
for earthworms, the estimated temporal trends in CTI tended to be 
lower when we used only the sliding windows that contain a mini-
mum number of years or occurrences (Figure S3).

The three-way interaction between taxon, minimum number of 
years and minimum number of occurrences had a strongly significant 
effect on the absolute difference between estimates (χ2 = 265.61, 
p < 0.001), showing that both types of data filtering had different 

interacting effects depending on the taxonomic groups considered. 
Indeed, while estimates of CTI trends were on average extremely 
stable for frogs, butterflies and salamanders, for ants and bats 
the deviation was larger when both filtering criteria were stricter 
(Figure 5b). In earthworms, the largest differences were found when 
we selected only sliding windows with >150 occurrences, while 
the number of time periods seems less important. The other taxa 
showed deviations that were harder to attribute to one or the other 
filtering criterion (Figure 5b).

4  | DISCUSSION

Using data from the GBIF, we characterized the effect of climate 
change on the assemblages of a variety of animal taxonomic groups, 
the majority of which had never been studied before with regard to 
their response to climate change. For all but one taxa, we observed a 
significant increase in CTI over the period 1990–2019 at the scale of 
Europe and North America, revealing that communities are generally 
restructured as a response to climate change. At the local scale, we 
found that community composition changes following temperature 
variation for most of the taxa studied (only one showed a clear nega-
tive response), although with a lag (i.e. relationship <1), suggesting 

F IGURE  5 Effect of data filtering on the estimated temporal trend in community temperature index (CTI). (a) Correlation (scatterplots + 
Pearson's correlation coefficient) between taxon-level CTI trends estimated from filtered datasets (y-axis) and CTI trends estimated from the 
whole datasets (x-axis), for different levels of data filtering applied at the level of sliding windows (columns: minimum of 2–5 time periods; 
rows: minimum of 50–150 occurrences). The grey line represents the 1:1 line. (b) Predicted absolute difference in CTI trends estimated from 
filtered or full datasets, as a function of the minimum number of 5-year time periods (y-axis) and occurrences (x-axis) by sliding window, for 
each taxon.
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that communities are experiencing a climatic debt. This climatic debt 
appeared to be greater in highly anthropized regions. In addition, 
we found that the increase in CTI is mostly caused by the arrival of 
warm-adapted species and not the loss of cold-adapted species, for 
all taxonomic groups except butterflies.

All of the nine different taxonomic groups we analysed showed 
evidence of a thermophilization in response to climate change 
(Figure 3a). Among the taxa we selected, this pattern had already 
been shown in birds and butterflies (e.g. Devictor et al.,  2012). 
Recently, Lehikoinen et al.  (2021), who compared the response of 
wintering and breeding bird communities to climate change at the 
scale of Europe and North America, found that wintering commu-
nities are reshaped more rapidly than breeding communities. Here, 
surprisingly, we found instead that, although summer bird com-
munities showed a significant ‘warming’, there was no detectable 
increase in CTI for wintering birds' communities during the study pe-
riod. Although it seems to contradict previous evidence, it appears 
that when we restrict data to the same countries as in Lehikoinen 
et al. (2021), we do in fact observe a clear increase in CTI over time 
(β = 0.01347 [0.0095–0.0174]). This demonstrates that such assess-
ment of community change can be highly dependent on the input 
data, including its spatial and temporal coverage. This reinforces the 
need to find additional sources of information to complement the 
existing standardized protocol, such as the GBIF as we explore here 
(Beck et al., 2013).

A positive relationship between estimated local CTI trends and 
observed local temperature trends was found in 6 out of 10 groups 
(Figure 3b), indicating that most communities are indeed structured 
by climate. Still, in several taxa, despite evidence for an overall ther-
mophilization of community over time, local variations of the CTI 
were only weakly correlated with those of temperature. Several 
hypotheses can explain this apparent discrepancy. First of all, com-
munity dynamics of many animal groups may depend in part on mi-
croclimatic variation that is not well captured by the macroclimate 
variables we use. This can be the reason why earthworms, which are 
soil dwellers (Lavelle, 1988), do not show a significantly positive rela-
tionship between local CTI and temperature trends. Similarly, many 
amphibians depend on water ecosystems for their reproduction 
(Wells, 2007). Therefore, we expect water-dependant frog and sal-
amander species to track changes in freshwater temperature, which 
may differ from air temperature. Rodents, for which we observed a 
negative relationship between CTI and temperature trends, present 
an interesting case that is difficult to explain. Perhaps their particular 
lifestyle makes them live in microclimates that change opposite to 
the observed macroclimate. Second, we characterized community 
change and temperature trends at the scale of 200-km-radius sliding 
windows. In doing so, we assumed ‘local’ temperature trends to be 
the average change in temperature across >125,000 km2. This may 
very well be too large to represent accurately the climate change 
that communities are responding to. Among the other studies that 
applied a sliding window approach, Gaüzère et al.  (2017) analysed 
changes in community composition in 80-km-radius circles as a way 
to incorporate at least 20 monitoring sites. Here, we relied instead 

on unstructured occurrence data that are prone to biases and error 
(Beck et al.,  2014). Therefore, we chose to analyse large-scale as-
semblages that are certainly not communities in the sense of a group 
interacting species, but which size seemed reasonable to describe 
local groups of species while avoiding putting too much weight on 
unavoidable biases in the data. The optimal scale at which such data 
must be analysed remain an open question, though.

Importantly, for all the taxa studied, the relationship between 
local CTI trend and temperature trend was less than 1 (Figure 3b). 
This means that there is a lag between changes in community com-
position and climate change, also known as climate debt (Devictor 
et al., 2012). This lag may be an indicator of the difficulty of com-
munities to keep up with rapid changes in climate, as it is often the 
case in terrestrial habitats, but less so for marine species (Lenoir 
et al., 2020). The intrinsic dispersal abilities of species can contrib-
ute to this lag, but we also know for sure that habitat availability 
(Mair et al., 2014) and habitat fragmentation (Fourcade et al., 2021) 
play a role in preventing climate-driven range shifts. In this regard, 
we found that communities tracked better climate change in natural 
habitats as opposed to areas disturbed by human activity. Here, the 
human influence index we used is an aggregation of several types 
of human footprints (Sanderson et al., 2002) and cannot be used to 
discriminate the exact factors that prevent community reorganiza-
tion. Among the nine animal taxa we studied, it is likely that different 
types of disturbance act differently to prevent climate tracking. For 
example, amphibian range shifts may be impaired by the pollution 
or loss of water ponds (Araújo et al.,  2006), while insect taxa are 
known to be strongly impacted by habitat fragmentation (Fourcade 
et al., 2021). In birds, it has been demonstrated that habitat diversity 
and the naturalness of the landscape influenced their climatic debt 
(Gaüzère et al., 2017).

It must be noted that this apparent lag may not necessarily mean 
that species are at risk of extinction because of climate change. 
Changes in community composition, such as those revealed by an 
increase in CTI, reflect shifts in the distribution of species that 
track their climatic niche in space (Devictor et al., 2008). Therefore, 
lack of distribution shifts could on the opposite be an indicator of 
the ability of species to adapt to new thermal conditions, making 
range shifts unnecessary even when climate is changing. Indeed, 
some species may exhibit phenological shifts, or have already 
adapted to warmer conditions (Parmesan, 2006). In this case, mal-
adaptation to climate change cannot be concluded simply from a 
mismatch between CTI and temperature trends. In addition, it is 
essential to remember that, due to the nature of GBIF data, we 
chose to focus our work on the temporal trends in presence-only 
CTI, which represent only the turnover in species composition 
(and thus distribution shifts of species), ignoring fluctuations in 
abundances. A large part of the changes occurring in communities 
as a response to climate change may thus remain undiscernible in 
our analyses, such as a decline in cold-adapted species (which can 
in some cases precede their extinction) or an increase in the abun-
dance of warm-adapted species. A better understanding of these 
processes could be obtained if GBIF occurrence density could be 
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interpreted in terms of species' abundance. Still, it is remarkable 
that a temporal increase in presence-only CTI was detected in al-
most all cases here; this suggests that spatial climate tracking is a 
widespread response to climate change across various terrestrial 
taxa.

By analysing turnover processes at the species level, we found 
that for 7 out of 10 taxonomic groups, the average relative STI of 
species gained between two time periods is higher than that of 
species lost (Figure  4), which is expected if communities are re-
structured in response to climate change. However, we expected 
to find a negative rSTI for lost species if the loss cold-adapted spe-
cies contributed to the increase in CTI, or alternatively rSTIlost ≈ 0 
if the arrival of warm-adapted species in communities was the pri-
mary driver of increasing in CTI over time. Here, instead, the aver-
age rSTI of lost species was positive for seven taxonomic groups, 
suggesting that the species lost from communities over time are 
also mostly warm-adapted species. The result is confirmed by the 
fact that the majority of both gained and lost species showed a 
higher STI than the CTI of their community (rSTI > 0). We inter-
pret this result by the fact that newly gained species, if they are 
colonizing as they track climate change, are located at their cli-
mate niche boundary and are thus naturally more sensitive to local 
extinction risks. Thus, warm-adapted species that colonize sites 
where temperature has become favourable to them could also be 
species that are easily lost from communities in the next years, be-
fore they can effectively establish in the long term. Interestingly, 
we observed a more expected outcome for butterflies, where spe-
cies that are lost tend to be cold-adapted relative to the commu-
nities from which they are extirpated (rSTI < 0). For this taxon at 
least, it appears thus that community turnover is driven by both 
the arrival of warm-adapted species and the loss of cold-adapted 
species, which is consistent with species range shifts caused by 
increasing temperatures.

Finally, we found that filtering data to keep only the regions 
that contain a certain number of data points influenced relatively 
little the estimated temporal trends in CTI at the level of each 
taxon (Figure 5), that is, our main results are robust to the inclu-
sion or not of undersampled area. This is partly due to the fact 
that we already weighted our statistical models by the density of 
occurrences in each sliding window, therefore giving less weight 
to undersampled areas. There is a clear spatial variation in the 
amount of data available (Figure S1), Western Europe being gener-
ally overrepresented. It is also noticeable that Central America (in-
cluded here with North America) appears relatively undersampled, 
despite the fact that it is one of the main biodiversity hotspots 
worldwide (Myers et al.,  2000). Increasing the spatial coverage 
of robust biodiversity data may help deciphering the variation of 
species and community response to climate change across biomes 
and taxa. In this regard, the database GBIF may play an important 
role by allowing researchers to rely on unstructured datasets, pro-
viding that such data are properly cleaned, filtered and analysed. 
Local-scale trends in CTI are more difficult to estimate, and proved 
more sensitive to the process of data filtering. Here, the temporal 

completeness of data appears as an important factor, at least for 
some taxa, suggesting that long-term monitoring programmes are 
essential for estimating changes in community composition, but 
also that assessments of biodiversity response to climate change 
will improve over time as more and more occurrence data are in-
cluded in the GBIF.

In conclusion, we observed generally that climate change is 
causing major shifts in species assemblages for many different taxa, 
characterized by an increase in the proportion of warm-adapted 
species at the expense of cold-adapted species. This reorganiza-
tion of communities appears to be mostly the result of the coloni-
zation of new warm-adapted species, although there may be hidden 
trends in species' abundance which also contribute to changes 
within communities. Our study cannot strictly prove that GBIF oc-
currence data are appropriate for such temporal assessment, but 
the fact that we consistently observed responses that are expected 
in a climate change context strongly suggests that the effects we 
detected are real. Additional taxa for which sufficient GBIF data 
exist could then be analysed with the same methods, thus improv-
ing knowledge of the impact of climate change on biodiversity. 
Moreover, the framework we employed here could be extended 
for the study of other long-term and large-scale processes such as 
biotic homogenization (McKinney & Lockwood, 1999). Another, ap-
plied, conclusion we gained from our study was that communities 
are lagging behind climate change, and that this lag is partly caused 
by human disturbance. Thus, conservation solutions, such as the de-
ployment of ecological corridors to promote the movement of spe-
cies to environments that satisfy their thermal preferences, would 
be necessary (Littlefield et al., 2019; Sonntag & Fourcade, 2022). 
We demonstrated here that these issues may exist for a large range 
of terrestrial animals, and we introduced a framework that can be 
used in a broader context, opening new opportunities for global 
change research.
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