
HAL Id: hal-04030262
https://hal.u-pec.fr/hal-04030262

Submitted on 22 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Performance evaluation of a solution for composite
service selection problem with multiple consumers

Lynda Mokdad, Jean-Michel Fourneau, Abdelkrim Abdelli, Jalel Ben-Othman

To cite this version:
Lynda Mokdad, Jean-Michel Fourneau, Abdelkrim Abdelli, Jalel Ben-Othman. Performance eval-
uation of a solution for composite service selection problem with multiple consumers. Simulation
Modelling Practice and Theory, 2021, 109, pp.102271. �10.1016/j.simpat.2021.102271�. �hal-04030262�

https://hal.u-pec.fr/hal-04030262
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Performance evaluation of a solution for composite

service selection problem with multiple consumers

Lynda Mokdada, Jean-Michel Fourneaub, Abdelkrim Abdellic, Jalel Ben
Othmand

aUniv Paris Est Creteil, LACL, F-94010 Creteil, France
bUniv de Versailles, DAVID Lab

cUniv USTH, LSI Lab
dUniv Paris-Saclay, CNRS, CentraleSuplec
Labo L2S, 91190, Gif-sur-Yvette, France

Univ Sorbonne Paris Nord

Abstract

In recent years, building business applications from independently devel-
oped services has become one of the current trends in service computing.
To satisfy clients’ requirements, service composition is performed to com-
pose the various capabilities of available services. With the proliferation of
services having similar functionalities, assessing the quality of a given com-
position is a paramount factor to decide which services must be selected,
or to choose whether a given composition can provide the requested QoS
(Quality of Service). However, due to the fluctuating conditions in the dy-
namic cloud computing environment, the QoS and the performances of the
services become unreliable, and therefore call into the question the accuracy
of the composition QoS. To tackle this issue, different methods that analyse
the QoS have been developed, making it possible to help the designers to
first, understand the system behaviour when providers and consumers, are
interacting, thus allowing to optimize the system by identifying performance
bottlenecks within a specified deployment environment.

In this study, the particular problem of many consumers that are com-
peting to acquire services with same functionalities but with different QoS,
is considered. For this purpose, assuming a dynamic environment, different

Email addresses: lynda.mokdad@u-pec.fr (Lynda Mokdad), jmf@uvsq.fr
(Jean-Michel Fourneau), abdelli@lsi-usthb.dz (Abdelkrim Abdelli),
jalel.benothman@l2s.centralesupelec.fr (Jalel Ben Othman)

Preprint submitted to Journal Simulation Modelling Practice and Theory December 8, 2020

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1569190X21000022
Manuscript_1b05f65a06e2a7d0023a56a38ba584c0

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1569190X21000022
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1569190X21000022

models based on Discrete Time Markov Chain are developed to implement
several policies of the system. A theoretical modelling of the problem is pro-
posed including analytical results obtained using the Xborne tool. For each
model, the average time to reach a given QoS for a community of consumers
is reported. Such a performance metric allows the designer to predict the
system behaviour in a dynamic environment.

Keywords: Performance evaluation; Web services; Markov chains;

QoS.

1. Introduction

During recent years, the rapid development and the increasing popularity
of the Web service technology have promoted the Cloud as an Internet-based
service architecture to achieve various IT capabilities and flexible invoca-
tions. The traditional Web service architecture has evolved to be more flex-
ible, dynamic, and scalable. Indeed, there are more and more popular cloud
applications which are composed by software components and cloud services.
Service composition is needed when a complex request cannot be satisfied by
a single service. It could be obtained by combining various available services
functionalities into a more powerful new service in the cloud [17]. As for
web service architectures, the design of a cloud architecture is oriented on
three major issues that are service discovery, service selection and service
composition [13].

Service discovery is the process of exploring a population of services to
locate alternatives that meet the functional requirements requested by the
user. To distinguish services with the same functionalities, service selection
uses QoS parameters (such as service reliability, security, trust and execution
cost, etc.) to refine the discovery and select the best alternatives. Hence,
it is clearly obvious that service discovery is a prerequisite phase for the
selection process. Generally, selection is needed when it comes to manufac-
ture new composite services with customized functionalities and according
to user’s QoS requirements [24]. Such a process is called QoS aware service
composition [21].

Nowadays, it is often required that service architectures can be dynamic,
in the way that they can dynamically assemble complex services to develop
distributed, interoperable, and scalable systems. Moreover, in the open and
variable cloud environment, the fluctuation and the instability of the envi-

2

ronment make that the measured QoS be changing. Therefore, managing
the dynamic QoS of the cloud services, along with ways to build credible and
accurate combination of services become an important research problem. In
this context, the performance of a composition of services is a crucial fac-
tor for deciding which components must be selected, or to choose whether a
given sequence of interactions can provide the requested QoS.

Although managing the QoS of a composite service is not new, it still
remains that many additional issues need to be fixed. Indeed, as service based
applications are manufactured by composing different distributed software
components, the configuration of the latter as well as the QoS can change.
Besides as the environment can fluctuate the original QoS of the considered
services is thus affected. Therefore, the user requirements can no longer
be met. Updating dynamically the composite services by replacing some of
their components with new ones having better QoS is one of the promising
solution, with however many challenges to overcome, as for instance:

(i) How to build the composite service with respect to user’s require-
ments, and service availability. When no constraints are formulated on ser-
vice usability and duplicity, the problem is modelled as a Multidimensional
Multi-choice Knapsack Problem (MMKP) [36] to design the QoS aware ser-
vice composition problem for one consumer. Otherwise, the problem becomes
even more complex as it is dedicated for multiple consumers.

(ii) As the exact resolution of the QoS aware service composition problem
is NP-hard, alternative approaches to reduce the cost in terms of time com-
plexity are investigated to meet the delay constraints and without loosing in
the quality of the computed solutions [22, 8, 6, 30].

Most of the literature approaches are dealing with the problem of QoS
aware service composition problem for one consumer. For the case of a
multiple consumers, the existing works studies different models for composite
services for a group of clients [8].

One of these models is to consider different consumers for the same ser-
vice such that the latter can be assigned only to one composite service (con-
sumer), providing that the requested QoS is met. Each composite service is
thus manufactured according to each client constraints. Rather than seeking
for the optimality of the composite service, the problem consists then in find-
ing all the similar composite services in terms of functionalities so that the
satisfaction of the consumers group is maximised and each client is satisfied
with the returned composite service [16].

For this purpose, different approaches to assess and analyse the perfor-

3

mances of the composed services have been proposed. These approaches con-
sider in general different set of QoS metrics and different models. Besides,
they can be applied at run-time or at the design time.

The goal of this study is to evaluate the systems performances in the
context of a QoS aware service composition problem when assuming multiple
consumers in a dynamic environment. In the proposed model, we consider
an architecture where services with same functionalities are continuously
provided to different consumers which are competing to acquire them for
service composition. Each service is characterized by a grade that determines
an aggregation of its QoS parameters. If a consumer acquires a new service
with a higher grade, it should release the old one that will be offered to other
consumers, and so on. Different policies are implemented and evaluated in
the proposed model, by assuming: first, (i) no constraints on the process
duration and the required level of the service grade; (ii) the consumer stops
acquiring new services when it reaches a satisfactory grade; (iii) or after
reaching a time-out, denoting that the duration of the composition process
is overtaken.

In order to evaluate the performances of the system, different models as
Discrete Time Markov Chains (DTMC) are elaborated. Then, the obtained
models are implemented to derive some performance parameters using the
Xborne tool [7]. Mainly, this evaluation makes it possible to assess the av-
erage time needed for each consumer to reach a given grade of QoS. Such a
metric is important to understand how the system behaves when assuming
different number of consumers, QoS levels to reach, and time-outs to achieve
the composition process.

The remainder of the paper is organized as follows. Section II presents the
related works. Section III discusses the architecture functioning to consider
and lays down the assumptions for our performance evaluation model. In
section IV, we discuss the general DTMC model and proves its lumpability.
In section V, we present the different derived models implementing the con-
sidered policies. Section VI presents the numerical analysis of the structure
of the DTMC. Section VII reports the numerical results of the performance
evaluation of the DTMC models. Section VIII concludes this paper and gives
the perspectives.

4

2. Related works

The majority of approaches dedicated to composite service selection can
be classified into two major classes: approaches based on negotiation and
those based on optimisation.

2.1. Negotiation

These approaches propose to design a negotiation framework to respond
to user’s requirements by making the QoS flexible and negotiable between
the user and the provider through a common agreement, called SLA (Ser-
vice Level Agreement) [9]. The SLA contains the negotiation terms that
specify, for instance, the QoS parameters, the rewards and the penalties [17].
Such an approach offers more flexibility to achieve a compromise between the
user and the provider. Patankar et al [29] propose an automated approach
based on compromise achievement to buy services by using a bilateral proto-
col to manage the interactions between users and providers. They consider
a mechanism of iterative compromise to evaluate the offers of the different
protagonists and thus generate counter-offers of common awards based on
the considered QoS parameters. Sathya et al [20] proposed a negotiation
model with equal reward to select the best service that responds to client
requirements. In [23], the authors deal with the selection of composite ser-
vices on the base of Multi-Agents negotiation. The goal of these agents is
to determine the best Composite QoS. They proposed an architecture that
achieves to reduce the selection time.

The major drawback of negotiation base approaches is the limited number
of QoS criteria to be considered in the SLA (no more than two), because of
the complexity of the solution [17].

2.2. Optimisation

In the context of service selection optimization, the problem is described
generally as a Multi-dimensional Multichoice Knapsack Problem (MMKP)
to determine the service composition with the best QoS that satisfies user
requirements [22, 35, 10].

MMKP is well known to be NP-Hard, and many approaches have been
proposed in the literature. In [25], the authors survey the existing approaches
and classified them considering five criteria: the class of methods using linear
or non linear objective functions; with local or global optimisation; with
or without QoS requirements; single or multi-objective optimisation; exact

5

solutions or heuristics. The taxonomy has been extended in [24] to consider
”dynamic or static composition” as an additional criterion:

• A linear resp non linear program seeks to maximise or minimize the
linear resp. non linear objective function with respect to user require-
ments.

• Local optimisation tends to select the best service for each individual
task by considering the QoS requirements of each task. The global
optimisation aims at selecting the best composition taking into account
the global QoS requirement.

• If the selection process can deal with user QoS requirements, it consid-
ers the best service composition among those available. Otherwise, it
considers the optimal composition according to user requirements.

• A single objective optimisation aggregates the QoS parameters values
by using an utility function, and compares the results to determine the
best composition. On the other hand, a multi-objective optimisation
associates to each QoS parameter an utility function and then compares
the services for each parameter to select the optimal compositions [11].

• An exact solution selects the optimal composition without taking into
account the cost needed to process it. An heuristic solution selects
a composition by reducing the research space, while maintaining the
processing time under a given threshold [2, 35].

• In a dynamic environment, the availability and the accessibility to the
providers are not guaranteed. The latter can also improve the QoS of
the services they offer, to keep competitive. In such environment, the
composition process is updated when changes are noticed in the QoS.
In a static environment, the QoS information is assumed fix, and the
composition is performed according to that, without any update [24].

In QoS aware service composition, a set of QoS attributes is considered
to manufacture the best composite service. However, few works address the
problem of QoS aware service composition with multiple consumers.

In [3], Bentallah et al grouped services with similar functionalities and
different non-functional properties to ease the composition process. In [5],
the authors proposed to use communities formed by similar service operations

6

to promote the service composition and also to substitute operations in the
composite service. Wang et al proposed in [32] to create a community formed
by agents (service providers) having the same area of interest, and each agent
gives his opinion and judgement criteria regarding a service. A super agent
plays an important role in managing the community by choosing its members
and maintaining its reputation. The goal is to promote the trustworthiness
of services as a key factor to select services and to join the communities.

In [18], the authors consider the Social Spider Algorithm (SSA) to solve
the problem. The experiments evaluate the efficiency and the feasibility of
the proposed algorithm against Particle Swarm Optimization (PSO). SSA is
found to outperform PSO in terms of both execution time and fitness. In [14],
the authors propose an approach for QoS aware service selection for multiple
choreographies considering the sharing of services among them. They con-
sider the aggregation service load that results from the sharing to compute
the QoS. In [33], the authors propose a service recommendation approach
that improves QoS aware efficiency service selection for multi-tenant SaaS
(Software as a Service). They consider representative candidate for commu-
nities of services based on the diversity and the similarity in tenants’ QoS
requirements. In [34], the authors propose an on-demand strategy for QoS
aware service composition by introducing a service broker whose role is to
purchase a number of service instances for each component from providers
and then to provision consumers with composite services with different QoS
classes. The efficiency of the solution is evaluated by heuristic approaches.
In [1], the authors introduce two types of services, called: leaders and fol-
lowers. Leaders are those services that enjoy high reputation, market share,
and capacity of handling requests; whereas followers are those services that
cannot compete against the leaders. The problem is modelled as a virtual
trading market and propose a distributed Stackelberg game for this purpose
to achieve higher performance, efficient services compositions, and better re-
sources utilization. They show that their model is capable to improve the
user’ satisfaction regarding the QoS requirements. The authors in [31] pro-
pose a QoS-aware service selection model based on fuzzy linear programming.
The proposed approach provides the optimal solution of consensual weight
of QoS attribute and fuzzy positive ideal solution (FPIS) by extending LIN-
MAP method. They report experimental results that advocate the usability
of the approach.

In [16], we proposed to evaluate the performances of a service composition
architecture in a dynamic environment. For this purpose, a model based on

7

a DTMC (Discret Time Markov Chain) is proposed to specify the basic
functioning of the architecture in order to evaluate the performances of the
system. For each scenario, the mean processing time to compute a solution
with a given QoS is calculated. To the best of our knowledge, there exist no
further papers in the literature that have addressed the use of the DTMC
to evaluate the performances of QoS aware Web service composition with
multiple consumers. The subject of our study in the present paper, is to
extend the work in [16] by considering different policies and scenarios. This
requires to introduce new theories in order to specify the DTMC models and
to evaluate their performances.

3. Problem description

In this section, the concept of community of composed services is intro-
duced and a discussion is given on the problem of the optimal solutions in a
dynamic environment selection. The proposed architecture is described and
discussed according to different policies.

3.1. Community of services

Complex tasks need the execution of different simple tasks, each one
could refer to a specific service offered by one or different providers. Services
offering the same functionalities can be grouped within the same class and
distinguished by their QoS performances. For the sake of simplicity, we
consider in this study only one QoS parameter associated with each service
that denotes an aggregation of all its performances. Although services are
offering a wide flexibility, several classes of services are combined to offer
composite services. It is assumed for this study that service composition
requires exactly M classes Sci.

A community is called as a composition of M services as a response to
a user request, such that each service si is taken from the class Sci. The
concept of a community is introduced to build a dynamic composite service,
quality of which can be assessed by the aggregation of the QoS of the services
that compose it. As services composing a community vary over time, the
community is thus dynamic and each affectation is thus called configuration.

A service is given to a community only if it maximises the global award.
However, each community aims at maximising its own global QoS. To intro-
duce more rationality it is assumed that the communities avoid, if possible,
unfavourable configurations. That is, communities have the right to exchange

8

Figure 1: Composite service selection with multiple consumers

9

their services to improve their QoS over time. From a starting configuration
a community which wants to update some of its services cannot take those
already assigned to other communities. Therefore, only new services that are
not used or those released can be acquired.

Determining the optimal configuration for a community amounts to solve
a variant of the knapsack problem, well known to be NP-Hard [22]. Although
approximate solutions can be obtained by using heuristics to solve such a
problem, they may take a very long time to be computed. Moreover, services
are unstable as they can be removed by their providers without notice, thus
making the computed solutions obsolete. More generally, adding or deleting
a service can affect the existing communities. A basic and naive solution is to
recompute the optimal configurations but this seems not practical, because
of its high cost in terms of computation time [15].

Building dynamic communities makes it possible to provide a more flexi-
ble and reliable solution by updating the configurations on the fly using the
global award as a key parameter to guide the process. In case a community
wants to swap one of its services with a new one having better QoS per-
formances, then the released service may be acquired by other communities
providing that its QoS meets their requirements.

In order to limit the number of swaps and to maximise the global award,
it is considered the following assumptions:

• For each community, a service can hold only if it increases the QoS of
the configuration.

• If different communities are in competition to acquire a new service, the
latter should be given to the community such that the global award is
maximized. This is the case when the communities are created for the
first time. There are many ways to proceed, one of them is to consider
a priority according to the QoS requirements. Two strategies can be
enforced:

1. The community requesting the highest QoS requirement for the
arriving service has priority: Such a strategy is more realistic as
it seeks to guarantee the optimal solution for each community.
However, it takes much longer time to reach the optimal solution.

2. The community requesting the lower requirements has priority:
Such a strategy allows most of the communities to satisfy their

10

requirements faster than the previous strategy, but does not guar-
antee the optimality of the composition.

To sum up, the problem can be summarized by the following points:

• A group of N clients, each one looks for a composite service, denoting
the community.

• Each composite service is composed of M services issued respectively
from M classes of services.

• Each class of services provides one service for each composite service .

• Each client expresses requirements for the composite service to look
for.

• One service can be consumed by maximum one community.

Solving such a problem amounts to maximize the distribution of services
on the N composite services (communities), so that the QoS requested by
each clients be met. Figure 1 describes the problem.

In this study, it is considered the following policies to decide when to stop
the composition process:

1. The first policy considers that a given number of consumers are seeking
for similar services with the same functionalities, but with the highest
grade. At this stage, no constraint on the time is enforced to complete
the task, nor on the satisfactory grade for each community.

2. In the second policy, we assume in our model further that a consumer
has to stop acquiring new service once he achieves a satisfactory pre-
defined grade.

3. In the third policy, we assume that the the consumer must stop acquir-
ing services if the processing time overtakes a given threshold.

4. By combining the policies 2 and 3.

4. Lumpability of the general DTMC model

In this section, a description of the model is given based on discrete-time
Markov chain, and we propose a partition of the state space which provides
an exact aggregation of the Markov chain. This proof is based on the strong

11

lumpability property (see [12] for the initial definition of aggregation for finite
chains, and [4] for more detailed results). Let X be a Markov chain on set
of states X. Let (B1, .., Bk) be a partition of X. We define a new process Y
as follows:

Yn = m ⇐⇒ Wn ∈ Bm.

The question is to fo find conditions such that Y is also a Markov chain.
Y will be denoted as an exact aggregation of W for partition (B1, .., Bk).
The ordinary lumpability condition (defined in the following) implies such a
result.

Definition 1 (Ordinary Lumpability, [4]). W is ordinary lumpable for
partition (B1, .., Bk) of its state space if for all subset index i and j and for
all state m1 and m2 in Bi, we have

Pr(Wn+1 ∈ Bj|Wn = m1) = Pr(Wn+1 ∈ Bj|Wn = m2).

Bi is denoted as macro state i.

Two other properties will be used here (see [4] for more details).

Definition 2 (exact Lumpability). W is exactly lumpable for partition
(B1, .., Bk) of its state space if for all subset index i and j and for all state
m1 and m2 in Bi, we have∑

i∈Bj

Pr(Wn+1 = m1|Wn = i) =
∑
i∈Bj

Pr(Wn+1 = m2|Wn = i).

Bi is denoted as macro state i.

and finally:

Definition 3 (strict Lumpability). W is strictly lumpable for partition
(B1, .., Bk) if it is both ordinary lumpable and exactly lumpable for this par-
tition.

This is very important because our software has, like all numerical tools, a
limit on the size it can handle. Exact aggregation and ordinary lumpability
allows to build a smaller model despite larger parameters and this model
is still Markovian. Exact lumpability implies that all the states which are
aggregated by the partition all have the same steady-state definition. This is

12

also an help to we deal with models having large state space. For instance,
with parameters N = 12 and G = 2, Model1 without lumping has 531522
states while the lumped version of this model only has 91 states. Clearly, we
have a substantial reduction of the states space. We will give more details in
the following when we compute the size of the models.

4.1. Model description

In the proposed model, N communities of services are considered. Each
service has a grade g which represents an aggregate value of its QoS. The
higher the value the grade has, the more the communities want to acquire it.
G is denoted as the highest value of the service grade, such that 0 ≤ g ≤ G.

An event eg consists in the arrival of a service with grade g. It has a proba-
bility p(eg) which does not depend on the state X. The considered model can
be be represented by a discrete-time Markov chain (DTMC). A given state
of the Markov chain can be described by N components (x1, x2, x3, . . . , xN),
where xi represents the current grade of the service s in the community i
with (1 ≤ i ≤ N) and (0 ≤ xi ≤ G). Thus, the number of states is (G+ 1)N .

The application of the event on state X produces a subset eg(X) of states.
This subset may be a singleton (for instance when the service is rejected
because its grade is too low). For each state in eg(X), Pr(X,Z, eg) will
denote the transition probability from X and Z due to the occurrence of the
event eg. By construction we have:

Pr(X,Z) =
∑

g

Pr(X,Z, eg).

Assume that a service with grade g arrives. Let X be the state of the
chain just before the arrival. The rules to affect the service are the following:

• Find the subset (say Sb) of the components of X which have the highest
grade smaller than g.

• If this subset is empty, the service is rejected.

• Otherwise, select at random with an uniform distribution a component
in Sb and replace the service of this component by the incoming service.
Affect again the service which has been released by the component to
X with the same set of rules.

13

Example 1. For instance, consider state (1, 3, 0, 1) and assume an arrival
of a service with grade 2. First, components 1 and 4 are selected. This
is due to their grade (i.e. 1) which is the highest one smaller than 2. As
two components are selected, one of them is chosen at random with equal
probability. Then, a service with grade 1 is released by component 1 or 4.
And it is given to component 3 because its grade is smaller (as it is the only
component with grade 0, we do not need a random choice here). Finally, we
get:

e2(1, 3, 0, 1) = {(2, 3, 1, 1), (1, 3, 1, 2)}

Property 1. As, at each step, the choice is made at random with equal
probability between all the components which have the highest grade smaller
than g, all the states in subset eg(X) have the same probability to be reached
from X. Therefore for all the states Z in eg(X) we have:

Pr(X,Z, eg) =
p(eg)

|eg(X)|
,

where |eg(X)| is the cardinality of eg(X).

Property 2. Due to the assignment rules, the result of an arrival of a service
with grade g is defined as:

• Service assignment: If a community has previously a service with a
grade strictly smaller than g. The service with the weakest grade is
released. Therefore X /∈ eg(X).

• service rejection: If all the communities had previously acquired a ser-
vice with a higher grade. Thus, eg(X) = {X}.

Proof: At each step we exchange one of the components which have the
highest grade smaller than g (say h) with g. And at next step we make the
assignment of a service with grade h. Thus, the results only differ by the
components receiving the service, not by the grade of the service.

4.2. Lumpability

We define the mapping s on state space S as follows: s(X) is a sorted
word (in decreasing order) with the same letters as in X. Clearly, s defines
an equivalence relation between the states.

14

Assumption 1. Let’s now consider the partition based on s: X1 and X2 are
in the same subset (or macro-state) iff s(X1) = s(X2).

We also apply s to the subset of states. By definition, in the image of a
subset, the duplicated states are removed. Let us begin with an example.

Example 2. We consider a simple example with N = 3 and G = 1. The
Markov chain has 8 states: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1).
The transition matrix is described in Eq. 1 and is given in the following:

p0 p1/3 p1/3 p1/3 0 0 0 0
0 p0 0 0 p1/2 p1/2 0 0
0 0 p0 0 p1/2 0 p1/2 0
0 0 0 p0 0 p1/2 p1/2 0
0 0 0 0 p0 0 0 p1

0 0 0 0 0 p0 0 p1

0 0 0 0 0 0 p0 p1

0 0 0 0 0 0 0 p0 + p1


(1)

Macro-state States
(0,0,0) (0,0,0)
(1,0,0) (1,0,0), (0,1,0), (0,0,1)
(1,1,0) (1,1,0), (1,0,1), (0,1,1)
(1,1,1) (1,1,1)

Table 1: Table of Macro-states.

The block decomposition, given in the previous transition matrix by Eq.
1, is based on the partition required for the lumpability. Clearly the model
is ordinary lumpable as the row sum is a constant per block. Similarly, the
model is exactly lumpable as the column sum is a constant per block. The
lumped chain has 4 states which are described in Table 1, and the lumped
matrix is: 

p0 p1 0 0
0 p0 p1 0
0 0 p0 p1

0 0 0 p0 + p1


Note that even for this small example, we have a state space reduction.

15

Let us start by laying down some technical lemmas.

Property 3. For all the events eg, and for all the states X, s(eg(X)) is a
singleton.

Proof: If eg(X) is already a singleton, the conclusion clearly holds. If the
cardinal of eg(X) is larger than 2, we consider two distinct states Y1 and Y2 in
eg(X). Due to Prop. 2, Y1 and Y2 only differ by the components that update
their service grade. Therefore, we obtain s(X1) = s(X2) and the proof is
complete.

Let mY be a macro-state and X a state. We denote by Pr(X,mY) the
summation

∑
Y1∈mY Pr(X, Y1). Let RX1 be the set of events eh which are

rejected at state X1. Similarly, let AX1 be the set of events eh which are
accepted at state X1.

Property 4. For all the events eg, states X1 and X2, such that s(X1) =
s(X2), we have:

s(eg(X1)) = s(eg(X2)).

Furthermore, we also have: RX1 = RX2. The rejected arrivals are the same
for states X1 and X2. AX1 = AX2 also holds as AX1 is the complementary
subset of RX1. Finally, we have:∑

Y1∈s(eg(X1))

Pr(X1, Y1) =
∑

Y2∈s(eg(X2))

Pr(X2, Y2)

Proof: The first property is a trivial consequence of the definition of the
events and Prop. 3. Now assume that an event eg is in RX1 , then eg(X1) =
X1. Thus, s(eg(X1)) = s(X1). By construction s(X1) = s(X2) and due to the
first relation s(eg(X1)) = s(eg(X2)). Therefore by transitivity, s(eg(X2)) =
s(X2) and eg is also in RX2 .

Let’s turn to the final relation. We have two cases:

• The event eg is rejected

• The arrival of a service with grade g triggers some changes following
the selection rules.

16

In the first case, eg(X1) = X1. For all h in RX1 , we have eh(X1) = X1 =
eg(X1). Therefore s(eh(X1)) = s(X1) = s(eg(X1)). Thus,∑

Y1∈s(eg(X1))

Pr(X1, Y1) =
∑

h∈RX1

p(eh)

Similarly, we get: ∑
Y2∈s(eg(X2))

Pr(X2, Y2) =
∑

h∈RX2

p(eh)

As RX1 = RX2 we finally get:∑
Y1∈s(eg(X1))

Pr(X1, Y1) =
∑

Y2∈s(eg(X2))

Pr(X2, Y2)

In the second case (i.e. g is accepted), we first remark that there are no grade
h (distinct from g) such that s(eg(X1)) = (s(eh(X1)). Indeed:

• If h is rejected (s(eh(X1)) = X1 and s(eg(X1)) 6= X1. Thus, eh(X1) 6=
eg(X1)

• If h is accepted, assume without loss of generality that h 6= g, thus
s(eh(X1)) > s(eg(X1).

Now, by construction,
∑

Y1∈s(eg(X1)) Pr(X1, Y1) = p(eg). The summation does
not depend on X. Therefore we have:∑

Y1∈s(eg(X1))

Pr(X1, Y1) =
∑

Y2∈s(eg(X2))

Pr(X2, Y2) = p(eg),

or:
Pr(X1, s(eg(X1))) = Pr(X2, s(eg(X2))) = p(eg).

Lemma 1. The model is ordinary lumpable.

Proof: With the notation of our problem, we have to prove that for two
arbitrary states X1 and X2 such that s(X1) = s(X2) (i.e. there are in the
same macro-state), then for all the macro-states mY , we have:

Pr(X1,mY) = Pr(X2,mY)

We have two cases:

17

• Assume that mY = s(eg(X1)) for some event eg. Then the proposition
4 is applied.

• Otherwise, there is no transition from state X1 to macro-state mY and
Pr(X1,mY) = 0. Similarly, Pr(X2,mY) = 0 and the equality holds.

Lemma 2. The model is exactly lumpable.

Proof: from the previous properties, we have three cases for the number of
events associated with the transitions between two macro-states (say mX
and mY):

• 0. No event may transform a state of mX in a state of mY . For
instance, if macro-statesmX andmY differ in more than 3 components.

• exactly 1 for a service with grade g which is accepted.

• 1 or more for rejected events. In that case, there is no transition. These
events are associated to the diagonal elements of the transition matrix.

In the first and the third case, the criteria for exact lumpablity is clearly
satisfied (the block matrices are respectively, null matrices and identity ma-
trices). Let us turn to the second case. It is considered two macro-states mX
and mY such that there exists only one event g such that eg(mX) = mY .
From Prop. 1 we know that each state of mX has de same output degree,
and that all the transitions have the same probability. Clearly all the states
of mY have the same number of predecessors in mX. Therefore the row
column in a block is constant and the chain is exactly lumpable.

Theorem 1. The model is strictly lumpable.

Proof: because it is both ordinary lumpable and exactly lumpable.

Property 5. After lumping, the number of states is
(

N+G
G

)
.

Proof: We want to count the number of non decreasing sequence of length N
based on a set of G+1 symbols. Consider an arbitrary sequence of length N .
For i = 0 to G, let xi be the number of symbol i in that sequence. Clearly,
we have for all sequence by construction:

x0 + x1 + ...+ xG = N (2)

18

There is one to one mapping between any vector (x0, x1, ..., xG) solution of
Eq. 2 and a non decreasing sequence of length N as illustrated in Fig. 3

x0 + x1 + ...+ xG ⇐⇒ (0..0︸︷︷︸
x0

, 1..1︸︷︷︸
x1

, ..., G...G︸ ︷︷ ︸
xG

) (3)

Indeed, the non decreasing sequence must begin with x0 letter 0, followed
by x1 letter 1 and so on, until xG letter G. Thus, the number of increasing
sequences is equal to the number of ways to distribute N balls into G+1 urns,
a classical problem in combinatorics. It is already known that the number of
solutions of Eq. 2 is

(
N+G

G

)
(see for instance [28], p 571, it is also the number

of states in a Markov chain modeling a closed network with N customers and
G+ 1 stations).

Thus, we can design a lumped model with a much smaller number of
states. Remember that the size of the initial Markov chain is (G+ 1)N . We
also develop new techniques to deal with larger values of parameters N and
G in the next sections.

In the sequel, based on the model description and given proofs, the developed
DTMC are assumed lumped models.

5. Models based on different policies

In this section, we redesign the DTMC model according to different poli-
cies. The first one refers to the policy wherein communities are always seeking
to acquire services with the highest grade. In this case, the model contains
only one absorbing state. The second one refers to the strategy where com-
munities stop seeking for a new service once they acquire a service satisfying
a given grade. The Markov chain contains several absorbing states. The last
one refers to the policy using a time-out. In this case, the communities have
the possibility of setting a threshold of grade values as a stopping criterion.

5.1. Model based on the highest grade

In this first model, it is considered that all the communities will end up
having the service with the highest grade regardless of the time. The Markov
chain size depends on the number of communities and the value of G. Thus,
more communities and grades.

Property 6. The number of states is
(

N+G
G

)
.

The proof is given in Eq. 2 in section 4.

19

2221

0000

2222

p1 p2

p0

p0

p0

p0 p0p0p0

p0

p0

p0

p1

p1 p1

p1

p1 p2

p2

p2
p2p2p2

p2

p2

p2

p2p2p2p2

p1p1

p1 p1

p0+p1p0+p1p0+p1p0+p1p0+p1p0+p1

1000 2000

1100 2100 2200

1110 2110 2210 2220

1111 2111 2211

Figure 2: The obtained Markov chain with N = 4 and G = 2

Example. To explain clearly the proposed model, we consider an example
with N = 4 and the score G is between 0 and 2. In this case, Figure 2 depicts
the transitions of the Markov chain. The Markov chain size is

(
4+2
2

)
= 15

states.
(sg) is the arrival of a service s with its grade g. Let pg be the probability

that the incoming service (sg) arrives with a grade g. The states X of the
DTMC is a state with four components (x1, x2, x3, x4) with (0 ≤ xi ≤ G),
where:

• State (0, 0, 0, 0) means that the service has a score 0 for all the com-
munities.

• State (x1, x2, x3, x4) means that the service has a grade x1 for the
community 1, grade x2 for the community 2, grade x3 for the com-
munity 3 and grade x4 for the community 4. According to our rules
(x1 ≥ x2 ≥ x3 ≥ x4)

Thus, due to the linearity of the expectation and the memoryless of the
arrival process, the average time to reach this state is N times the average
time to receive a service with grade G. The arrivals are geometric with rate
pG. Therefore the expected time to reach (G,G, ..., G) is N

pG
.

More details are given in [16].

20

5.2. Model based on satisfactory grade

This case implements the second policy: communities stop seeking for a
new service once they acquire a service satisfying a given grade. The Markov
chain contains several absorbing states. The whole Markov chain is first
built. Then the steady state distribution is computed in order to derive the
rewards. For instance, it could be interesting to compute the average time
to reach the states with a given grade value equal to v. v is considered as a
satisfactory value for the service grade.

Based on example of Fig 2, we can determine when all the communities
are able to acquire the services with grade g ≥ v with v = 1, and consequently
when all the new services are being rejected automatically. Thus, the states
(1, 1, 1, 1), (2, 1, 1, 1) (2, 2, 1, 1), (2, 2, 2, 1), (2, 2, 2, 2) are the absorbing states
when considering the second policy. In our study, we are interested in com-
puting the average time to reach these states starting from the initial state
(0, 0, 0, 0) or any other state. More details are given in [16].

5.3. Model based on time-out

In section 5.1, we have considered as a stopping criterion the case wherein
all the communities obtain the service with the highest grade G. After, we
relaxed this constraint and gave the possibility of setting a threshold of grade
values as a stopping criterion in section 5.2. In this section, we introduce
the time-out as another stopping criterion. Thus, the model associated with
the previous policies is extended to design the clock parameter. To clearly
explain the model, three communities are considered and a new parameter h
is introduced, as well to design the clock.
A state X of the DTMC is characterized with four components (x1, x2, x3, h)
with (0 ≤ xi ≤ G) and (0 ≤ h ≤ H) where:

• H is the value of the time-out.

• State (0, 0, 0, 0) means that the service has a score 0 for all communities
at time 0.

• State (x1, x2, x3, h) means that the service has a grade x1 for community
1, grade x2 for community 2 and grade x3 for community 3 at time h.
According to our rules (x1 ≥ x2 ≥ x3, h).

The different transition probabilities between states are given, next:

21

1. if the incoming service sg arrives with a grade g, such that (x1 ≥ x2 ≥
x3, h):

(x1, x2, x3, h) → (1) (x1, x2, x3, h+ 1)

(1) means that the grade g of the new service sg is less or equal than
the current score for all the communities. Thus, there is no loop for
the states in the Markov chain as the time h is incremented by 1. The
transition probability is pg.

2. if with probability pg, the incoming service sg arrives with a grade g,
such that at least one xi < g:

(x1, x2, x3, h) → (2) (g, x2 = x1, x3 = x2, h+ 1)

→ (3) (x1, x2 = g, x3 = x2, h+ 1)

→ (4) (x1, x2, x3 = g, h+ 1)

• (2) means that the new service has a score g which is greater than
the current notation x1. Thus, the community 1 takes the new
service (x1 = g) and releases its current one which is proposed
to the community 2. The latter is going to apply the same rules
as the previous one and so on. The clock is incremented. The
transition probability is equal to pg.

• (3) means that the new service has a grade g which is upper than
the current notation x2 and is less or equal to x1. The community
1 is not interested by the new service. Thus, the community 2
takes the new service (x2 = g) and releases its current one which is
proposed to the community 3. This community is going to apply
the same rules as previously and so on. The clock is obviously
incremented. The transition probability is equal to pg for 0 ≤ g ≤
G.

• (4) means that the new service arrives with a grade g which is
upper than the current notation x3 and which is less or equal to
x1 and x2. Then same rules as in (2) and (3) are applied. The
clock is obviously incremented.

3. The final states are depending on the stopping criterion that has been
chosen.

22

• If it is assumed that the stopping criterion is when all the com-
munities obtain the service with the highest grade G, the ab-
sorbing states are all the states x of the form (G,G,G, h) with
G ≤ h ≤ H. For N = 3, G = 2 and H = 5, the absorbing states
are: (2, 2, 2, 3), (2, 2, 2, 4), (2, 2, 2, 5)

• If the stopping criterion is when the time-out is reached, the ab-
sorbing states are all the states (x1, x2, x3, h = H), such that
0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2 and 0 ≤ x3 ≤ 2. For N = 3, G = 2
and H = 3, the absorbing states, as shown in Figure 3, are:

(0, 0, 0, 3), (1, 0, 0, 3), (2, 0, 0, 3), (1, 1, 0, 3), (2, 1, 0, 3),

(2, 2, 0, 3), (1, 1, 1, 3), (2, 1, 1, 3), (2, 2, 1, 3), (2, 2, 2, 3)

The graphic representation of the Markov chain is depicted in Figure 3.

6. Efficient numerical analysis due to the structure of the DTMC

In this section, we will exploit the interesting structure of the Markov
chain. We will show that in this case, the computation of the stationary
distribution will be done with less complexity. All the proofs are given in
this section.

We consider the following partition of the states space: {I,M,F}. I is
the singleton containing the initial state. F contains the final states while all
the other states are in M. Taking into account the definition of the states
and the transition, the chain has the following structure:

M =



0 R1 R2

0 U C

0 0 Id

.


This is the canonical structure of a transient DTMC in which it has been
taken into account that the initial state (i.e. state (0, 0, ...0)) has the input

23

 P0 p1 p2

 p0 p1 p2 p0 P1 p2 p0 p1 p2

 p0
 p1 p2 p0 p1 p2 p0 p1 p2 p0 p1 p2 p1 p2

0003
3

2213 1003
3

2003
3

1103 2103 2203 1113 2113 2213 2223

0002 1002 2002 1102 2102 2202

0000

0001 1001 2001

p0

p0

p1 p2

Figure 3: Markov chain N = 3, G = 2 and H = 3

24

degree 0. The method consists in computing the fundamental matrix F which
is then used to obtain the average transient time for all the initial states and
the absorption probabilities knowing the initial state:

F = (Id−


0 R1

0 U
.

)−1

Note that the procedure to compute F already exists for an arbitrary ma-
trix in XBorne. Remember that for the classical approach, we first have to
compute F . The following property is well known:

Property 7. F [i, j] is the average time spent in j before absorption when the
initial state is i. The average time before absorption when the first state is i

is equal to
∑

j F [i, j]. Furthermore (F ∗
[
R2
C

]
)[i, j] contains the probability

of being absorbed in state j when the initial state is i.

Computing F for an arbitrary transient matrix Q has a cubic complexity.
Unfortunately the complexity is still cubic whenQ is upper diagonal [26]. It is
also known to be numerically unstable when the some transition probabilities
are very small. Therefore it makes sense to find a faster or more accurate
algorithm.

Property 8. The DTMC graph is such that all the directed cycles of length
larger than 1 go through state (0, ...0).

Proof: Indeed, the DTMC graph consists in a tree rooted in state (0, ...0)
with some directed edges from the states labelled ”final states” back to state
(0, ...0). Note that all the states wherein all the communities have received
a service enjoy a self loop. Let us consider an arbitrary event. It consists
in the arrival of a service with a grade g. If g is smaller than all the grades
already provided to the communities, then it is rejected and the transition is
a self loop. When a new service with a grade g is accepted, the global mark
of the state increases. As it is not possible to make that mark decreases, the
graph does not contain directed cycles of length larger than 1. Finally when
the state reaches one of the ”final states”, a transition takes place to return
to the initial state.

25

Property 9. For such a graph, Robertazzi proposed a very efficient algo-
rithm to compute steady state distribution π of the DTMC [19]. We assume
that state 1 is the root of the tree and that the nodes are ordered in the
topological ordering. Thus, if i < j there is no transition from j to i.

1. Initialize π[1] = 1

2. Use the topological ordering of the state in the tree to compute the
probability. Due to the previous remark, the balance equation at node i
is

π[i] =
∑
j<i

M[j, i]πj

And at step i, π[1] to π[i − 1] have been solved. Therefore π[i] can
be obtained easily and it requires a number of operations equal to the
number of non zero entries in column i.

3. Once all node values have been computed, re-normalize the probability.
Compute S =

∑N
i=1 π[i] and perform π = π/S for normalisation.

Such an algorithm only requires O(m) operations where m is the number
of non zero entries in the matrix of the DTMC. In the following, we show
how this structure can be used to solve the two questions related to the
expectation of the first return time and probability to reach the ”final states”.

6.1. Expectation of the return time

Let ∆(i) be the average time needed to reach an absorbing state of M
when starting at state i. It is obviously that ∆(i) = 0 if i is an absorbing
state. Furthermore, due to the ordering of the states in the DMTC, we have:

∆(i) = 1 +
∑
j≥i

M [i, j]∆(j)

Or

∆(i) =
1 +

∑
j>iM [i, j]∆(j)

1−M [i, i]

Thus all expectations times can be computed from the DTMC when it
leaves back to the root (i.e. state (0, 0, ..., 0)). And the needed result is ∆(1).
Such an algorithm only needs O(m).

26

6.2. Probability of the ”final states” (i.e. states in F)

We slightly modify the DTMC to use a numerical algorithm dedicated
to recurrent Markov chains. We consider the matrix given by the following
block decomposition.

P =



0 R1 R2

0 U C

1
1 0 0
1

.


Property 10. Let πP be the steady state distribution of P (we assume it
exists). And let πM [i] be the probability to be absorbed by the state i beginning
in the first state in the DTMC associated with M . We have for all the states
i in F :

πM [i] =
πP [i]∑

j∈F πP [j]
.

Thus we can use the Robertazzi algorithm to compute πP and obtain πM , as
a conditional probability.

Proof: First we write the balance equation in state 1 for the chain with the
matrix P taking into account its structure.

πP [1] =
∑
j∈F

πP [j] (4)

Let us denote by πP [M] (resp. πP [F]) the subvector of πP for state in M
(resp. in F). We also write the balance equation in the block form for M
and F .

πP [M] = πP [M]U + πP [1]R1,

and
πP [F] = πP [M]C + πP [1]R2,

As the matrix U is transient, (Id− U) is not singular. Therefore we get:

πP [M] = πP [1]R1(Id− U)−1 (5)

27

πP [F] = πP [1]R1(Id− U)−1C + πP [1]R2 (6)

Let us now consider matrix M . It is well known that the reverse (if it exists),

of the block matrix

[
X Y
Z W

]
is:

[
(X − YW−1Z)−1 −X−1Y (W − ZX−1Y)−1

−W−1Z(X − YW−1Z)−1 (W − ZX−1Y)−1

]

Thus, the block decomposition of F becomes:

[
1 −R1(Id− U)−1

0 (Id− U)−1

]
.

After multiplication by

[
R2
C

]
, we get that the probability to be absorbed

in j when the initial state is 1 is:

πM [j] = (R2 +R1(Id− U)−1C)[j]. (7)

By combining the Equations 4, 5, 6 and 7, we finally get to conclude the
proof:

πP [F] = πM [F]
∑
j∈F

πP [j].

7. Numerical results

In this section, some numerical results based on section 6 are given which
take advantage of the chain structure to ease the resolution.

The proposed model is built and solved using XBorne [7]. This tool is
written in C language.

Several programs are available in this tool. We have used the following
ones.

1. generMarkov.c: Builds the Markov chain and gives as result the tran-
sition matrix.

2. absorbing.c: Determines the absorbing states and creates a partition
wherein absorbing states are at the top.

3. reorder.c: Creates a transition file so that the states of the same block
are consecutive. Thus, the blocks are ranked in the order of their
number.

28

H=3 H=4 H=5 H=6 H=7 H=8 H=9
G=2 20 30 40 50 60 70 80
G=3 35 55 75 95 115 135 155
G=4 56 91 126 161 196 231 266
G=5 84 140 196 252 308 364 420
G=6 120 204 288 372 456 540 624
G=7 165 285 405 525 643 765 885
G=8 220 385 550 715 880 1045 1210
G=9 286 506 726 946 1166 1386 1606
G=10 364 650 936 1222 1508 1794 2080

Table 2: Markov chain size for N=3

4. split.c: Decomposes a matrix into 4 blocks.

5. fundamental.c: Calculates the fundamental matrix of an absorbent
chain without a recursive class. This program implements the Sheskin
algorithm [27].

6. rowSum.c: Calculates the average time before absorption.

In the following we give the results of the average times for the strategy
using time-out obtained with Xborne tool. For the strategies with one opti-
mal solution and the other with a satisfactory solution, primary results are
reported in [16].

Two cases of the community numbers have been considered: N = 3,
N = 4. The values of G and the values of the clock H have been varied
as well. In tables 2 and 3, the corresponding sizes of the Markov chain are
given according to the values of N , to the different values of g, and different
values of H. In table 4, the number of absorbing states is given according to
the values of N and G.

Hence from the previous results, it seems clearly that the choice of the
appropriate stopping criterion and the considered values of the thresholds N ,
G and H impact greatly the performances of the composition process and
the final QoS of each community.

Figures 4 and 5 report the average times to reach the absorbing states
starting from any state of the chain by considering N = 3 and two cases of
grade: G = 2 and G = 3. The value of the clock H is varied from 3 to 9.
As expected, we notice that the time elapsed to reach the absorbing states is
greater when the time-out threshold is increased. Indeed, this is quite logical

29

H=4 H=5 H=6 H=7 H=8 H=9 H=10
G=2 35 50 65 80 95 110 125
G=3 70 105 140 175 210 245 280
G=4 126 196 266 336 406 476 546
G=5 210 336 462 588 714 840 966
G=6 330 540 750 960 1170 1380 1590
G=7 495 825 1155 1485 1815 2145 2475
G=8 715 1210 1705 2200 2695 3190 3685
G=9 1001 1716 2431 3146 3861 4576 5291
G=10 1365 2366 3367 4368 5369 6370 7371

Table 3: Markov chain size for N=4

G=2 G=3 G=4 G=5 G=6 G=7 G=8 G=9 G=10
N=3 10 20 35 56 84 120 165 220 286
N=4 15 35 70 126 210 330 495 715 1001

Table 4: Number of absorbing states

because the Markov chain is larger when the threshold is higher; this makes
the depth of the chain more important.

Figures 6 and 7 show the average times needed to reach the absorbing
states starting from any state of the chain by considering N = 3 and two
cases of grade: G = 6 and G = 9.

Numerical results show that more the number of grade increases, more
the delay is higher. This was expected because the number of chain states
increases with the maximum value of the grade G.

The case where N = 4 is considered as well by varying different values of
G and H. On figures 8 and 9, we plot the average times needed to reach the
absorbing states starting from any state of the chain. The same remarks as
in the case N = 3 can be stated for N = 4

Also figures 10 and 11 depict the average times needed to reach one of
the absorbing states starting from any state of the chain.

According to the numerical results detailed above, it can be concluded
that, for a given community size, the delays to reach an absorbing state
increase as a function of the variation in the value of G and the time-out
threshold H. Depending on the type of service, it is therefore necessary to
choose the values G and H carefully. A compromise must therefore be sought

30

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50 60 70 80

A
v
e

ra
g

e
 T

im
e

s

Markov chain states size

N3G2H3
N3G2H4
N3G2H5
N3G2H6
N3G2H7
N3G2H8
N3G2H9

Figure 4: Average Time N = 3 et G =
2

 0

 5

 10

 15

 20

 25

 20 40 60 80 100 120 140 160

A
v
e

ra
g

e
 T

im
e

s

Markov chain states size

N3G3H3
N3G3H4
N3G3H5
N3G3H6
N3G3H7
N3G3H8
N3G3H9

Figure 5: Average Time N = 3 et G =
3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700

A
v
e

ra
g

e
 T

im
e

s

Markov chain states size

N3G6H3
N3G6H4
N3G6H5
N3G6H6
N3G6H7
N3G6H8
N3G6H9

Figure 6: Average Time N = 3 et G =
6

 0

 10

 20

 30

 40

 50

 60

 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 T

im
e

s

Markov chain states size

N3G9H3
N3G9H4
N3G9H5
N3G9H6
N3G9H7
N3G9H8
N3G9H9

Figure 7: Average Time N = 3 et G =
9

31

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140

A
v
e

ra
g

e
 T

im
e

s

Markov chain states size

N4G2H4
N4G2H5
N4G2H6
N4G2H7
N4G2H8
N4G2H9

N4G2H10

Figure 8: Average Time N = 4 et G =
2

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

A
v
e

ra
g

e
 T

im
e

s

N4G3H4
N4G3H5
N4G3H6
N4G3H7
N4G3H8
N4G3H9

N4G3H10

Figure 9: Average Time N = 4 et G =
3

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300 350 400 450 500 550

A
v
e

ra
g

e
 T

im
e

s

Markov chain states size

N4G4H4
N4G4H5
N4G4H6
N4G4H7
N4G4H8
N4G4H9

N4G4H10

Figure 10: Average Time N = 4 et
G = 4

 0

 10

 20

 30

 40

 50

 60

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

A
v
e

ra
g

e
 T

im
e

s

Markov chain states size

N4G9H4
N4G9H5
N4G9H6
N4G9H7
N4G9H8
N4G9H9

N4G9H10

Figure 11: Average Time N = 4 et
G = 9

32

between:

• promoting a service with the highest grade, that however needs a larger
time-out threshold to potentially acquire it and;

• promoting a service with a satisfactory grade that can be acquired
within a reasonable time-out threshold.

8. Conclusion

In this paper, we addressed the particular problem of the QoS aware
service composition with multiple consumers in a dynamic environment. For
this purpose, we developed various models based on Discrete Time Markov
Chain to design several strategies to follow during the composition selection
process, which are: selection of the service with the highest grade; selection
of the service with the satisfactory grade; and the selection of the service
within a time-out. The theoretical modelling of the problem together with
the consistency proof of the developed DTMC models have been presented
and discussed. We reported analytical results obtained using the Xborne
tool, where we provided for each case, the average time to reach a given QoS
for a community of consumers. The obtained results allow to understand
the system behaviour when varying the different parameters, in order to
adapt them according to user requirements and the system load. Future
work will lead us to investigate more constraints and additional policies in
the performance evaluation of such systems.

References

[1] O. AbdelWahab, J. Bentahar, H. Otrok, A. Mourad. A Stackelberg game
for distributed formation of business-driven services communities. Expert
Syst. Appl. 45: 359-372, 2016.

[2] I. Boussaid. Improvement of metaheuristics for continu-
ous optimization. These. Universit Paris-Est, juin 2013. url:
https://tel.archivesouvertes.fr/tel-00952774

[3] B. Benatallah, Q. Sheng, and M. Dumas. The Self-Serv environment for
Web services composition. IEEE Internet Computing, vol. 7, pp. 4048,
Jan. 2003.

33

[4] P. Buchholz. Exact and Ordinary Lumpability in Finite Markov Chains.
Journal of Applied Probability, V31, N1, pp 59-75, 1994.

[5] C. Cherifi, Y. Rivierre, and J.-F. Santucci. A Community Based Al-
gorithm for Large Scale Web Service Composition. arXiv:1305.0187[cs],
arXiv: 1305.0187. May 2013.

[6] H. Dong, X. Yang, X. Teng, Y. Sha. A diversity reserved quantum particle
swarm optimization algorithm for mmkp, in: 2016 IEEE/ACIS, 2016, pp.
1-7. doi:10.1109/ICIS.2016.7550941.

[7] J.M Fourneau, Y. Ait El Mahjoub, F. Quessette, D. Vekris. XBorne 2016:
A Brief Introduction. ISCIS, pages 134-141, Springer, 2016.

[8] V. Gabrel, M. Manouvrier, K. Moreau, C. Murat. QoS aware automatic
syntactic service composition problem: Complexity and resolution. Fu-
ture Generation Comp. Syst. 80: 311-321, 2018.

[9] K. Hashmi, A.Alhosban, Z. Malik, B. Medjahed et S. Benbernou. Au-
tomated negotiation among web services. In Web Services Foundations.
Springer, 2014, p. 451482.

[10] C. Jatoth, G. R. Gangadharan, and R. Buyya. Computational intelli-
gence based QoS aware Web service composition: A systematic literature
review. IEEE Transactions on Services Computing, vol. 10, pp. 475492,
May 2017.

[11] N. Jozefowiez. Optimisation combinatoire multi-objectif : des mthodes
aux problmes, de la Terre (presque) la Lune. Habilitation diriger des
recherches. Institut National Polytechnique de Toulouse (INP Toulouse),
dc. 2013.

[12] J.G . Kemeny, J.L. Snell. Finite Markov Chains. Van Nostrand, New
York, 1960.

[13] A. L. Lemos, F. Daniel, B. Benatallah. Web service composition: A
survey of techniques and tools. ACM Comput. Surv. 48 (3), 33:1-33:41,
2015.

[14] J.C. Lima, R.C.A. da Rocha, F.M. Costa. An Approach for QoS aware
Selection of Shared Services for Multiple Service Choreographies. SOSE,
pages 221-230. 2016.

34

[15] B. Medjahed, Z.Malik, S.Benbernou. On the Composability of Semantic
Web Services. Web Services Foundations 2014: 137-160

[16] L. Mokdad, J.M Fourneau and A. Abdelli. Performance evaluation of
the QoS-aware Web service composition with communities of consumers,
IEEE Globecom 2019.

[17] M. Moghaddam and J. G. Davis. Service selection in web service com-
position: A comparative review of existing approaches. in Web Services
Foundations, pp. 321346, Springer, 2014.

[18] A. Mousa, J. Bentahar. An Efficient QoS aware Web Services Selection
Using Social Spider Algorithm. FNC/MobiSPC 2016: 176-182

[19] T.G. Robertazzi. Recursive solution of a class of non-product form pro-
tocol models. In INFOCOM, 1989.

[20] M. Sathya, P. Dhavachelvan and K. Vivekanandan. Egalitarian based
Negotiation model for QoS based Web Service Selection. In International
Journal of Soft Computing 8.2, p. 134142, 2013.

[21] W. Serrai, A. Abdelli, L. Mokdad, and Y. Hammal. Towards an efficient
and a more accurate web service selection using MCDM methods. Journal
of Computational Science, vol. 22, pp. 253 267, 2017.

[22] Y. Shi and X. Chen. A survey on QoS aware web service composition.
in 2011 Third International Conference on Multimedia Information Net-
working and Security, pp. 283287, Nov 2011.

[23] F. Siala, K. Ghdira: A Multi-Agent selection of Web Service providers
driven by composite QoS. ISCC 2011: 55-60, 2011.

[24] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu.
Web services composition: A decades overview. Information Sciences, vol.
280, pp. 218238, 2014.

[25] A. Strunk. QoS-Aware Service Composition: A Survey. Eighth IEEE
European Conference on Web Services Cyprus 2010.

[26] W.J. Stewart. Introduction to the Numerical Solution of Markov Chains,
published by Princeton university press, 1995.

35

[27] T. J. Sheskin. A Markov partitioning algorithm for computing steady-
state probabilities, Operat. Res. 33, pp. 228-235, 1985.

[28] K.S. Trivedi. Probability and Statistics with Reliability, Queueing and
Computer Science Applications, Second Edition, Wiley, 2002.

[29] V. Patankar and R. Hewett. Automated negotiations in web service
procurement. In proc of IEEE ICIW, p. 620625, 2008.

[30] P. Wang, J. Lan, X. Zhang, Y. Hu, S. Chen. Dynamic function com-
position for network service chain: Model and optimization, Computer
Networks 92 (2015).

[31] P. Wang, K.M. Chao, C.C. Lo. On optimal decision for QoS-aware com-
posite service selection. Expert Syst. Appl. 37(1): 440-449, 2010.

[32] Y. Wang, J. Zhang, and J. Vassileva. Effective Web Service Selection via
Communities Formed by Super-Agents. pp. 549556, IEEE, Aug. 2010.

[33] Y. Wang, Q. He, Y. Yang. QoS aware Service Recommendation for
Multi-tenant SaaS on the Cloud. SCC 2015: 178-185, 2015.

[34] Q. Wu, Q. Zhu, X Jian, F. Ishikawa. Broker-based SLA-aware composite
service provisioning. Journal of Systems and Software 96: 194-201, 2014.

[35] Y. Xia, C. Gao, and J. Li. A stochastic local search heuristic for the mul-
tidimensional multiple choice knapsack problem. in Bio-Inspired Comput-
ing Theories and Applications, pp. 513522, Springer, 2015.

[36] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for web services
selection with end-to-end QoS constraints. ACM Trans. Web, vol. 1, 2007.

36

