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Abstract

Performance of Human Activity Recognition (HAR) models, particularly deep

neural networks, is highly contingent upon the availability of the massive amount

of annotated training data. Though, data collection and manual labeling in the

HAR domain are prohibitively expensive due to human resource dependence in

both steps. Hence, domain adaptation techniques have been proposed to adapt

the knowledge from the existing source of data. More recently, adversarial

transfer learning methods have shown promising results for visual classification,

yet limited for HAR problems, which are still prone to the unfavorable effects

of the imbalanced distribution of samples. This paper presents a novel generic

semi-supervised approach that takes advantage of the adversarial framework

to tackle these shortcomings by leveraging knowledge from annotated samples

exclusively from the source subject and unlabeled ones of the target subject. We

conduct extensive subject translation experiments on three large, middle, and

small-size datasets with different levels of imbalance to assess the robustness of

the proposed model to the scale as well as imbalance in the data. The results

demonstrate the effectiveness of our proposed algorithms over state-of-the-art

methods, which led to up to 13%, 4%, and 13% improvement of our high-level

activities recognition metrics for Opportunity, LISSI, and PAMAP2 datasets,
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1. Introduction

Today, there is an unprecedented surge in artificial intelligence (AI) tech-

nologies in various areas such as image recognition, disease diagnosis, sentiment

analysis and opinion mining, recommendation systems for products and ser-

vices, automatic speech recognition, automated video surveillance, online sup-5

port, ambient assisted living and robotics. The considerable progress witnessed

in these areas has been made thanks to the contributions of the machine learn-

ing community and the rapid growth of processing units, which is stimulating

big data collection and inspection. Compared with traditional machine learn-

ing approaches, the unparalleled performance of deep learning methods is made10

possible thanks to their capability of learning from a large number of samples.

[1].

Nevertheless, there exist some fields of study which exceptionally face limi-

tations on data acquisition and labeling due to practical constraints. Therefore,

it is not feasible to provide enough labeled data in many cases. Taking the do-15

main of sensors-based Human Activity Recognition (HAR) as an instance, the

data collection and labeling tasks require the implication of human labelers and

the use of pervasive and intrusive sensors such as video cameras, which makes

it more challenging to preserve the privacy of human subjects. Furthermore,

manual annotation is prohibitively expensive, especially for large-scale datasets.20

Most machine learning models work based on the primary condition that sam-

ples of training (source domain) and test (target domain) set must be drawn

from the same distribution and feature space. However, in many real-world

applications such as HAR, this assumption cannot be held and consequently

causes a dramatic decrease in models performance [2]. In this context, how can25
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a model trained on an initial amount of labeled data in a source domain be

adapted to generalize on unlabeled data in a target domain? Today, it is con-

sidered that unlabeled data can give an indication of how a source domain and

a target domain differ from each other. This information can be used by a clas-

sifier to modify its decisions in order to better generalize to the target domain30

[3]. Therefore, employing domain adaptation techniques could be beneficial for

HAR in order to prevent models from suffering performance degradation when

applied on new subjects or datasets.

Domain adaptation techniques have been considered as a way for automatic

knowledge transfer from one domain to another to avoid the significant reduction35

of performance metrics, requiring as less amount of explicit training data as

possible in the target domain [4]. It has been employed in almost every deep

learning model when the target dataset does not contain enough labeled data

[5]. Based on the availability of annotated data in the source or target domain,

adaptation methods are categorized into supervised (inductive), semi-supervised40

(transductive), and unsupervised ones.

This paper develops a transductive method for HAR, which is based on

the initial adversarial approach proposed in [6]. The latter outperforms only

on datasets that are well-balanced and contain a huge amount of labeled sam-

ples. The proposed approach transfers knowledge from the source subject with45

distribution Ps to the target subject distributed with Pt using an adversar-

ial framework. It has significantly enhanced the initial approach making it

more generic and robust to prevent the decline in performance when there is

not enough labeled data, and the imbalanced class distribution of the available

samples imposes additional obstacles. The new proposed model uses annotated50

data exclusively from the source domain and unlabeled data from the target

domain. This study focuses on datasets from body-worn sensors to cope with

privacy. The main contributions of the present attempt lie in:

• Generic semi-supervised Adversarial Domain Adaptation technique that

copes with cross-subject transfer learning problems in the Human Activ-55

3



ity Recognition domain. The proposed model benefits from convolutional

neural networks to perform more generalized automatic feature extraction,

which is advantageous for classifying high-dimensional data of high-level

activities. The proposed model is proven to be robust to the imbalance

learning challenges by exploiting a micro-mini-batch learning strategy de-60

scribed in section 3.2.

• The proposed method has been extensively tested and evaluated by using

cross-subject domain adaptation scenarios on three representative datasets;

the two benchmark datasets, Opportunity [7] and PAMAP2 [8], and a

dataset on rehabilitation self exercises that is collected for the purpose of65

the study at the LISSI laboratory [9]. The experimental results show that

the final adapted classifier is always able to recognize with a reasonable

rate the human activities using their high-dimensional feature vectors.

Besides, the results illustrate the superiority of the proposed model over

other state-of-the-art classification methods in terms of robustness w.r.t.70

weighted F1-score.

From this study, it has been concluded that the proposed approach can be

applied to other transfer learning problems as well.

The overall structure of this paper takes the form of six sections, including

this introductory one. Section 2 gives a brief overview of state-of-the-art con-75

cerning domain adaptation. The proposed model is presented in section 3. The

fourth section lays out the experimental setup. The next section is dedicated to

experiments, results and analysis of the evaluation. Finally, section 6 includes

a discussion of the findings and future research into this area.

2. Related Work80

Reducing the gap between source and target domains in machine learning in

order to make machine learning algorithms able to self adapt their models to the

target domain has been widely investigated these latest years. The approaches
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proposed in the state-of-the-art are classified according to three main categories,

namely sample-based, feature-based, inference-based approaches [3]. The first85

one exploits the source distribution and targets the minimization of the target

risk estimation without target labels. The second category uses techniques for

matching the data distributions, shifting of data, sub-space mapping, etc., to

make transformations that map source data into target data. The third cate-

gory targets the adaptation of the inference procedure by including constraints90

related to the target domain in the source model, incorporating uncertainties

through Bayesian inference, etc. Transfer learning, deep learning, adversarial

learning are representative examples of techniques used in the HAR approaches.

This classification is not mutually exclusive, but it provides a useful summary

of domain adaptation methods. The proposed categorization demonstrates a95

modest number of conditions that allow domain adaptive classifiers to ensure

performance. In this work, we organized our related work section, highlight-

ing domain adaptation approaches from another perspective: The first part is

mainly focused on the unsupervised and semi-supervised approaches. Next, the

Adversarial methods are explored. In what follows, some of the most significant100

works related to our semi-supervised adversarial proposed approach are briefly

explained.

Authors of [10], proposed a general unsupervised cross-domain learning frame-

work that can exploit the intra-affinity of classes to perform intra-class knowl-

edge transfer named Stratified Transfer Learning (STL). First, it obtains pseudo105

labels for the target domain by the majority voting technique. Then, it per-

forms intra-class knowledge transfer iteratively to transform both domains into

a common subspace. The model was extended to accomplish both source selec-

tion and knowledge transfer later in [11]. Although their research is dedicated

to the HAR domain, the evaluation is limited to the adaptation of body parts110

on the same person or similar body parts on different person. Besides, the

model utilized time domain and frequency domain feature extraction as their

input which is not suitable for recognition of high-level activities with compli-

cated patterns. Another unsupervised source selection algorithm was proposed
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in [12]. This algorithm is able to select the most similar K source domains from115

a list of available domains. Next, an effective Transfer Neural Network performs

knowledge transfer for Activity Recognition (TNNAR) by capturing both the

time and spatial relationship between activities during transfer. TNNAR was

evaluated by body-part translation experiments, which provided more amount

of samples for the model while the samples were limited to 4 common classes of120

activity on each dataset. Therefore, the effectiveness of TNNAR is not guaran-

teed on the imbalanced small-size datasets. The Geodesic Flow Kernel (GFK)

presented in [13], models domain shift by integrating an infinite number of sub-

spaces that characterize changes in geometric and statistical properties from the

source to the target domain. GFK model learns feature representations that are125

invariant across domains. These new shallow representations possibly have lim-

ited transferability. On the contrary, the non-linearity of neural networks in our

proposed model can avoid this problem.

Authors in [14] investigated different semi-supervised active learning strate-

gies to scale activity recognition and proposed a dynamic k-means clustering-130

based active learning approach. Using active learning alleviates the labeling

effort of data collection in the activity recognition pipeline. In spite of all im-

provements provided in the proposed model, such as computational complexity

mitigation, the method is yet prone to under-fitting down to its limited general-

ization ability [12]. Pan et al. introduced Transfer Component Analysis (TCA),135

a semi-supervised approach for domain adaptation, which learns transfer com-

ponents across domains in a reproducing kernel Hilbert space using maximum

mean discrepancy [15]. The subspace spanned by these transfer components,

preserves data properties and distributions of different domains close to each

other. Therefore, using the new representations in this subspace, we can apply140

standard machine learning methods to train classifiers or regression models in

the source domain and test them in the target domain. It means TCA applies

representation transfer, and the classification task should be learned in another

step. Besides, TCA only learns a global domain shift and does not fully con-

sider the intra-class similarity [10]. Another semi-supervised domain adaptation145
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method was introduced in [16] to remove the raining effect from the images using

real unlabeled rainy images and paired synthetic (rainy, de-rained) images. How-

ever, the learning task is limited to learning the characteristics of 2 classes (rainy

and de-rained), and the performance could not be generalized well to multi-class

problems. Some approaches perform transfer learning by reweighing or taking150

samples of the source domain. Balanced Distribution Adaptation (BDA) is pro-

posed in [17], which adaptively leverages the importance of the marginal and

conditional distribution discrepancies. Based on BDA, a novel Weighted Bal-

anced Distribution Adaptation (W-BDA) algorithm was proposed to tackle the

class imbalance issue in transfer learning by considering not only the distribu-155

tion adaptation between domains but also adaptively changing classes’ weights.

However, when there is a greater discrepancy between both distributions, this

approach cannot evaluate their relative importance as it treats the two distribu-

tions equally. Besides, the method is designed only for the original space, where

feature distortion will adversely affect the performance [18]. On the contrary,160

our proposed method could benefit from the alignment in the feature space

of the convolutional neural networks that are highly competent for extracting

discriminable features. TransAct is another transfer learning-enabled activity

recognition model introduced in [19] that mitigates the degradation of recog-

nition performance confront with activities with limited labeled samples. The165

model is introduced as a semi-supervised approach, though weak supervision is

required in the target domain. It addressed the challenges by augmenting the

Instance-based Transfer Boost algorithm with k-means clustering. This model

is designed only to compensate for the domain shift in activity level.

Since the introduction of Generative Adversarial Networks (GANs) [20], ad-170

versarial machine learning is gaining increasing attention and achieving impres-

sive performance in a wide variety of domains such as medicine [21, 22], text,

and image processing [23, 24] and architecture [25, 26]. The idea behind GANs

is to put generator and discriminator algorithms against each other in order

to differentiate between the generated samples and real-world samples. Deep175

learning is used to build discriminators that continuously learn the best set of
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features, making it hard for the generator to pass the discriminator test [27].

The preliminary attempts of applying adversarial machine learning for HAR

tackled the problem of producing synthetic data. In the latter, ground-truth

annotations are generated automatically and the generator has complete knowl-180

edge about the target system [28, 29]. Nonetheless, enhancing the classification

methods remains the main important challenge in this field.

With respect to knowledge transfer, some attempts applied adversarial ma-

chine learning for training a robust deep network by way of a common represen-

tation for knowledge transfer [30, 31]. Benefiting from the generalized adversar-185

ial framework, the generator component can be independently used as the target

representation in order to reduce the difference between the training and test

domain distributions and thus improve generalization performance. Bousmalis

et al. proposed a generative adversarial network (GAN)-based method that

adapts source domain images to appear as if drawn from the target domain190

[32]. Having transferred samples by this instance-based adaptation method,

machine learning models can be trained over the target domain. He et al.,

proposed a semi-supervised generative adversarial framework for visual-audio

transfer to enhance the Audio Emotion Recognition (AER) performance by ex-

ploring the visual-audio correlation [33]. The model takes the labeled videos195

(source domain) and partially labeled audio (target domain). While this setup

lets the model benefit from the large labeled visual datasets available, it imposes

a weak supervision requirement on the target domain that is not affordable in

our problem setting. Besides, this model could be prone to an imbalanced

distribution of the classes. Authors in [6] introduced SA-GAN, an adversar-200

ial transfer learning approach which provides enough data to train a classifier

on the target domain. DANN is another semi-supervised domain adaptation

approach in which a common embedding encoder is trained under an adver-

sarial objective to generate domain invariant features between the source and

target domain that have similar but different distributions [34]. VADA model205

[35] proposes further to minimize the conditional entropy of the target domain,

based on the cluster assumption [36] and perform a virtual adversarial train-
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ing on each domain. However, considering independent training constraints for

each domain in both VADA and DANN models, leaves the important interplay

between the source and target domains unexplored and may significantly limit210

the performance [37]. To overcome this limit, the IIMT model [37] uses the

Mixup augmentation approach to compute inter-domain linearly interpolated

examples from random pairs of source and target domains to boost the training

set. On the other hand, such an inter-domain mixup would not preserve the

class-specific features and may degrade the robustness of the model against the215

target domains of a higher distance from the source.

Despite all the efforts dedicated to developing Adversarial Domain Adapta-

tion approaches for HAR, the majority of the attempts are exploiting only data

produced by vision sensors. Due to the continuous nature of the sensor’s data,

the approaches exploiting wearable sensors such as accelerometers have a high220

tendency of being trapped by mode collapse problem in which the generator

can only generate a single or few classes (modes) of the data. Besides, they are

not immune to the imbalanced class distribution problem; thus, the classes with

lower probability density values may have less chance of being generated. We

summarized our state-of-the-art study in Table 1. The prior art could be catego-225

rized into 4 main groups according to the supervision level; Supervised, Weakly

supervised, Semi-supervised, and Unsupervised. Supervised and weakly super-

vised approaches, despite their competitive performance, are not aligned with

our problem setting, where there is no annotated sample available in the tar-

get domain. Despite categorizing themselves as unsupervised, some approaches230

such as [33, 38] take partial supervision in the target domain that does not fit the

requirement of our problem. Other semi-supervised methods such as [6, 12, 14]

are not designed to tackle the imbalanced class distribution problem. Unlike

unsupervised approaches such as [13, 10], which are prone to under-fitting due

to the limited learned representation, our proposed model benefits from con-235

volutional architecture to extract high-level features to better recognize more

abstract activities.
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Table 1: State-of-the-art study summary
Reference Supervision Domain Dataset/Modality

[10], [11] Unsupervised HAR OPPORTUNITY, PAMAP2, and UCI DSADS

[12] Unsupervised HAR
OPPORTUNITY, PAMAP2, and UCI DSADS

(Accelerometer, Gyroscope, Magnetometer)

[13] Unsupervised Vision
PASCAL, PASCAL, Caltech101,

Amazon, Webcam, and DSLR

[22] Unsupervised Medical Image
Clinical high-resolution SD-OCT

volumes of the retina with 49 B-scans

[6] Semi-Supervised HAR Opportunity

[14] Semi-Supervised HAR Custom Dataset (PIR motion and object sensors)

[15] Semi-Supervised
Text Classification /

Wifi Localization

Synthetic datasets, 2007 IEEE ICDM Contest,

and 20-Newsgroups

[16] Semi-Supervised Vision Rain800, Rain200H, DDN-SIRR

[17] Semi-Supervised Vision USPS + MNIST, COIL20, and Office + Caltech

[28] Semi-Supervised HAR Daily and Sports Activities Dataset (Inertial Sensors)

[30] Semi-Supervised Vision MNIST, USPS, and SVHN

[32] Semi-Supervised Vision MNIST, USPS, MNIST-M

[33] Semi-Supervised Vision / Audio IFER, RAVESS, RAVDESS, and CREMA-D

[34] Semi-Supervised Vision / Text Amazon Reviews, Office

[35] Semi-Supervised Vision / Wife Localization MNIST, SVHN, SYN DIGITS, SYN SIGNS, GTSRB, CIFAR-10, STL-10.

[37] Semi-Supervised Vision / HAR MNIST, SVHN, SYN DIGITS, CIFAR-10, STL-10, OPPORTUNITY, WiFi

[21] Supervised Medical Image ADNI + Custom dataset

[23] Supervised Vision / Text Caltech-UCSD Birds dataset, Oxford-102 Flowers

[24] Supervised Vision / Text CUB, Oxford, MS COCO

[29] Supervised HAR HASC2010corpus (Accelerometer)

[19]
Weakly Supervised(Few

labeled in target domain)
HAR HAR, MHealth, and DailyAndSports

[31] Weakly Supervised Vision
MNIST, UCF-101, ILSVRC2012,

Google Street View House Numbers (SVHN)

3. Method

3.1. Objective

Sensor-based HAR can be formulated as predicting current activity accord-

ing to a sequence of sensors outputs xi [39]:

f : W → Y |W = {xi : i = 1, ..., n} (1)

Whereas the correct activity sequence (ground truth) and input window of size n240

denoted as Y and W respectively. Any HAR related dataset has a finite amount

of samples that are obtained from a limited number of human subjects. However,

considering the requirements of applying HAR in real-world conditions, it is

more interesting to evaluate the performance of an HAR model against many

human subjects whose behaviors’ data have not been included in the training245

dataset.
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Let us define a learning domain D and a learning task T as bellow [2]:

D =
(
X,P (X)

)
, T =

(
Y, P (Y |X)

)
(2)

Where feature space X follows the distribution P and P (Y |X) formulates

conditional distribution of label space Y . The shift between the domains may

root in the learning task, domain task, or both. Furthermore, the source and250

the target domains may be dissimilar also in terms of class distributions, typ-

ically known as class imbalance problem in machine learning. The conditional

distributions of feature values could be the same in source and target domains,

yet the labels may not follow the same distribution in both domains.

Subject level domain adaptation concentrates on the generalization of the255

knowledge a machine learning model. The latter is trained from a known sub-

ject and should be extended to unknown or unseen subject. Let us consider an

HAR system that is supposed to recognise the activities of the inhabitants of

smart homes. The inhabitants are considered as new subjects from the perspec-

tive of the HAR system. Even if the HAR system can be setup to temporarily260

collect data and learn inhabitants activities in the same time in a kind of a

system initialisation mode, the annotation of the collected samples, by human

experts or the inhabitant themselves to apply supervised machine learning will

be infeasible. In this case the appropriate approach is a semi-supervised learn-

ing, where labeled data is provided in the source domain (subject) while target265

domains’ samples are label excluded. Formally, the objective is to adapt the

target domain Dt =
(
Xt, P (Xt)

)
to the source domain Ds =

(
Xs, P (Xs)

)
so

as to have enough labeled data to train a HAR model on target domain. It

has commonly been assumed that in the class imbalance domain adaptation

problems, P (Xs|Ys = yi) = P (Xt|Yt = yi) is held for all classes i, though the270

distribution of classes may not be the same in both domains [40]. Fig. 1 ex-

emplifies this concept in the datasets used for this study. Taking any pair of

subjects as the source and target domain, there exists a shift between the class

probability distribution of both domains, which means P (Ys) 6= P (Yt).
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Figure 1: The class distribution of each subject P(Y) in Opportunity, PAMAP2 and LISSI

dataset.

Classification of data with imbalanced class distribution along with absence275

of the labels in the target domain, may pose a significant drawback of the

performance attainable by the adaptation process.

3.2. Adversarial Adaptation

Domain adaptation methods can be sort out into 4 categories based on the

type of knowledge transferred: Instance, feature representation, parameter, and280

relational transfer [6]. The first two categories focus on drawing the samples

of both domains closer, by direct transformation or finding a common repre-

sentation respectively. Parameter and relational transfer methods transform

prior knowledge and parameters and data relationship between domains. The

proposed solution is kind of instance transfer except that it combines the data285

transformation and classifier training procedure.

More formally, let us consider Xs = {(xs, ys)i | i = 0 → ns} represents

the set of ns labeled samples from the source domain Ds = (Xs, P (Xs)) and

Xt = {(xt)i | i = 0 → nt} denotes the set of nt unlabeled samples from

the target domain Dt = (Xt, P (Xt)). The proposed adversarial adaptation

model consists of a Generator (G), Discriminator (D), and Classifier (C). The

generator G(x, z; θG) is a differentiable function represented by a Convolutional

Neural Network (CNN) that generate synthetic data, called also fake samples,

by using the input and noise vector, whereas z denotes a random noise vector.

The discriminator D(x; θD) is defined as a CNN that outputs a single scalar

indicating the probability that x came from the target domain rather than

generator. The classifier C(x; θC) is also a CNN predicts the class of the input.

12



These elements are playing a min-max game together based on the cost function

J which combines the loss functions of adversary and classification tasks as

follows [6]:

J(G,C,D,Xs, Xt) =

min
G,C

max
D

µJD(D,G,Xt, Xs) + λJC(C,G,Xs)
(3)

The impact of the classification JC and adversary JD task loss on the genera-

tion task are reflected and controlled by µ and λ coefficient respectively in J.

Generator supposed to generate artificial data which are similar to the samples

of the target domain by descending on the gradient of J(G,C,D,Xs, Xt):

∂

∂θG
J(G,C,D,Xs, Xt) =

µ∇θGJD(D,G,Xt, Xs) + λ∇θGJC(C,G,Xs)

(4)

During the training phase, these fake generated samples getting as similar as

possible so that the discriminator will not be able to discriminate them from

the original target data.

The training samples are commonly feeding into the adversarial frameworks290

in mini-batch form, to avoid the mode collapse problem in which, the generator

learns only to generate fake samples from a few classes (modes) of the data

distribution, albeit the samples from the ignored modes appears in the training

set [41]. Therefore, the generator collapses into the few modes that discriminator

assumes them highly realistic. In contrary, feeding the samples in mini-batch295

to the discriminator rather than in isolation, gives a broader horizon to the

discriminator and possibly avoids the mode collapse. However, it would not

be practical enough in all cases, especially for the highly imbalanced small-size

datasets such as LISSI. Mini-batch selection of the dataset would even aggravate

the problem in practice since it scales down the sample size. It is highly probable300

that the less populated classes be left without a representative in some batches,

as the sample size shrinks and the proportions of the classes in the sample space

cannot be taken for granted. Consequently, the discrimination of that certain

classes would be unconcerned in the gradient computation of the batch due to
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the disappearance of their samples.305

3.3. Proposed method

To tackle this issue, we applied a micro-mini batch strategy of learning. Each

mini-batch consists of C micro-batches whereas C is the number of classes of

activities in the dataset. Micro-batches contains m samples randomly drawn

without replacement from each one of C classes while m can be set by the value310

of the least populated class population in the dataset. In this way, the proposed

adversarial approach do not only prevent the Mode Collapse and its related is-

sues but also enables a kind of concurrency of instance transfer and re-training

of the target domain’s classifier. Every iteration, the generator and the classifier

modules concurrently aim to improve through our adversarial framework; mean-315

ing that the generator is supposed to generate more realistic samples (instance

transfer) and the classifier is supposed to show better classification performance

(classifier update).

The optimization problem for discriminator can be solved by ascending the

gradient of a Mean Squared Error (MSE) loss function JD:

JD(D,G,Xt, Xs) =
1

mC

C∑
j=1

m∑
i=1

[(
1−D

(
x
(i)
t

))2
x
(i)
t ∈b

j
t

+
(

1 +D
(
G(x(i)s , z)

))2
x
(i)
s ∈bjs

] (5)

where bjs and bjt refer to the j-th micro part of the current mini-batch from the

source Xs and target Xt domain samples, respectively. The ground truth for320

real/fake indication is considered as ±1.

Correspondingly, the classifier attempts to assign a right label to its inputs

including source domain data and the synthetic data generated by optimizing

the cross-entropy loss function JC :

JC(C,G,Xs) =
1

mC

C∑
j=1

m∑
i=1[

− y(i)s logC
(
x(i)s
)
− y(i)s log

(
C
(
G(x(i)s , z)

))]
x
(i)
s ,y

(i)
s ∈bjs

(6)
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Both the discriminator and classifier components get updated based on their

gradient ∂
∂θD

JD and ∂
∂θC

JC , yet any gradient-based optimizer can be exploited

for each component independently. Finally, when the training loss values con-

verge, the training phase can be terminated and the classifier component will325

be functional independently. It is interesting to note that in the absence of the

micro-mini batch training strategy, training batches bs and bt are random sub-

sets of data of size m. The average loss value of the batch obtained by equations

(5), (6), and (3) will be used to update the model. However, dealing with class

imbalanced data, the classes with lower number of samples would have a much330

higher chance to be under-represented (or even not represented at all) in a small

batch of data, by random selection approach and hence the update would be
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blind to the information of the missing class/classes.

Algorithm 1: Micro mini-batch training of the proposed model

Input: Xs, Xt, Y s

Output: C

for number of training iterations or until convergence do

for number of mini-batches of data do

1. Sample a micro-batch of size m from Xs, Xt, Y s of class

j = 1, ...,C of data:

bjs =
{

(x
(1)
s , y

(1)
s ), (x

(2)
s , y

(2)
s ), ..., (x

(m)
s , y

(m)
s )

}
,

bjt =
{
x
(1)
t , x

(2)
t , ..., x

(m)
t

}
2. Make a mini-batch of source {b1s, b2s, ..., bCs } and target domain

{b1t , b2t , ..., bCt } samples

3. Update discriminator D by ascending its stochastic gradient:

∇θD
1

mC

C∑
j=1

m∑
i=1

[(
1−D

(
x
(i)
t

))2
x
(i)
t ∈b

j
t

+
(

1+D
(
G(x

(i)
s , z)

))2
x
(i)
s ∈bjs

]
4. Update classifier C by ascending its stochastic gradient:

∇θC
1

mC

C∑
j=1

m∑
i=1

[
− y(i)s logC

(
x
(i)
s

)
−

y
(i)
s log

(
C
(
G(x

(i)
s , z)

))]
x
(i)
s ,y

(i)
s ∈bjs

5. Update generator G by ascending its stochastic gradient:

∇θG
1

mC

C∑
j=1

m∑
i=1

[
λ

(
−y(i)s logC

(
x
(i)
s

)
−y(i)s log

(
C
(
G(x

(i)
s , z)

)))
+

µ

((
1−D

(
x
(i)
t

))2
+
(

1 +D
(
G(x

(i)
s , z)

))2)]
x
(i)
s , y

(i)
s ∈ bjs, x

(i)
t ∈ b

j
t

Return classifier C.

Algorithm 1 outlines the training steps. In summary, each iteration of the335

training procedure consists of 3 steps for the mini-batch update of discriminator

D, classifier C, and generator G, respectively. Reordering the steps may affect

convergence flow. In theory, training the discriminator, classifier, and generator
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reduces the error, so the order of training should not matter. However, from a

practical standpoint, the degree of error reduction for each of them depends on340

the training order. The components of the model together struggle to close in

the distribution of target domain samples on those of source domain where the

labels are available. Having samples with approximately the same distribution,

source domain labels are compatible to be exploited in supervised training of the

classifier. As the distribution of generated samples P (G(Xs, z)) getting closer345

to P (Xt), the performance of the classifier C improves since the source labels

more deeply cohere with target inputs.

3.4. Adversarial Training Techniques

Training GANs includes obtaining a Nash equilibrium to a two-player non-

cooperative game while each player wishes to minimize its own cost function350

[42]. A Nash equilibrium for our problem is a triple (θD, θG, θC) such that

JD(G,D,Xs, Xt) is at the maximum with respect to θD, and J(G,C,D,Xs, Xt)

and JC(C,G,Xs) are at the minimum with respect to θG and θC , respectively.

Thought, finding Nash equilibria is quite problematic since maximizing JD con-

tradicts the minimization of two remaining cost functions. In addition, a very355

confident discriminator pose several challenges to adversarial training such as

vanishing gradients phenomena on the generator, as well as instability of the

generator gradient updates [43]. Different techniques have been utilized in order

to overcome these challenges [42, 43]. The mini-batch discrimination strategy

applied to avoid the mode collapse failure by allowing the discriminator to look360

at multiple samples in combination, rather than in isolation.

Label smoothing is another technique that replaces the 0 and 1 targets for

a classifier with smoothed values, such as 0.9 or 0.1. Replacing positive class

labels with α and negative class labels with β, the optimal discriminator is

formulated as the following:

D∗(x) =
αP (Xt = x) + βP (Xg = x)

P (Xt = x) + P (Xg = x)
(7)

Adding continuous noise to the inputs of the discriminator can fix the instability
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and vanishing gradients issues and smoothen the distribution of the probability

mass. Therefore, the optimal discriminator is re-written as follows:

D∗(x) =
αP (Xt = x+ ε) + βP (Xg = x+ ε)

P (Xt = x+ ε) + P (Xg = x+ ε)
(8)

Whereas ε denotes a continuous random variable with density Pε. In our case,

we chose the noise inputs from uniform distribution within the interval [0, 1).

4. Experimental Setup

4.1. Dataset365

To evaluate the performance and robustness of the proposed model, we se-

lected three representative datasets of large, medium, and small sizes. Several

HAR-related datasets are publicly available, though they mostly have their sam-

ples distributed into many subjects. The goal is to take each subject as a domain

and transfer the knowledge among them. Hence, we consider the average sam-370

ple size per subject in the datasets to measure the size and select appropriate

datasets. The experiments have been conducted on Opportunity and PAMAP2

benchmark datasets [7, 8] and the LISSI dataset [9]. The latter is collected for

the study at the LISSI laboratory. Those datasets are briefly introduced in the

following lines.375

• PAMAP2: Totally 9 subjects were participating in the data collection of

PAMAP2 following a protocol of 12 activities and 6 optional ones while

wearing 3 IMUs and a Heart Rate-monitor [8]. Among them, 4 subjects

with the more well-distributed classes of samples have been selected for

evaluation.380

• Opportunity: It consists of wearable sensors’ output worn by 4 human sub-

jects who were performing predefined unscripted daily living activities [7].

Four groups of activity are defined in this dataset based on the abstraction

level. Generally, the more abstract activities may have more complicated

and diverse patterns. To exemplify, let us compare the high-level Coffee385

18



Time to the low level Sit locomotion activity. Since the activities are

not scripted, there are different attitudes in making and drinking coffee.

Therefore, the related patterns would be more challenging to be recog-

nized by machine learning techniques. The Opportunity dataset contains

5 classes of high-level activities that we aim to recognize in this research.390

• LISSI: This dataset has been collected in the context of the Medolution

European project 1 in order to develop HAR methods that can be applied

for the remote monitoring of the rehabilitation self exercises performed

at home. The dataset consists of sensors’ data of human subjects, which

repeated a complete sequence of five rehabilitation self exercises. The395

subjects are equipped with wearable inertial sensors and follow a video

tutorial in order to perform the exercises in the sequencing indicated by

the tutorial. The data acquisition platform comprises 5 wearable sensors

(Xsens Inertial Measurement Units) and 3 Kinect RGB-D cameras, which

can capture the body movements from three perspectives: front, side, and400

top. The LISSI dataset consists of 8 high-level classes corresponding to

the self exercises; each one encapsulates a series of low-level classes cor-

responding to the self exercise components, also called low-level exercises.

The latter are composed of repetitive or non-repetitive movements, which

may occur multiple times during the high-level exercise. The dataset ad-405

ditionally includes contextual labels that indicate how the self exercise has

been performed. The dataset was collected during two different periods

involving 7 and 11 subjects. Only the data belonging to 6 human sub-

jects involved in first period have been annotated and used for the present

study.410

4.2. Data Preparation

Data preparation for all 3 datasets includes replacing missing values, data

segmentation, and normalization. A min-max normalization has been applied

1https://itea3.org/project/medolution.html
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based on the sensors range of each dataset. Dimension reduction was applied

for Opportunity and LISSI datasets.415

Approximately 3, 1.5, and 5 seconds length sliding window was employed to

segment data for Opportunity, LISSI, and PAMAP2 dataset respectively, taking

into account 70% of overlap between consecutive windows of data. Although

segmenting the samples into windows provides more information about ongoing

activity for the system, it enlarges the dimensionality of data to be processed.420

To exemplify, let us consider 3 and 1.5 seconds windows of data collected

with 60 and 30 Hz frequency for Opportunity and LISSI datasets, respectively.

Having feature sizes of 113 and 95, segmentation leads into input vectors with

thousands dimensions. Handling high-dimensional data samples is way more

laborious and time-consuming for the artificial neural network. Hence, a dimen-425

sion reduction technique may come as a boon to facilitate the training process.

Using Principal Component Analysis (PCA), we scaled dimensions down to 1%

and 2% for Opportunity and LISSI by investigating the precision-time trade-off.

However, dimension reduction imposed a crucial decrease in the performance of

the classification task of the PAMAP2 dataset. Therefore, this step is skipped430

for this dataset.

Statistics of the LISSI dataset show it has a lower Sample per Subject rate

while it has more subjects in comparison to the Opportunity dataset [7]. Fur-

thermore, There exist very short-length classes of activity such as Kneeling or

Warm up, which have fewer samples compared to the rest and make the dataset435

imbalanced. Since the research is focused on subject-level adaptation, and a

deep architecture is used in the proposed approach, we demand a high amount

of data for training. We figured out this problem through the use of micro-

mini-batch learning strategy which is discussed in section 3.

The datasets are split into training, validation, and testing sets as follows.440

As for the Opportunity dataset, the samples of each subject were held in 5

Activity of Daily Living (ADL) les. The first 3 ADL files were dedicated to

the training set, and the fourth and fifth ones were considered for validation

and testing sets, respectively. PAMAP2 and LISSI dataset, the samples of each
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subject divided into the training, validation and testing set proportional to 0.6,445

0.1, 0.3, respectively. In summary, each experiment has a source and target

subject whose samples are categorized into 3 disjoint subsets. The reported

results were obtained over the testing set for the target subject.

5. Experiments

As earlier discussed in section 4, Opportunity, PAMAP2, and LISSI datasets450

are prepossessed for evaluating our proposed method. A set of subject trans-

lation experiments has been held to practically demonstrate the necessity of

domain adaptation and its effectiveness as well.

For each dataset, samples of each subject are considered independently as the

source or target domain. A classifier is adapted for each target domain (subject),455

examined and compared with two other adaptation methods, Stratified Transfer

Learning (STL) [10] and Geodesic Flow Kernel (GFK) [13], as well as adaptation

performance upper bound. The implementations of all the experiments for STL

and the proposed model have been done in Python using Keras and Tensorflow

libraries. The codes of GFK and STL are provided in Matlab and can be460

obtained online2.

Table 2 details the architecture of the proposed method components. The

complexity of the problem is different for each source-target pair of subjects.

Therefore, the complexity of the proposed method should be adjusted for the

problem by its controlling parameters, including cb, gf , cf , and df . The high465

learning capacity of deep one-dimensional Convolutional Neural Networks makes

them more suitable for this application. Additionally, employing CNN models

facilitates the recognition task by extracting more abstract feature values than

time and frequency-based handcrafted feature extraction approaches.

2https://github.com/jindongwang/transferlearning/tree/master/code
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Table 2: Hyper-parameters of the proposed adversarial model’s components

Element Parameter Values

Input layer dimension (100,), (100,), (4000,)†

Number of convolutional blocks cb

Kernel size of 1st, 2end Conv. layers in convolutional blocks 3, 3

Generator Sliding stride of 1st, 2end Conv. layers in the blocks 1, 1

Number of filters in 1st, 2end Conv. layers in the blocks gf, gf *

Number of filters of output Conv. layer (100,) , (100,), (4000,)†

Kernel size of output Conv. layer 3

Input Layer dimension (100,) , (100,), (4000,) †

Classifier Number of filters for 1, 2, 3th Conv. layers cf, cf/2, cf/4 *

Number of neurons in Dense output layer 6, 8, 10 †

Input Layer dimension (100,) , (100,), (4000,)†

Discriminator Number of filters for Conv. layers 2× df, 4× df, 8× df, 4× df, 2× df *

Number of the units in the output Dense layer 1

† for Opportunity, LISSI, and PAMAP2 datasets, respectively.

* the variablea gf (generator filters), cf (classifier filters), and df (discriminator filters) should be tuned in training.

5.1. Results and Analysis470

We evaluate the proposed model by conducting extensive experiments on

three datasets of different sizes to assess its functionality and robustness. We

opted for W-F1 measure as the evaluation metric since it gives better insight

compared to accuracy, precision, and recall deliberating imbalance distribution

of classes in the dataset:475

W -F1 =

C∑
i=1

2ωi
precisioni × recalli
precisioni + recalli

ωi = ||classi||,
C∑
i=1

ωi = 1

(9)
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Fig. 2 depicts the mean sample rate for each class on these datasets. Oppor-

tunity dataset is the most populated one among the selected datasets; nonethe-

less, it is supposed to be challenging due to its highly imbalanced distribution.

PAMAP2 dataset includes the smoothest distribution of classes; however, it con-

tains more classes of activities with less sample/class rate. Finally, the LISSI480

dataset is expected to be the most challenging one owing to its imbalanced, less

populated distribution and remarkably low amount of samples. It is worth not-

ing that the learning task could be challenging in each of the selected datasets

due to various reasons such as having a high number of classes and complica-

tion level, a small number of samples, imbalance distribution of samples, and485

multiple underrepresented classes.

Figure 2: Distribution of the average number of samples of each class for subjects in Oppor-

tunity, PAMAP2, and LISSI datasets.

Analysis of the model during the training: Fig. 3 portrays the loss

value trends for three main components of the proposed model during a trans-

lation experiment on the PAMAP2 dataset. The plot highlights the adversary

of generator and discriminator as presumed. The loss values for D and G fluc-490

tuate oppositely; in the periods that G is improving by decreasing its loss val-
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ues, D is deteriorating and vice versa. The whole framework converges after

about 150 epochs in this experiment; when the discriminator achieves desired

uncertainty(D∗), the generator and classifier both converge and no further im-

provement can be reached by optimizing the loss functions.

Figure 3: Left:Average loss values for the discriminator, generator and the classifier elements of

the proposed model adversarial framework for translation of subject 5 to subject 6 in PAMAP2

dataset. Right: Accuracy of the classifier over the validation set of the target domain during

the training of the framework to translate subject 5 to subject 1 of PAMAP2 dataset.

495

The trend of accuracy improvement of the proposed model and SA-GAN in

Fig. 3 approves the effectiveness of our proposed model, which improves the

performance of adversarial adaptation. The plot compares the accuracy of the

models over the validation set of the samples from the target subject in the

PAMAP2 dataset. Although both models set out similar performance in the500

beginning, the proposed model shows more superiority over SA-GAN after 100

epochs as it is reaching closer to convergence.

Evaluation of the model over different datasets and comparison

with state-of-the-art (test phase): Table 3 outlines the results of subject-

level transfer learning on the Opportunity dataset compared with other states505

of the art models. This dataset is considered a large-scale one since it holds

6400 windows of samples per subject on average. The No Transfer column

refers to the experiments that have been done to justify the necessity of domain

adaptation by training a Convolutional Neural Network over the source domain

and testing it against the target domain samples, directly without any adapta-510
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Table 3: Comparison of the generic proposed approach performance and GFK [13], STL [10],

SA-GAN [6], Supervised and Not transferred model, in terms of Weighted F1 measure on

Opportunity dataset. No Transfer and Fully Supervised columns refer to models which

have been exclusively trained with the source and target subject data, respectively. The most

dominant performance in each transformation experiment marked in bold.

Source Target Distance Proposed Fully

Subject Subject (Source,Target) No Transfer STL GFK SA-GAN Model Supervised

1

2 46.69 0.45 0.65 0.59 0.73 0.74 0.75

3 45.10 0.27 0.37 0.43 0.45 0.58 0.71

4 77.15 0.40 0.47 0.55 0.49 0.57 0.59

2

1 40.47 0.48 0.52 0.62 0.56 0.56 0.65

3 34.38 0.44 0.46 0.51 0.52 0.40 0.71

4 72.80 0.29 0.46 0.40 0.39 0.42 0.59

3

1 38.38 0.23 0.40 0.45 0.42 0.52 0.65

2 37.54 0.21 0.54 0.53 0.61 0.52 0.75

4 73.69 0.31 0.37 0.44 0.44 0.50 0.59

4

1 73.53 0.26 0.38 0.51 0.51 0.52 0.65

2 70.80 0.29 0.54 0.45 0.55 0.68 0.75

3 69.44 0.24 0.48 0.37 0.49 0.53 0.71

tion technique. The Distance column represents an estimation of Wasserstein

distance between source and target subjects [6]. The best knowledge transfer

source could be selected either based on the distance or validation metrics. Since

the proposed method is a semi-supervised one, we considered the outcomes of

the CNN trained under supervision as the upper bound for domain adaptation.515

Training a model with the annotated data from the same domain is considered

as the highest margin that can be accomplished. Hence, the adaptation per-

formance is regarded as convincing as it is close to the upper bound. We find

that our proposed method improved the performance of the classification task

in comparison with other adversarial domain adaptation methods SA-GAN by520

7.3% on average, which admits the effectiveness of the micro-mini-batch training

approach. Entirely, the proposed model improves the classification performance

in 8 out of 12 experiments accomplished best and second-best W-F1 measure in
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Table 4: Comparison of the generic proposed approach performance and DANN[34],

VADA[35], IIMT[37], and Not Transferred model, in terms of Weighted F1 measure on Oppor-

tunity dataset. No Transfer column refers to the model which have been exclusively trained

with the source subject data. The most dominant performance in each transformation exper-

iment marked in bold. [37]

Source Target No Proposed

Subject Subject Transfer DANN VADA IIMT Model

S1 S2 0.652 0.768 0.776 0.809 0.866

S3 S2 0.631 0.725 0.72 0.787 0.807

S1 S3 0.64 0.731 0.747 0.78 0.79

S2 S3 0.637 0.694 0.734 0.745 0.703

S3 S1 0.659 0.746 0.726 0.83 0.785

S2 S1 0.696 0.785 0.797 0.813 0.831

Average 0.652 0.741 0.75 0.794 0.797

more than 83% of the experiments. Moreover, it can be observed from Table 4

that our proposed model improves the W-F1 score up to 6% for gesture classes525

of activity on the Opportunity dataset and obtained the best performance for

each target domain.

The results on the Opportunity dataset concur with the competence of the

proposed approach in large-scale datasets. Let us consider all three available

sources of knowledge transfer for each source domain in this dataset. The clas-530

sifier adapted by the proposed model presented the best classification results for

3 out of 4 target domains and competitive results for the remaining one.

Table 5 summarizes the classification results on a medium-size dataset,

PAMAP2, which has 2049 segmented samples per subject on average. How-

ever, this dataset comes to be challenging as it contains 10 classes of activities535

that is higher than the Opportunity dataset with 6 classes. It might adversely

affect the performance due to the more probable imbalanced distribution of the

classes. Though, the results in Table 5 demonstrate that the proposed micro-

mini batch learning technique overcame this challenge. The proposed model

dominated other states of the art methods in more than 90% of the experiments540

and improved W-F1 measure up to 13%.
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Table 5: Comparison of the generic proposed approach performance and GFK [13], STL [10],

SA-GAN [6], Supervised, and Not Transferred model, in terms of Weighted F1 measure on

PAMAP2 dataset. No Transfer and Fully Supervised columns refer to models which have

been exclusively trained with the source and target subject data, respectively. The most

dominant performance in each transformation experiment marked in bold.

Source Target Distance Proposed Fully

Subject Subject (Source,Target) No Transfer STL GFK SA-GAN Model Supervised

5 91.82 0.37 0.62 0.72 0.69 0.77 0.98

1 6 91.58 0.32 0.56 0.64 0.66 0.70 0.97

8 107.07 0.04 0.57 0.49 0.65 0.72 0.92

1 91.82 0.32 0.76 0.66 0.71 0.76 0.99

5 6 42.13 0.64 0.83 0.75 0.83 0.83 0.97

8 56.01 0.26 0.52 0.69 0.66 0.73 0.92

1 91.58 0.16 0.67 0.56 0.61 0.78 0.99

6 5 42.13 0.41 0.74 0.75 0.79 0.83 0.98

8 56.76 0.17 0.86 0.58 0.63 0.82 0.92

1 107.07 0.10 0.54 0.58 0.68 0.76 0.99

8 5 56.01 0.25 0.55 0.41 0.60 0.73 0.98

6 56.76 0.27 0.58 0.61 0.73 0.71 0.97

The results in Fig. 4 presents the proposed model’s competitive performance

over the LISSI dataset. It dominated the STL and GFK model in all the ex-

periments and came close to the supervised learning performance. It can be

inferred from the results that both adversarial models overall performed well on545

this imbalanced small size dataset in terms of W-F1 measure.

Performance of the model over a given sample: As can be inferred

from Table 6 and Fig. 5, the proposed model performed well in classifying sam-

ples from Subject 2 by leveraging knowledge from subject 4 in the Opportunity

dataset. The precision values are notably higher than recall and W-F1 measure

in null and Sandwich time classes. Reminding the precision and recall formula
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Figure 4: Results of applying Subject to Subject Transfer Learning on LISSI dataset, com-

paring the generic proposed approach performance and GFK [13], STL [10], SA-GAN [6],

Supervised model, in terms of Weighted F1 measure. Supervised column refers to models

which have been exclusively trained with the target subject data.

as bellow, it can be concluded:

Recall =
TP

TP + FN
,Precision =

TP

TP + FP

Precision > Recall→ FN > FP

(10)

which means the proposed model falsely rejected samples more frequently

than it falsely predicted that the samples belong to these two classes. The most

likely explanation of this phenomenon is the tension of the adversarial models

to collapse, which may push the model to falsely tag samples as if they are550

drawn from the class that the generator collapsed on. Furthermore, the classi-

fier did not present significant results in recognizing samples from Coffee time

and Clean up classes. It is interesting to note that these classes of activities

have been among the most problematic classes, even for a model that had su-

pervised training by the samples of the target subject. This discrepancy could555

be attributed to their more complicated patterns than the rest; the pattern
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Table 6: The main classification metrics of a sample classification task on Opportunity, LISSI,

and PAMAP2 datasets.
Opportunity Dataset LISSI Dataset PAMAP2 Dataset

Subject 4 → Subject 2 Subject 1 → Subject 5 Subject 5 → Subject 6

class precision recall support class precision recall support class precision recall support

Null 0.98 0.56 292 Kneeling 0.63 0.83 53 Ironing 0.87 0.99 137

Relaxing 0.81 0.84 190 Lying 0.78 0.78 79 Lying 0.89 0.99 85

Coffee time 0.34 0.33 225 Relaxing 0.99 0.87 142 Sitting 0.86 0.99 84

Early morning 0.61 0.84 372 Sitting 0.74 0.47 49 Standing 0.88 0.65 89

Clean up 0.34 0.57 224 Sit to Stand 0.80 0.88 100 Walking 0.87 0.86 93

Sandwich time 0.94 0.71 679 Standing 0.87 0.71 76 Running 0.82 0.94 82

Dance walk 0.69 0.51 57 Cycling 0.93 0.88 74

Warm up 0.38 0.73 41 Ascending 0.59 0.82 49

Descending 0.80 0.49 41

Cleaning 0.70 0.43 76

Accuracy 0.67 1982 Accuracy 0.76 597 Accuracy 0.83 810

W-Avg 0.74 0.67 1982 W-Avg 0.79 0.76 597 W-Avg 0.84 0.83 810

of making coffee may vary highly from one human to another due to the un-

scripted data collection approach [44]. Therefore, models require more samples

to generalize, yet the datasets contain a limited number of samples.

The number of samples, overlap between classes, duration of the activities,560

and level of abstraction are some of the factors associated with the complexity of

the recognition task. Supposing slight similarity overlap between classes, the ac-

tivities that contain sharper movements could be straightforward in recognition

since the peaks in acceleration data are more discernible. According to Table

6, the proposed model delivers low precision in recognizing the samples from565

the Warm up class of the LISSI dataset. The Warm up activity is short-length

and contains an extremely rapid sharp movement, making the recognition more

challenging for the model.

The cleaning activity in both PAMAP2 and Opportunity datasets is amongst

the most perplexing activities owing to its high abstraction level. An extensive570

set of sub-activities combinations exist that form the cleaning activity, and no

dataset affords full coverage of it. Samples of one activity of the same human

subject (domain) may considerably vary based on human beings’ innate non-

deterministic behavior. Thus, the high generalization capability is required to
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Figure 5: Comparison of per class F1-score in Opportunity, PAMAP2, and LISSI datasets.

overcome this intra-domain shift between the train and test set of the same575

domain, as well as the inter-domain shift between source and target domains.

On the other hand, activities such as Cycling, Relaxation, or Lying contain

a common inter and intra-domain acceleration pattern. Consequently, these

activities are more tangible for the model to classify as it can be observed in

Table 6.580

Analysis of Fig. 5 reveals prevailing recognition performance in terms of

F1 measure over PAMAP2 dataset. Nevertheless, slight phenomena of imbal-

ance learning still can be found over the samples of Standing, Descending and

Cleaning class which can be addressed in future work.

To further demonstrate the efficiency of our proposed model, we provided585

a detailed per class comparison in terms of F1-score between our proposed ap-

proach and SA-GAN [6] for the experiment reported in Table 6 (Subject 4 →

Subject 2). It can be concluded from Fig. 6 that the proposed model mostly im-

proved the per-class performance, even for classes with a low number of samples

(such as Relaxing and Coffee Time). As the plot shows, the proposed model590
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Figure 6: Per-Class W-F1 score comparison between SA-GAN and the proposed model for S4

→ S1 experiment on Opportunity dataset

hugely improved the performance on the Null and Coffee time, activities that

were a minority class in the source and/or target training set. It is worth noting

that the samples of the Relaxing class are well classified despite the low number

of samples that could be due to its more uncomplicated nature.

6. Conclusions and Future Work595

Recent trends in Generative Adversarial Networks have led to a proliferation

of studies that offer adversarial solutions for a variety of applications in Artificial

Intelligence, mostly Image Processing and Vision. This study set out to propose

a generic adversarial framework for knowledge transfer in the domain of Human

Activity Recognition. The proposed semi-supervised model has been evaluated600

against three datasets with different challenges to assess its robustness to the

scale and imbalance of the data.Our research findings are quite convincing, and

thus the following conclusions can be drawn:
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The proposed model provides striking results on the PAMAP2 benchmark

medium-size multi-class datasets. It improved the adversarial domain adap-605

tation performance by applying a micro-mini-batch learning technique on the

Opportunity large-scale yet highly imbalanced dataset. Interestingly, the pro-

posed model revealed competitive results compared to other states of the art

models on the LISSI dataset, which is very challenging in terms of both the num-

ber of samples and the balance of classes. Our comprehensive assessment was610

carried out over high-dimensional data of highly abstract activities in all three

datasets. Though the framework is not HAR-exclusive and it can be potentially

utilized to solve domain adaptation problems.

The proposed framework deals with mode collapse and imbalanced data

problems in GAN. Thus, its limitations are the same as a classic GAN, such615

as vanishing gradients, failure to converge, the imbalance between the gener-

ator and discriminator causing overfitting, and high sensitivity to the hyper-

parameter selections. Besides, regardless of the balance in the distribution,

Neural Networks are known to be prone to small training sets. Therefore,

providing more samples could provide improvement to the final classification620

results.

Further studies, will need to be undertaken with more focus on the lack of

samples. In future investigations, it might be possible to use multiple sources of

knowledge or a combination of transferred models from different source domains

and the source/model selection policies. Besides, integrating an ontology-based625

inference module into the framework could be a mean of improvement of the

classification results obtained by Machine Learning.
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