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Ghazaleh Khodabandeloua,∗, Amir Nakiba
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Abstract

This paper presents a new fractal search space decomposition-based algorithm to address the issue of scaling up
the divide and conquer approach to deal with large scale problems (up to 50 continuous decision variables). The
proposed algorithm, called polyFrac, fractally decomposes the search space using hyper-polytopes. It allows moving
throughout different granularity levels by only computing the average of vertices of a hyper-polytope to obtain the
coordinates of the centroids. Only the most promising hyper-polytopes are decomposed into child-polytopes. Then,
a simple deterministic local search (single solution-based metaheuristic) is used to perform the intensification process
to find the best solution within the selected lowest hyper-polytope. The proposed algorithm performance is evaluated
on the well-known SOCO 2011, CEC 2013, and CEC 2017 benchmarks and compared with 26 states of the art
algorithms. A real-world optimization problem is also used to calibrate its performance. The obtained results show
that polyFrac outperforms all the algorithms. Moreover, experimental results and analysis suggest that polyFrac is a
highly competitive optimization algorithm for solving large-scale and complex optimization problems.

Keywords: Continuous optimization, Metaheuristic, Multi-objective, Deep learning, Fractals, Large-scale
optimization.

1. Introduction

In recent years, the emergence of supercomputers
and cloud infrastructure has greatly increased the pos-
sibility of dealing with increasingly complex prob-
lems (multi-modality, non-linearities, uncertainties in
parameters, etc.). Metaheuristics algorithms are widely
used to deal with these complex optimization prob-
lems. Indeed, they address any optimization problem
without any knowledge of the objective function. Es-
pecially, population-based metaheuristics are the most
used to deal with large scale problems (dimension
greater than 50) [1]. Metaheuristics can be catego-
rized into non-nature-inspired and nature-inspired algo-
rithms. Nature-inspired metaheuristic algorithms can
be classified into five main categories: evolutionary-
based, physics-based, chemistry-based, human-based,
and swarm intelligence-based [2]. Evolutionary algo-
rithms are inspired by biological evolution in nature us-
ing different operators such as mutation, crossover, se-
lection, and reproduction to find better candidate so-
lutions [3], [4]. For instance, evolutionary algorithms,
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evolution strategy, and differential evolution algorithms
have been extensively modified and adapted for differ-
ent issues. Those modifications increase the perfor-
mances but also increase significantly the complexity
of their implementation. Moreover, the stochastic na-
ture of metaheuristics is a restrictive element when re-
peatability is crucial In these cases, metaheuristics allow
enhancing the deterministic algorithm’s parameters (i.e.
tuning deterministic algorithms). Besides, state-of-the-
art metaheuristics are not easy to implement and have a
set of parameters that are not easy to fit. Furthermore,
it should be noticed that local minima are frequent in
small problems, but they are infrequent in large-scale
cases, however, saddle points (points with zero gradi-
ent) are frequent (see [5] for further theoretical details).
This observation highlights the difficulty to use gra-
dient information when dealing with large-scale prob-
lems. This work deals with large-scale optimization
problems and proposes an efficient low-complex and
easy-to-implement single solution-based metaheuristic.
The proposed algorithm, called polyFrac, is based on di-
viding fractally (dividing recursively) the search space.
Herein, the fractal notion consists of the decomposi-
tion of the search space using the geometric fractals.
There exist several patterns in nature approximating a
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centroidal polytope tessellation such as the cornea cells,
the causeway surface, and tilapia skin. In the case of
decomposing the search space fractally using hyper-
polytopes, it is obvious that an optimal solution can be
found exhaustively by exploring all child-polytopes at
the lower level. However, it is too time-consuming and
resource exhaustive. To deal with this issue, an effi-
cient heuristic is proposed to select the most promising
region in the search space for further decomposition.
The goal is to find the best solution inside a reduced
sub-region. The proposed algorithm, called polyFrac,
is composed of two heuristics are proposed: Promis-
ing polytope selection (exploration strategy) and Local
Search (exploitation strategy). In the exploration phase,
the most promising hyper-polytope is selected for fur-
ther decomposition. In the exploitation phase, a local
search is used for the child-polytopes of the lower level
to find the best solution inside a reduced sub-region.
Moreover, the hyper-polytopes’ centroids can be com-
puted analytically with no need to save the past posi-
tions. Then, only the best positions met are saved. The
key contribution of the proposed approach consists of
dividing the search space recursively into a subset of
hyper-polytopes shapes as fractals (i.e. self-similar pat-
terns) with different granularity levels. The levels are
categorized from fine-grained to coarse-grained ones.
These geometric shapes have the advantage of covering
exactly the entire of an N-dimensional search space. In-
deed, the proposed approach allows a recursive decom-
position of the search space to a fixed number of non-
overlapping regions. In this work, a centroidal polytope
tessellation is used where the generated point for each
polytope is also its centroid, i.e. the mass center. This
property ensures that the optimum search is restricted
inside a given hyper-polytope. Moreover, the proposed
algorithm allows moving throughout different granular-
ity levels i.e. from fine-grained to coarse-grained lev-
els, and vice versa by computing the centroids’ coordi-
nates. The polytopes centroids can be easily computed
by averaging a given polytope’s vertices. This manner
of computing the centroid allows preserving a low com-
putation. It can be noticed that the proposed algorithm is
neither a population-based metaheuristic nor stochastic,
polyFrac is a single-solution deterministic algorithm.
The advantages of the proposed approach that motivated
this work are:

• The hyper-polytopes shapes allow covering the
entire of an N-dimensional search space without
overlapping regions.

• The centroidal polytope tessellation ensures that
the optimum search is restricted inside a given

polytope.

• The polytopes centroids can be readily computed.
This property allows for preserving a low compu-
tation complexity.

• Besides, this strategy of decomposing is intrinsi-
cally parallel and allows running the algorithm on
multi-threaded and multi-node environments.

The proposed algorithm performance is evaluated on
large-scale optimization benchmark functions from
SOCO 2011, CEC 2013, and CEC 2017 benchmarks
and compared with 26 different algorithms for dimen-
sions varying from 50D to 1000D. A real-world opti-
mization problem is also used to calibrate the algorithm
performance. Compared with population-based meta-
heuristics, the polyFrac algorithm performance shows
its efficiency in dealing with large-scale optimization
problems.

The rest of the paper is organized as follows: Section
2 presents the related work. Section 3 exposes the poly-
tope fractal decomposition principals. Section 4 details
the proposed algorithm. Results and comparison with
other approaches are reported and discussed in Section
5. Section 6 concludes the paper.

2. Related work

Few studies in the field have tackled the optimum
search using the fractal concept. In what follows, we
review the salient state of the art algorithms. Authors
in [6] address the problem of bound-constrained global
optimization by partitioning the objective function over
multiple scales for the global optimum. DIRECT (DI-
viding RECTangles) algorithm was proposed in [7].
This algorithm overcomes the need to specify a Lips-
chitz constant issue by performing an iterative search to
divide the search space into all possible hyperintervals.

In each iteration, the most promising hyperintervals
are chosen for further dividing. Despite its tremendous
success to solve optimal design issue, for dimension
greater than 10 the algorithm performance drastically
deteriorates in terms of computation time and solution
quality. FRACTOP is a metaheuristic based on a ge-
ometric decomposition of the search space into hyper-
cubes [8]. However, applied to high dimensional prob-
lems, the algorithm is computationally expensive since
the number of vertices rises exponentially. The idea be-
hind the decomposition process is that the subregions
are visited only once. This property makes the algo-
rithm advantageous for classical problems (dimension
less than 10). Nevertheless, it is not scalable because
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of its exponential complexity. Indeed, each region is
decomposed into 2n subregions where n stands for the
problem dimension and a metaheuristic such as simu-
lated annealing [9] was used to search for solutions at
random. Another approach that uses the fractal geom-
etry for evolutionary algorithms, called Multiple Op-
tima Sierpinski Searcher, was proposed in [10]. This
approach used the Sierpinski triangle as the fractal geo-
metrical shape. The fractals are created using the chaos
game with a regular triangle and the factor 1/2. The
approach uses n + 1 generators instead of 2n generator
samples to reduce the computational cost. However, this
approach has high complexity and fails to cover all the
feasible regions using fractals.

A recent approach [11] proposed a hyperspherical de-
composition of the search space, called FDA. This ap-
proach performs well on large-scale continuous opti-
mization problems with some theoretical convergence
properties. However, it allows covering all the search
space only in case of small dimension problems. More-
over, this approach uses the overlapping hyperspheres
that introduced further constraints and complexity to
the algorithms. The proposed approach tackles these
by completely covering the entire search domain for
large-scale and big optimization problems. Moreover,
the FDA does not perform well in case of non-separable
problems.

In the literature, several approaches propose a geo-
metric decomposition of the search space using classic
metaheuristics, such as differential evolution, particle
swarm optimization, and genetic algorithms. Neverthe-
less, they fail to deal when the dimension of the prob-
lems increase. The island artificial bee colony (iABC)
[12] is a version of artificial bee colony (ABC) algo-
rithm [13] based on the island model concepts. The
population concept is used in the algorithm’s structure
by applying the island model to enhance its diversity.
The population is divided into a set of sub-populations,
i.e. islands. A Multi-population algorithm is proposed
in [14] for solving the constrained and unconstrained
numerical and engineering optimization problems. It
uses an adaptive concept for dividing the population
into sub-populations. The similarity between these al-
gorithms and polyFrac is in their theoretical charac-
teristics, i.e. they are black-box optimization algo-
rithms. Whereas all the three algorithms mentioned
above are population-based algorithms, polyFrac is a
single solution-based.

Furthermore, recent literature on metaheuristics sees
hybridization with machine learning techniques attract-
ing many researchers.

In [15], the authors proposed a hybridized monarch

butterfly optimization algorithm using a convolutional
neural network by performing a hybridization with two
other swarm intelligence algorithms. A memetic parti-
cle swarm optimization (MPSO), the authors proposed
to improve the local search ability of the standard par-
ticle swarm algorithm [16]. The proposed algorithm
is tested with various unconstrained, constrained, min-
max, and integer programming problems. A hybrid
algorithm combining firefly and particle swarm opti-
mization (HFPSO) was proposed in [17]. This algo-
rithm takes benefit from the strong points of both par-
ticle swarm and firefly algorithm mechanisms by deter-
mining the start of the local search process using the
previous global best fitness values. Proactive particles
in swarm optimization (PPSO) [18] proposed an algo-
rithm based on particle swarm optimization (PSO) us-
ing fuzzy logic. The proposed algorithm uses a self-
tuning version strategy based on fuzzy logic to dynam-
ically determine the best settings for the inertia weight,
cognitive factor, and social factor. Authors in [19] pro-
posed a hybridizing salp swarm algorithm with PSO
algorithm (HSSAPSO). The proposed approach com-
bined the salp swarm algorithm (SSA) and PSO to re-
move their drawbacks, such as the trapping in local op-
tima and the unbalanced exploitation. HSSAPSO uses
the PSO approach velocity phase to avoid the prema-
ture convergence of the optimal solutions in the search
space, escape from ignoring local minima, and improve
the exploitation tendencies.

Cooperative Co-evolution (CC) methods were intro-
duced by Potter et al. [20] are based on decomposing
a high-dimensional problem and tackling its subcompo-
nents individually. However, this approach is not effi-
cient on non-separable problems since the interdepen-
dencies among different variables could not be captured
well enough by the algorithms. Potter’s decomposition
was included in a PSO algorithm [21] where two co-
operative PSO models proposed. However, these two
models were only tested on functions of up to 30 di-
mensions [21] and 190 dimensions [22].

In [23] Yang et al. suggest a decomposition strategy
based on random grouping. Without prior knowledge
of the non-separability of a problem, it has shown that
random grouping increases the probability of two inter-
acting variables being allocated to the same subcompo-
nent, thereby making it possible to optimize these inter-
acting variables in the same subcomponent rather than
across different subcomponents. An adaptive weight-
ing scheme also proposed to fine-tune the solutions
[23]. Other decomposition strategies have been pro-
posed in the differential evolution algorithms literature.
A splitting-in-half strategy proposed by Shi et al. [24]
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decomposed the search space into two subcomponents,
each evolved by a separate subpopulation. However,
this strategy does not scale up well and does not perform
well when the problem dimension becomes very large.
Yang et al. [23] proposed a decomposition strategy
based on random variables grouping and applied it to a
cooperative coevolution differential evolution on high-
dimensional non-separable problems with up to 1000
continuous variables.

One of the most cited algorithms in continuous opti-
mization is the CMA-ES algorithm. It tunes the muta-
tion parameters through computing a covariance matrix
and hence correlated step sizes in all dimensions [25],
based on an adaptive procedure. However, most of the
published results of CMA-ES were on functions of up
to 100 dimensions [25], [26]. One major drawback of
CMA-ES is its cost in calculating the covariance matrix,
which has a complexity of O(n2). When the dimension
increases, this cost rapidly rises. Since its first version,
many variants were proposed in the literature to tackle
its limitations. One of them, called RB-IPOP-CMAES,
is chosen here to compare against the proposed algo-
rithm.

3. Polytope Fractal Decomposition

We propose a geometrical fractal decomposition
based on hyper-polytope form as the geometric object.
The polytope is defined as an N-dimensional general-
ization of the 2-dimensional polygon or 3-dimensional
polyhedron. Figure 1 depicts an example of a centroidal
polytope fractal decomposition with a fractal dimension
of six and three decomposition levels where the points
represent the centroids of polytopes. The first step con-
sists of fractal decomposition that is a recursive decom-
position of the search space with a fixed number of cen-
troidal polytopes at each level. The number of polytopes
inside a reference polytope indicates the fractal dimen-
sion. The polytope shape represents several advantages
compared to the other schemes, e.g. polytope, squares
such as its ability to cover the entire search space or the
low complexity in large-scale problems. A key char-
acteristic that stems from these properties is scalabil-
ity, which allows decomposing the whole search space
using polytopes fractals. As mentioned in the previ-
ous section, other geometric shapes do not cover all
the possible search space or are complex to implement
since their complexity at the generalization to the N-
dimensional increases exponentially.

In this work, the considered geometrical fractal de-
composition forms are the regular and the irregular con-
vex polytopes.

3.1. Polytope Tessellations
Definition of polytope tessellations. A polytope is a

partition of the plane into n convex polytopes (in 2D).
Each partition contains one seed such that every point
in the partition is nearer to its own seed than any other.

Definition 1 (Polytope Tessellation). Given a set of
points {zi}

k
i=1 belonging to the closed set Ω ∈ RN , the

polytope region P̂i corresponding to the point zi is de-
fined by:

P̂i = {x ∈ Ω ||x − zi|| < ||x − z j|| f or j = 1, · · · , k, j , i}.
(1)

where polytope region is a convex area in a Euclidean
space that contains every point nearest to a point belong-
ing to a set of {zi}

k
i=1 with regard to all the other points.

Definition 2 (Tessellation). Given an open set Ω ∈ RN ,
the set {Pi}

k
i=1 is called a tessellation of Ω if Pi ⊂ Ω for

{i = 1, · · · , k},Pi ∩ P j = � for i , j, and
⋃k

i=1 Pi = Ω.

3.2. Optimum condition for centroidal polytopes
The substantial restriction for the centroidal poly-

topes tessellation is that each polytope generator has
to be the centroid for its related polytope region as de-
picted in Figure 2. Thus, the definition of a centroidal
polytope is the aforementioned definition of polytope
tessellations with an extra constraint on the location of
the generators. Given the set of polytope regions {Pi}

k
i=1,

the mass centroid ci over a region with probability den-
sity ρ(x) is defined as:

ci =

∫
Pixρ(x)∑
Pi
ρ(x)

(2)

where the density function ρ(x) ≥ 0 and x is a vector
in RN . In addition, in order to considering the polytope
as a centroidal polytope tessellation, given k generators
{zi}

k
i=1, the following condition must be respected:

zi = ci, i = 1, · · · , k. (3)

where zi points that are used as generators for the
polytope regions P̂i are in turn the mass centroids of
those regions. Such a tessellation is called a centroidal
polytope tessellation.

As shown in Figure 2, the centroidal polytope tessel-
lation algorithm at the first step generates the irregular
polytopes that converge towards regular ones with sev-
eral iterations. The polytope regions correspond to 10
randomly selected points in the search space. After 12
iterations, the generators points (blue points) converge
to the centroids of polytope tessellation (red points).
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(a) 1st level  
(b) 2nd  level  

Centroid   
(c) 3rd , 4th , 5th levels 

Figure 1: An overview of the polytopes fractal decomposition of the search space for a granularity decomposition level equal to 5.

1st Iteration 2nd Iteration

7th Iteration 12th Iteration

Figure 2: The polytope regions corresponding to 10 randomly selected
points in the search space. The blue points are the polytope genera-
tors and the red points are the centroids of the corresponding polytope
regions. After 12 iterations the generators points converge to the cen-
troids of polytope tessellation.

3.3. Advantages of polytope decomposition

In what follows, the advantages of polytope decom-
position compared to the hyperspherical or other similar
forms of partitioning are given:

• These geometric shapes have the advantage of cov-
ering the entire of an N-dimensional search space
without surpassing it or being inferior to it. In-
deed, polyFrac proposes a recursive decomposition
of the search space Ω to a fixed number of non-
overlapping regions as portrayed in Figure 1 and
defined in Definition 2.

A hyperspherical form does not allow covering all
the search space. An inflation rate proposed to
overcome this problem by increasing the radius of
each hypersphere [11]. It generates hyperspheres
that overlap or exceed the search space. It should
be noted that despite inflating hyperspheres, all
search space is not fully covered. In both scenar-
ios, a hyperspherical shape does not lead to an op-
timal solution. Furthermore, this property allows
ignoring the whole part on the search space cover-
age proof, as it is done in the hyperspherical form
(see [11]).

• In this study we use a centroidal polytope tessella-
tion in which the generated point, i.e. the seed, for
each polytope is also its centroid, i.e. the mass cen-
ter. This property ensures that the optimum search
is restricted inside a given polytope.

• The polytopes centroids are easily computed. In-
deed, it is possible to move throughout different
granularity levels, i.e. from fine-grained to coarse-
grained levels and vice versa by calculating the av-
erage of vertices of a polytope to obtain the coordi-
nates of the centroids. This manner of the centroid
calculation allows for preserving a low computa-
tion complexity. One can see that this approach
allows approximating polytopes centroids by sev-
eral iterations as illustrated in Figure 2. However,
an approximate center is sufficient for the polyFrac
algorithm. Then, it is defined by:

cP =
1
k

k∑
i=1

VPi (4)
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where cP stands for the centroid of a given poly-
tope P andVPi is the vertices of the polytope with
k as the number of polytopes centroid, which is
equal to the number of decomposition in each level
(a fixed value).

Lloyd’s algorithm [27] allows determining the ex-
act position of centroid with a recursive algorithm.
However, this algorithm cannot be used for an N-
dimensional search space.

4. Poly Fractal Decomposition Algorithm

The proposed algorithm, called polyFrac, searches
for an optimal global solution (if it is known). The
naive approach is to explore by brute-force search all
fine-grained polytopes in the last level, called child-
polytopes. However, this method is too time-consuming
and resource-intensive. The polyFrac algorithm uses
two heuristics to overcome this problem: (i) promising
polytope selection heuristic, and (ii) local search heuris-
tic: this heuristic looks for the best solution at the last
(lowest) level.

4.1. Poly fractal algorithm
Algorithm 1 represents the proposed algorithm. As

previously pointed out, it uses the polytopeH to divide
the search space iteratively into n× dimension child-
polytopes fPi where i = 1, · · · , nD, where n is a value to
be determined. In this work, the value of n is set to 2.

The algorithm of polyFrac decomposes for each it-
eration the search space into a constant number 2 × D
of convex child-polytopes Pl at decomposition level l.
The decomposition procedure iterates until the desired
level l is reached. Then, the quality Ql

i of each child-
polytope is evaluated using the procedure described in
Section 4.2. The child-polytopes are sorted with respect
to the highest quality determining the next polytope to
be decomposed. Therefore, the algorithm can direct the
search for the most promising area and starts in the best
position.

Two points x1 and x2 inside those subregions allow
for determining the initial polytope subregions. Al-
though these points can be obtained at random, it is
recommended to calculate their coordinates to decrease
the number of iterations and speed up convergence.
The subregion of the search space limited by a child-
polytope fPi is defined by:

fPi = {x ∈ RD : y = ~wT (x − x0)}, with i ∈ Ll

fPi =

{
fP(+)
i y>0

fP(−)
i y<0

(5)

Algorithm 1: Poly-Fractal Decomposition Al-
gorithm

Input: Vi: vertices, k = 5: fractal depth,
wmin = 1 × e−20: tolerance threshold

φ = 0.5: step-size reduction, D: dimension

Neval = 1: number of the objective function
evaluations

~c: search space barycenter

f (~c): initializing the best fitness value for
corresponding position ~c

Initialize the level variable: l = 1

Fmax = 5000 ×D: stopping criterion
while , Stopping criteria do

Decompose the current polytope P→
Algorithm 2

for 2 × D l-level polytope do
Apply the promising polytope selection
descried in equations (10), (11), (12)

Sort the 2 × D polytopes at the current
l-level

Replace the current polytope P by the
first of the sorted polytopes at the
current level

if l == k then
for Each 2 × D of kth-level polytope do

Local search heuristics→ Algorithm
4

if , Fmax then
Move-up→ Algorithm 3
else

l = l + 1

Result: the best solution and its position
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with x1 =
vmax

1 + cP

2
, x2 =

vmax
2 + cP

2
,

x0 =
x1 + x2

2

where cP =

∑n
i xi

n
, ~w = x1 − x2

(6)

where vmax
1 and vmax

2 stand for the polytope vertices with
maximum distances to the corresponding centroid cP.
The child-polytope i center is denoted by x0, and Lm is
the set of indices that constitutes the polytope at level
l, respectively. The center of the vector linking x1 and
x2 is represented by x0, where they are perpendicular
to the same plane ~wT (x − x0). The vertices on positive
V+

i and negativeV−i sides of the plane are obtained by
projecting verticesVi on the plane ~wT (x − x0):

y = ~wT (Vi − x0) =

 V(+)
k y>0
V

(−)
j y<0

where k ∈ R+, j ∈ R−, i ∈ R
(7)

The verticesV(+)
k andV(−)

j represent both sides of the
plane y, they are not enough to generate child-polytopes
covering the entire of the subregion. An appropriate
child-polytope is calculated by the union of vertices ui,
situated on the plane separating positive and negative re-
gions, withV(+)

k on one side, and withV(−)
j on the other

side. The vertices ui are defined as:

ui = α ∗ V(+)
k + (1 − α) ∗ V(−)

j with

where α =
(x0 −Vi) ∗ ~wT

(V(+)
k −V

(−)
j ) ∗ ~wT

, 0 ≤ α ≤ 1

 V(1)
i = V

(+)
k ∪ ui y>0

V
(2)
i = V

(−)
j ∪ ui y<0

(8)

The average of vertices V(1)
i and V(2)

i are calculated
as the center of each new subregion:

cP1 =

∑n
i V

(1)
i

n
= xnew

1

cP2 =

∑n
i V

(2)
i

n
= xnew

2

(9)

The new vertices xnew
1 and xnew

2 are used in Equation
(6) to further decompose the child-polytopes. This pro-
cedure is iteratively repeated until the l-level is reached.
At each iteration, all child-polytopes are sorted. Then
the most promising one is chosen to be further decom-
posed. Algorithm 2 describes the polytope decompo-
sition procedure. The process is iteratively repeated

until the desired depth (D) is reached. Finally, the lo-
cal search procedure (LS) is carried out to the sorted
child-polytopes fPi (see Algorithm 3). Once the last
level polytopes are entirety inspected (using a moving-
up strategy), the search is raised to another part using the
past depth. This is done by supplanting the current poly-
tope P with the most promising child-polytopes fPi (de-
termined using fitness value). The process stops when
all the current level child-polytopes are visited, or the
stopping criteria are reached.

The proposed approach has some similarities with the
Depth-first branch-and-bound search (B&B) [28] such
as splitting the search space into sub-regions where each
branch is a specific part of the entire solution. However,
it differs from B&B by proposing an intensive search in
the sense that each promising sub-region further decom-
poses and meticulously searched where each branch is
a part of the search space. Indeed, the proposed method
is a single solution-based metaheuristic. The number of
polytopes visited measures diversity. The most promis-
ing region selection defines how diversification is con-
trolled. The polyFrac compared to the depth-first branch
and bound technique (B&B), often used in combinato-
rial optimization, proposes each branch as a part of the
search space rather than a singular part of the whole so-
lution. Some areas are divided and, areas that do not
seem to be hopeless are further investigated while the
most promising one is searched more intensively.

4.2. Promising polytope selection (Exploration strat-
egy)

The promising polytope selection heuristic aims to
select the most potential coarse-grained polytope that
could contain the global optimum (or at least the best
solution). It evaluates each coarse-grained polytope p
to decompose it into a constant number of fine-grained
polytopes, i.e. child-polytopes. It should be noted
that this procedure records a trace of the best solution
(S olbest) and its coordinates in the best position.

The polytope quality is assessed by two random
points ~b1 and ~b2 generated using the following equa-
tions:

~b1
P

= cPl +
max(DPl (cPl , ui))

√
D

~b2
P

= cPl −
max(DPl (cPl , ui))

√
D

(10)

where cPl represents the polytope center at level l.
Then, fitnesses are calculated for positions of these three
points cPl , ~b1, ~b2 as fPc f 1

b , f 2
b . Finally, their correspond-

ing distances (Euclidean) to the current best position B

7



Algorithm 2:H-Polytope Decomposition
Input: VerticesVi ∈ Ω

for 2 × D, 1-level polytope do
Compute the polytope center xc by averaging
over vertices:

xc =
∑n

i Vi

n
Compute the distance between xc and all the

polytope vertices:
DP1 = Dist(xc,Vi)
Choose the vertex v1 which has the

maximum distance to xc:
DP2 = Max(DP)
Find vertex v2 which has the maximum

distance to v1 among all other vertices
Compute two points x1 and x2 inside the 2
new polytopes:

x1 = v1+xc
2

x2 = v2+xc
2

Compute centroids x0 of 2 new polytopes
and vector ~w perpendicular to x0:

x0 = x1+x2
2

~w = x2 − x1

for 2 ×D, (l − 1)-level polytope do
y = (V − x0) ∗ ~wT

for
∑

k y > 0 do
for
∑

j y < 0 do
α =

(x0−V)∗~wT

(V+
k −V

−
j )∗~wT

ui = α ∗ V+
k + (1 − α) ∗ V−j

mi = 1
j+k
∑

j,k u
DP3 = Dist(mi, ui)
sort(D3

P
)

Result: child − P

are also calculated. The proposed algorithm evaluates
the best quality for the current polytope Q. For all poly-
topes of a given decomposition level l, it calculates the
highest ratio of the slope S P at the mentioned polytopes
positions:

Q = max(S bP1
, S bP2

, S cP ) (11)

S bP1
=

f ( ~b1)

|| ~b1 − B||
, S bP2

=
f ( ~b2)

|| ~b2 − B||
,

S cP =
f (cP)
||cP − B||

(12)

All child polytopes of a given level are sorted accord-
ing to their quality and then saved to a list for later
evaluation in the process. This list contains all child-
polytopes of different levels {l − 1, l − 2, · · · , 0} are en-
tirely visited until satisfying the stopping criterion or ex-
ploring the whole search space. Algorithm 4 details this
process.

4.3. Local Search (Exploitation strategy)

A simple and deterministic heuristic local search (LS)
is used to search the optimum in the child-polytopes of
the last level. It is similar to the well-known Hooke-
Jeeves Pattern Search method. This heuristic considers
two solutions ~xa1 and ~xa2 for each dimension for evalua-
tion, which are situated equidistant in reverse directions
from the current solution xcurr

a , along any axis within the
search space with a step size w:

~xa1 = xcurr
a + ω × ~ei

~xa2 = xcurr
a − ω × ~ei

(13)

where ~ei stands for the unit vector. The step size ω
is adjusted to: (i) ωnew = ω

2 , if any better alternative
solution detected nearby xcur

vi
, (ii) ωnew = ω − ε, the

step size value is gradually reduced until reaching a tol-
erance value ωmin (see Algorithm 3). The next current
solution is then chosen as the optimal solution among
~xa1 , ~xa2 and xcurr

a . Figure 4 depicts a flow chart diagram
of polyFrac algorithm.

4.4. Convergence analysis of polyFrac

Here, the convergence property of the polyFrac al-
gorithm is analyzed. We show that the probability Pω

that polyFrac converges from any point to any point in
a regular or irregular polytope is not equal to zero. This
property remains true even in a case where the promis-
ing point is placed at its extreme angle. Figure 3 illus-
trates an irregular polytope with 4 vertices limited with
positive sides of 4 planes y+

1 = ~wT
1 ∗ (V1 − x), y+

2 =

8



Algorithm 3: Local Search (LS)

Input: D: dimension, wmin = 1 × e−20: tolerance
threshold

φ = 0.5: step-size reduction

~c: search space barycenter

Neval = 1: number of the objective function
evaluations

f (~c): initializing the latest best fitness value for
corresponding position ~c

current polytope P center ~c← ~xc

Evaluate the fitness of ~xc

Set the step size w to the longest distance
between the farthest vertex vmax and the
polytope center

while ω ≥ ωmin do
*for i = 1, · · · ,D do

~xR = ~xc + ω × ~ei

~xL = ~xc − ω × ~ei

S olbest ← best solution among { f (~xR),
f (~xL), f (~xc)}
Neval = Neval + 2
~xc ← S olbest

if in level-l ~xc ∈ y+ then
if f (~xc) == S olbest then

Reduce the step size ω = ω × φ
if f (~xc) ≤ S olbest then

Update the best solution f (~xc) and the
best Position ~xc

else
back to step * at the current level l

Result: ~xc

Algorithm 4: Move-up
Input: D dimension, l Current level

NPl−1 number of explored polytopes at level l − 1
Fmax = 5000 ×D: stopping criterion

while N == 2 × D do
l = l - 1
NPl−1 ← NPl

if l == 1 & , Fmax then
exploration of all polytopes

else
at the current level l

current polytope position← next unexplored
polytope

~wT
2 ∗(V2− x), y+

3 = ~wT
3 ∗(V3− x) and y+

4 = ~wT
4 ∗(V4− x).

There are many paths connecting polytope centroid C to
goal point G. Let consider DistManhattan(C,G) the short-
est path linking these two points which is calculated us-
ing the Manhattan distance. The probability of this path
is denoted as Pω:

Pω = (
1
D

)Nω

where Nω =
DistM(C,G)

ω

(14)

where D is the dimension, ω stands for the step size, and
Nω is the fraction of the Manhattan distanceM between
the centroid and the goal point. The probability of all
possible paths between these points is represented by
Pall which is the sum of Pω and the probability of all
remaining paths Premains:

Pall = Pω + Premains (15)

Since Premains > 0 is a strict positive value, thus Pall >
Pω, then Pω is a lower bound of Pall. This property is
ensured using a condition (if ~xc ∈ y+then) in Algorithm
3.

The probability of reaching Pi(C,G) within i itera-
tions is defined as:

Pi(C,G) = E (i × Pω) (16)

This property is also true for a regular polytope. Thus,
polyFrac covers any point inside any polytope shape.

4.5. Sensitivity and Complexity analysis of polyFrac
A substantial step before fine-tuning the parameters

of the algorithm, calibration is the sensitivity analysis
of parameters.

To do so, the depth (k) is varied to measure the im-
pacts of its fluctuations on polyFrac performance while
keeping fix all other parameters with the values given in
the previous section. The results are reported in Table
5. As these results show, sensitivity plays an impor-
tant role in evaluating the performance of polyFrac. In-
deed, the performance of the algorithm varies in terms
of variation of the sensitivity. Consequently, k influ-
ences polyFrac performance and its suited value is 5
(this value is used in our experiments).

The asymptotic complexities of different parts
of polyFrac are : fractal decomposition process
O(logk(D)), quality evaluation of a polytope (1), and lo-
cal search application O(log2(r/ωmin)). Thus, the com-
plexity of polyFrac is logarithmic, which depends on
the fractal depth: O(logk(D) + 1 + log2(D/ωmin)) and
a memory complexity of θ(D) where D stands for the
dimension andD the Euclidean distance.
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Figure 3: Example of an irregular polytope with 4 vertices limited with 4 planes ~wT
1 ∗ (V1 − x), ~wT

2 ∗ (V2 − x), ~wT
3 ∗ (V3 − x) and ~wT

4 ∗ (V4 − x).
The step size is represented by ω.

Figure 4: Flow chart diagram of polyFrac algorithm.
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5. Results

The proposed algorithm, polyFrac, is evaluated on the
well-known benchmarks to assess its performance. The
following section briefly describes the benchmarks:

5.1. Test functions and parameters tuning
For the experimental study 19 functions (F1–F19) are

selected for large scale continuous optimization prob-
lems from SOCO 2011 [29] which has many common
functions with CEC 2013. The SOCO 2011 large-scale
optimization benchmark has the advantage of cover-
ing different real-world scenarios where the substan-
tial complexities of large-scale optimization problems
are multi-modality and separability. It has been com-
monly used in various studies to assess the large-scale
optimization algorithms performance [11]. The pro-
posed algorithm performance is also tested on some se-
lected benchmark functions from CEC 2017 [30]. These
functions have a wide range of properties, such as dis-
connective, non-separable, partially separable, multi-
modal, degenerative, etc.

The definition of functions F1–F11, their features,
and their properties are sketched in Table 1, Table 2,
and Table 3, respectively. The non-separable func-
tions Fns (F3,F5,F9,F10) can be optimized dimension
by dimension. The hybrid functions F12–F19 are gen-
erated (Fns ⊕ F′ ) combining a non-separable func-
tion Fns with a function among F1,F4,F7, denoted as
F′. This is done by splitting the solution the parameter
mns into two parts; evaluating each of the parts using
a function among Fns and finally combining these re-
sults. The test function is assessed for dimensions: D
= 50, 100, 200, 500 and 1000. The maximum number of
function evaluations (FEs) is determined as the stopping
criterion set to 5000 ×D (from SOCO 2011 benchmark
[29]). For each test function, the stochastic based algo-
rithms are run 25 times. All parameters of polyFrac are
empirically fitted as summarized in Table 4. It should
be noted that the stopping criterion value for the LS is
problem-dependent, and it is set to the shift values pre-
cision in the functions F1–F6. The step-size reduction
value φ is set to 0.5.

5.2. PolyFrac results
The results of polyFrac are reported in Table 6 and

Table 7 which are error values calculated using f (x) −
f (x∗) for dimensions 50D, 100D, 200D, 500D, and
1000D. As proposed in the benchmark functions paper
[31], all average errors less than 1.0000E − 14 are seen
as 0.0000E + 00. The standard deviations yield for all
test functions are equal to 0.0000E + 00 which indicates

that polyFrac regularly reaches the same optimum. The
algorithm behavior for all functions is fully delineated
by the mean and the standard deviation.

Overall, polyFrac shows good performance to reach
the global optimum for the majority of test functions.
However, it fails to solve Shifted Rosenbrock’s function
(F3) and the hybrid functions implying F3, F13, and F17
(for dimension greater than 100D). This problem stems
from the fact that algorithm LS (Algorithm(3)) is more
appropriate for separable and semi separable problems
due to its intrinsic nature.

5.3. Behavior analysis of polyFrac
This section analyses the polyFrac algorithm behav-

ior in terms of exploration, exploitation operators, func-
tion evaluation consumption, fitness convergence, and
the number of polytopes visited. The polyFrac algo-
rithm behavior is analyzed regarding different function
types: separable, semi separable, and non-separable
functions. To this aim, three functions from each men-
tioned type is chosen from the benchmarks SOCO 2011
and CEC 2017 to investigate the proposed algorithm be-
havior. The lowest and the highest dimensions (50D
and 1000D) were considered. The selected functions
from benchmark SOCO 2011 are F4 (separable), F3
(nonseparable) and F16 (semi separable). The results
are reported in Table 8 and Figure 5. Although non-
separable function F3 approaches the global optimum,
it fails to reach it in all dimensions for the number of
evaluation permitted in the experiments (250,000 eval-
uations for 50D and 5,000,000 evaluations for 1000D).
The separable function F4 reaches the global optimum
after 5,001 evaluations for dimension 50D representing
2% of the stopping criterion. For 1000D, it reaches the
optimum after 120,002 evaluations representing 2.4% of
the permitted function evaluations. The semi separable
function F16 reaches the optimum after 25,200 function
evaluations for dimension 50D representing 10.08% of
the allowed evaluation and 280,001 function evalua-
tions for 1000D representing 5.6% of the stopping crite-
rion. These results show the stability and scalability of
polyFrac. In the exploration phase, the number of vis-
ited polytopes is the same in each function for both di-
mensions (50D and 1000D). This fact reveals the stabil-
ity and scalability of the polyFrac algorithm, regardless
of the dimension. Table 8 and Figure 5 also illustrate
the number of polytopes visited at all l levels.

The fitness convergence of polyFrac is analyzed on
CEC 2017 benchmark functions. Figure 8 and Figure
9 depict the mean error over the number of function
evaluations. Table 17 reports a comparison between
polyFrac and most efficient PSO-based algorithms over
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Table 1: Functions F1-F11.

Function Name Expression

F1 Shifted sphere function
∑D

i=1 z2
i + fbias, z = x − o

F2 Shifted Schwefel Problem 2.21 max{|zi|, 1 ≤ i ≤ D} + fbias, z = x − o

F3 Shifted Rosenbrock’s Function
∑D−1

i=1 (100(z2
i − zi+1)2 + (zi − 12)) + fbias, z = x − o

F4 Shifted Rastrigin’s Function
∑D

i=1(zi2 − 10cos(2πzi) + 10) + fbias, z = x − o

F5 Shifted Griewank’s Function
∑D

i=1
z2

i
4000 −

∏D
i=1 cos( zi√

i
) + 1 + fbias, z = x − o

F6 Shifted Ackley’s Function −20.exp(−0.2
√

1
D
∑D

i=1 z2
i − exp( 1

D
∑D

i=1 cos(2πzi)) + 20 +

e + fbias, z = x − o
F7 Schwefel’s Problem 2.22

∑D
i=1 |xi| +

∏D
i=1 |xi|

F8 Schwefel’s Problem 1.2
∑D

i=1(
∑D

j=1 x j)
F9 Extended f10

∑D−1
i=1 f10(xi, xi+1)) + f10(xD, x1)

f10(x, y) = (x2 + y2)0.25(sin2(50(x2 + y2)0.1) + 1)
F10 Bohachevsky

∑D−1
i=1 (x2

i + 2x2
i+1 − 0.3cos(3πxi) − 0.4cos(4πxi+1) + 0.7)

F11 Schaffer (x2
i + x2

i+1)0.25(sin2(50(x2
i + x2

i+1)0.1) + 1)

Table 2: Properties of functions F1 − F15.

Function Range Optimum f (x∗) Unimodal/Multimodal Shifted Separable Optimizable dimension by dimension

F1 [−100, 100]D -450 U X X X
F2 [−100, 100]D -450 U X
F3 [−100, 100]D 390 M X X
F4 [−5, 5]D -330 M X X X
F5 [−600, 600]D 180 M X
F6 [−32, 32]D -140 M X X X
F7 [−10, 10]D 0 U X X
F8 [−65.536, 65.536]D 0 U
F9 [−100, 100]D 0 U X
F10 [−15, 15]D 0 U
F11 [−100, 100]D 0 U

these functions where the polyFrac algorithm behavior
is similar across dimensions. In the exploitation phase,
the local search is used to seek the best solution (or
for the global optimum). The slope descends steeply
to reach the best solution or the optimal solution for
F6. The sudden change in the curves occurs when the
local search algorithm starts, as in the case of multi-
modal functions (e.g. F9). As shown in Figure 8, af-
ter an abrupt tumble, the curve stagnated until the stop-
ping criterion is reached. In summary, polyFrac shows
a stable and scalable behavior across all dimensions in
the case of separable, weakly separable, uni-modal, and
multi-modal functions, keeping the number of visited
polytopes constant and the percentage of allowed func-
tion evaluations constant as well.

5.4. Comparison with competing algorithms
The polyFrac performance is compared with a de-

terministic metaheuristic for large-scale Optimization

(FDA) [11], and DIRECT [7] as related algorithms. It is
compared to other competing optimization algorithms
from the literature for SOCO 2011 benchmarks.

5.4.1. Comparison of polyFrac with DIviding RECTan-
gles (DIRECT)

DIRECT is a well-known multi-scale optimization al-
gorithm that decomposes the search space to find the
global optimum. The comparison is conducted for func-
tions F1 to F6 and for dimensions 50D and 100D. This
choice is due to the fact that the number of expansion
increases in a quadratic way regarding the problem di-
mension. As shown in Table 9, the DIRECT algorithm
fails to reach the global optimum for dimension D > 10
and polyFrac outperforms DIRECT for all benchmark
functions and all dimensions.
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Table 3: Properties of functions F12 − F19.

Function Fns F’ mns Range Optimum f (x∗)

F12 NS ∗ − F9 F1 0.25 [−100, 100]D 0
F13 NS − F9 F3 0.25 [−100, 100]D 0
F14 NS − F9 F4 0.25 [−5, 5]D 0
F15 NS − F10 NS − F7 0.25 [−10, 10]D 0
F16 NS − F9 F1 0.75 [−100, 100]D 0
F17 NS − F9 F3 0.75 [−100, 100]D 0
F18 NS − F9 F4 0.75 [−5, 5]D 0
F19 NS − F10 NS − F7 0.75 [−10, 10]D 0

* non-separable

Table 4: Parameters tuning of polyFrac.

Parameters Value Description

k 5 Decomposition level
ωmin 1 × e−20 Stopping criterion for LS
φ 0.5 step-size reduction

5.4.2. Comparison of polyFrac with Fractal Decompo-
sition Algorithm (FDA)

As discussed in sub-section 3.3, FDA is an algorithm
decomposing the search space into hyperspheres. For
the sake of brevity, the comparison is conducted for the
lowest and the highest dimensions 50D and 1000D and
for functions F2, F3, F6, F13 and F17 for which FDA did
not reach the global optimum. As reported in Table 10,
the polyFrac algorithm outperforms FDA in all func-
tions and dimensions. Indeed, despite inflated hyper-
spheres, the FDA fails to fully cover the search space.
Besides, due to this inflation, it can search iteratively in
overlapping regions or out of space and fails to find the
global optimum before reaching the stop criteria.

5.4.3. Comparison of PolyFrac with SOCO 2011 con-
tributors

In this section, the polyFrac algorithm is compared
with SOCO 2011 contributors. Hybrid metaheuristics
are excluded from this study since they belong to a spe-
cific metaheuristic category. The following algorithms
are selected:

• Differential Evolution Algorithm (DE) [32] using
the exponential crossover.

• Real-coded Genetic Algorithm (CHC) [33]

• Memetic algorithm based on local search chains
(MA-SSW-Chains) [34] using memetic algorithm
with a local search.

• Multiple Trajectory Search for large-scale opti-
mization (MTS-LS1) [35] using the appropriate
values suggested in [36].

• Self-adaptive Differential Evolution (SaDE) [37]
using a learning phase to generate vectors strate-
gies.

• Multi-population Differential Evolution with bal-
anced ensemble of mutation strategies for large-
scale optimization (mDE-bES) [38]. This algo-
rithm uses various mutation operators for each di-
vided space and updates the strategies during the
search.

• Self-adaptive differential evolution algorithm
(jDElscop) using three strategies, and a mecha-
nism to decrease the population size [39].

The complexities of the algorithms are reported in Ta-
ble 11. According to this table, the lowest complex-
ity belongs to polyFrac and FDA. While these latter al-
gorithms have logarithmic complexities, the other ones
have polynomial complexities.

The algorithms’ performances for all dimensions are
compared using Friedman rank-sum and the results are
presented in Table 12 and Figure 6. The results show
that polyFrac is ranked first within all dimensions. In-
deed, for each benchmark function, the average relative
rank is calculated based on the average performance of
each algorithm. An average rank is reported through all
the functions.
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Table 5: Analysis of the Sensitivity with regards to the fractal depth (k). The average error is reported for 200D, 500D and 1000D.

200D 500D 1000D

k 3 4 5 6 3 4 5 6 3 4 5 6

F2 3.29E-12 2.12E-14 3.09E-14 2.98E-11 3.83E-10 2.76E-11 4.09E-12 1.88E-06 2.97E-07 2.12E-07 8.23E-08 7.43E-08
F3 2.33E-02 4.31E-04 9.05E-07 6.77E-03 4.23E-01 1.61E-02 7.33E-05 2.98E-03 1.44E-04 2.43E-01 6.21E-04 3.67E-02
F6 2.21E-13 8.93E-14 1.88E-14 5.01E-07 3.01E-14 4.23E-14 2.74E-13 2.89E-10 4.13E-13 3.71E-14 9.11E-13 7.82E-10
F13 5.21E-04 3.35E-04 5.11E-05 8.21E-04 4.33E-03 1.93E-02 9.01E-04 1.22E-04 8.21E-04 5.01E-03 8.19E-05 4.13E-04
F17 1.28E-01 3.16E-06 4.12E-02 1.81E-01 7.02E-01 4.31E-05 4.81E-03 6.19E-02 3.47E-01 1.00E-04 5.54E-01 3.37E-02
Values in bold represent the best result for a given function and dimension across all different values of k.

Table 6: Results achieve by polyFrac on functions F1-F10.

Dimension F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

50D 0.00E+00 1.33E-14 5.90E-01 0.00E+00 0.00E+00 5.01E-14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
100D 0.00E+00 4.30E-14 6.09E-02 0.00E+00 0.00E+00 2.06E-14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200D 0.00E+00 1.02E-11 0.00E+00 0.00E+00 0.00E+00 1.62E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500D 0.00E+00 9.00E-10 0.00E+00 0.00E+00 0.00E+00 7.27E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1000D 0.00E+00 9.46E-05 0.00E+00 0.00E+00 0.00E+00 9.27E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00

The raw and adjusted ρ-values of the Wilcoxon test
are presented in Table 13 and Table 14. Therefore, al-
gorithms with a p-value < 0.05 are statistically outper-
formed by the proposed algorithm. As shown in these
tables, polyFrac outperforms FDA, MA-SSW-Chains,
CHC, mDE-bES, DE, MTS-LS1, and SaDE in all di-
mensions (algorithms with a ρ-value < 0.05). As shown
in Table 15, polyFrac reaches approximately 15 times
the global optimum for all the benchmarks dimensions.
While it solves 15 problems out of 19, the second and
third highest performances are obtained for mdE-bES
and jDElscop where they solve only 9 problems. All
these results show that polyFrac yields good perfor-
mance for the benchmark functions in terms of scala-
bility and is stable across all dimensions. Besides, the
analysis of polyFrac demonstrates that it is an effective
approach to solving problems on a large scale. Table
18 reports the frequency with which these algorithms
have reached the global optimum for all the benchmarks
functions.

The tables 20-25 compare the average error obtained
by applying polyFrac and the algorithms mentioned on
the reference functions for all dimensions. Fig 10 por-
trays the average rank distributions for each algorithm
on all functions. As shown in these boxplots, polyFrac
has a more stable performance than the other algorithms
for all functions within all dimensions. A Wilcoxon
pairwise test is conducted on polyFrac and all algo-
rithms for a qualified comparison of the algorithms’ per-
formances. The Holm procedure [40] for the familywise
error rate is used to adjust the ρ-values provided by the
Wilcoxon test.

5.4.4. Comparison of polyFrac with metaheuristics
methods

For a comparison of the proposed approach with
large-scale global metaheuristics, the following algo-
rithms are selected from [40]: Deterministic meta-
heuristic based on Fractal Decomposition for large-
scale Optimization (FDA) [11], Large Scale Global Op-
timization with MOS-based hybrid algorithms (MOS-
CEC2013), Multiple Offspring Sampling in Large
Scale Global Optimization (MSO-CEC2012), Mul-
tiple Offspring Sampling (MSO-SOCO2011), IACO
R-Hybrid, Two-stage based ensemble optimization
(X2S.Ensemble). Table 25 presents the average errors
of the aforementioned algorithms using 19 benchmark
functions for dimension 50D.

The Friedman rank-sum test is shown in Table 19
(first column) where polyFrac is ranked first. The ρ-
values is reported in Table 19 (second column). This
value is obtained using a Wilcoxon pairwise test and
is adjusted using the Holm procedure. As shown in
this Table 19 and in Figures 7-10, the polyFrac algo-
rithm more efficient than FDA, MOS-CEC2013, MOS-
CEC2012, MOS-SOCO2011, and 2S-Ensemble. The
adjusted ρ-values obtained from the Wilcoxon test con-
firms polyFrac efficiency. Furthermore, it shows stable
performance for 15 functions, which is more than all
other algorithms (see Table 18).

5.4.5. Comparison of polyFrac with recent metaheuris-
tics methods

The polyFrac algorithm performance is compared
with recent algorithms applied on CEC 2017 benchmark
functions [30] to make a comprehensive comparison.

These algorithms are briefly described below:
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Table 7: Results achieved by polyFrac on functions F11-F19.

Dimension F11 F12 F13 F14 F15 F16 F17 F18 F19

50D 0.00E+00 0.00E+00 7.81E-14 0.00E+00 0.00E+00 0.00E+00 5.90E-01 0.00E+00 0.00E+00
100D 0.00E+00 0.00E+00 1.92E-13 0.00E+00 0.00E+00 0.00E+00 6.09E-02 0.00E+00 0.00E+00
200D 0.00E+00 0.00E+00 3.59E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500D 0.00E+00 0.00E+00 9.02E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1000D 0.00E+00 0.00E+00 1.97E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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Figure 5: Number of evaluations (left) and visited polytopes (right) to find the best solution for functions F3, F4 and F16 for D = 50 and D = 1000.
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Table 8: Number of evaluations and visited polytopes to find the best
solution for F3, F4 and F16 for dimensions 50D and 1000D .

50D 1000D

Function No Evaluation No Visited P No Evaluation No Visited P

F3 250,000 5 5,000,000 5
F4 5,001 30 120,002 29
F16 25,200 33 280,001 33

• LSHADE-SPACMA (LSSPA) [41]: mixes
LSHADE-SPA and CMA-ES algorithms.

• jSO: [42]: ameliorates variant of iL-SHADE algo-
rithm.

• MM-OED (MM) [43]: is based on a multi-
method algorithm using orthogonal experiment de-
sign (OED).

• MOS (MOS11, MOS12, MOS13) [44]: are three
algorithms for large-scale global optimization.

• PPSO [18]: relies on Particle Swarm Optimization
using fuzzy logic.

• DYYPO [45]: modifies Yin-Yang Pair Optimiza-
tion algorithm by integrating dynamic archive up-
dating strategy.

• RB-IPOP-CMA-ES (RBI) [46]: modifies IPOP-
CMA-ES algorithm by restarting the trigger in ac-
cordance with the fitness.

• TLBO-FL (TFL) [47]: modifies the Teaching
Learning Based Optimization algorithm by includ-
ing focused learning of students.

The test functions of CEC 2017 are categorized into
four classes as uni-modal functions (F1-F3), multi-
modal functions (F4-F10), hybrid functions (F11-F20)
and composition functions (F21-F29) [45]. From each
class, three functions are selected to evaluate the per-
formance of polyFrac for dimension 100D. A compari-
son of the mean error values obtained for 100D between
polyFrac and all mentioned algorithms are given in Fig-
ures 8 and 9. The polyFrac algorithm is ranked first
among all test functions (this information is obtained
from [48]).

As shown in this figure, polyFrac converges faster
than the other algorithms and has the smallest mean val-
ues for most of the functions.

5.4.6. Comparison of polyFrac with PSO-based meth-
ods

The polyFrac algorithm performance is compared
with the following swarm intelligence algorithms ap-

plied on CEC 2017 benchmark functions [30]. These
algorithms are briefly described below:

• HSSAPSO [19]: combines the salp swarm algo-
rithm with PSO to remedy their drawbacks and
take advantage of the two algorithms.

• MPSO [16]: improves local search ability of the
standard PSO algorithms.

• HFPSO [17]: determines the start of the local
search process by checking the previous global
best fitness values.

• PPSO [18] relies on PSO using fuzzy logic.

A comparison of the mean error values obtained for
100D between polyFrac and all mentioned algorithms
are given in Table 17. The polyFrac algorithm out-
performs almost all the PSO-based algorithms on the
test functions. The results of all competing algorithms
are taken from their original papers. One can see that
polyFrac outperforms significantly all PSO-based meth-
ods in most of all test functions.

5.4.7. Applying polyFrac on real-world optimization
problem

In this section, a real-world optimization problem is
used to test the performance of the proposed algorithm.
The selected problem concerns the future traffic speed
prediction of the road segments (links) based on the traf-
fic flow data [49, 50]. The deep learning architecture
proposed in [49, 50] is a convolutional attention-based
gated recurrent unit (GRU) minimizing Mean Square
Error (MSE), defined as follows:

M =

∑N
i=1[s(n)

i − ŝ(n)
i ]2

N
(17)

where ŝ(n)
i is the estimated speed for the input traffic

flow f (n)
i , s(n)

i is the real traffic speed, i.e. ground truth.
The total number of samples is denoted with N which
is 18,162 samples for an aggregation rate of 2 hours’
traffic data. To minimizeM stochastic gradient descent
via a back-propagation process updates all learning pa-
rameters of the model Θ, i.e. weights in the opposite
direction:

∇Θ = −γ
δL

δΘ
(18)

where γ stands for the learning rate determining the
steps’ size to reach a local minimum. In the proposed
deep neural network’s architecture 1952 weights param-
eters are used, which is calculated based on the network
structure.
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Table 9: Comparison of polyFrac and DIRECT algorithms for dimensions 50D and 100D .

50D 100D

Function DIRECT polyFrac DIRECT polyFrac

F1 5.53E+01 0.00E+00 1.06E+04 0.00E+00
F2 5.53E+01 1.33E-14 7.45E+01 4.30E-14
F3 1.79E+04 5.90E-01 9.84E+07 6.09E-02
F4 1.26E+02 0.00E+00 6.64E+02 0.00E+00
F5 1.06E+00 0.00E+00 5.06E+01 0.00E+00
F6 1.59E-01 5.01E-14 1.87E-01 2.06E-14

Table 10: Comparison of polyFrac and FDA algorithms for dimensions 50D and 1000D .

50D 1000D

Function FDA polyFrac FDA polyFrac

F2 2.71E-12 1.33E-14 3.11E-01 9.46E-05
F3 5.53E+01 5.90E-1 1.13E+03 0.00E+00
F6 5.75E-14 5.01E-14 1.91E-12 9.27E-13
F13 5.50E+01 7.81E-14 7.69E+02 1.97E-12
F17 6.09E-04 5.90E-01 1.95E+02 0.00E+00

Table 11: Comparison of the complexity of polyFrac with algorithms
in the literature.

Algorithm Complexity

DE O(D2)
CHC O(D2)

MTS-LS1 Less than or equal to O(D2)
SaDE Less than or equal to O(D3)

mDE-bES Less than or equal to O(D2)
jDElscop Less than or equal to O(D2)

MA-SSW-Chains Greater than or equal to O(D3)
FDA Less than or equal to O(logk(D))

polyFrac Less than or equal to O(logk(D))

More detail on the network’s structure is given in
[49, 50]. The polyFrac algorithm is used in this deep
neural network to compute and update the weights,
Θ, throughout different epochs. The framework con-
verges after about 150 epochs in this experiment (each
epoch takes almost 2 minutes). The performance of the
polyFrac algorithm used in the neural network’s struc-
ture is evaluated using the conventional metrics:
Mean Absolute Error (MAE):

MAE =

∑n
i |yi − ŷi|

n
, (19)

Root Mean Square Error (RMSE) :

RMS E =

√
Σi(yi − ŷi)2

n
, (20)

and Mean Absolute Percentage Error (MAPE):

MAPE =

n∑
i

|
yi − ŷi

yi
|
100%

n
, (21)

where n denotes the total number of prediction points,
yi stands for the ground truth values, and ŷi denotes
the prediction values. The performance is then com-
pared with the initial neural network, i.e. without us-
ing polyFrac. The results are reported in Table 16. As
shown, the network using polyFrac to update its weights
outperforms the initial network.

6. Conclusion

In this paper, we proposed a new metaheuristic al-
gorithm based on the fractal decomposition approach.
Herein, we presented a new method that makes use of
hyper-polytopes to decompose the search space. The
main contribution is the polyFrac algorithm, proposing
a novel hyper-polytope decomposition for continuous
optimization. Indeed, this method recursively decom-
poses the search space to non-overlapping regions and
it is possible to move throughout different granularity
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Figure 8: Mean error values for functions F1, F2, F3, F7, F8, F9 for all algorithms from CEC 2017 competition and polyFrac for dimension 100D.
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Table 12: Friedman Rank sum for all algorithms at dimensions 50D, 100D, 200D, 500D and 1000D.

Algorithm 50D 100D 200D 500D 1000D

MA-SSW-Chains 3.92 3.74 3.97 4.68 4.84
jDElscop 3.00 2.82 2.79 2.61 2.55

CHC 6.84 7.05 7.24 7.53 7.47
mDE-bES 3.32 3.03 2.55 2.47 2.58

DE 4.63 4.82 5.50 5.58 5.97
MTS-LS1 4.58 5.29 5.13 4.87 4.39

SaDE 6.89 6.89 6.45 6.00 6.08
FDA 2.82 2.37 2.37 2.26 2.11

polyFrac 2.29 2.03 1.84 1.98 2.03

Table 13: Raw and adjusted ρ-values from Wilcoxon test using the Holm procedure for dimensions 50D, 100D and 200D.

50D 100D 200D

polyFrac vs. Raw Adjusted Raw Adjusted Raw Adjusted

MA.SSW.Chains 2.21E-07 3.43E-07 1.11E-09 4.01E-08 5.87E-08 1.98E-08
jDElscop 2.01E-01* 2.01E-01* 1.32E-01* 1.86E-01* 1.88E-01* 2.71E-01*

CHC 2.32E-9 1.13E-9 2.53E-10 5.12E-10 2.11E-10 4.28E-10
mDE.bES 1.12E-04 3.42E-04 1.12E-03 1.12E-03 3.52E-02 3.52-02

DE 2.12E-07 1.63E-07 4.98E-09 1.15E-08 6.65E-09 2.32E-08
MTS.LS1 4.11E-08 1.45E-06 2.01E-08 1.03E-07 3.17E-08 1.02E-07

SaDE 3.23E-09 2.07E-09 1.13E-09 5.59E-09 2.78E-09 1.34E-08
FDA 2.34E-09 1.07E-08 3.03E-09 6.01E-09 2.90E-09 1.18E-08

* ρ-value > 0.05 fails to indicate the difference with significant level α = 0.05

levels by only computing the average of vertices of a
polytope to obtain the coordinates of the centroids. This
property allows reducing the computation complexity
of the algorithm when the size of the search space in-
creases. Then, the most promising hyper-polytopes are
iteratively decomposed into child-polytopes. Finally, a
simple deterministic local search (metaheuristic based
on a single solution) is used to intensively search for
the best solution within the selected low-level hyper-
polytope. The polyFrac backtracks via the moving-up
procedure to explore the rest of the search space until
the stopping criterion is satisfied to avoid being stall into
a local optimum. The proposed algorithm was tested on
different test functions from large scale continuous op-
timization problems. The obtained results show the ef-
ficiency of the proposed algorithm and the comparisons
with other recent and state-of-the-art algorithms prove
that its performance is very competitive for all consid-
ered dimensions. Then, we intend to introduce a parallel
population-based method to enhance the algorithm per-
formance dealing with dynamic optimization problems.

In this study, we focused on a classical method to put
forward the proposed algorithm sensitivity. Instead, a
metaheuristic will be used to optimize hyperparameters
in future work. Two other applications on real-world
problems are also in development.

7. Statement

This manuscript is the authors’ original work and
has not been published nor has it been submitted si-
multaneously elsewhere. All authors have checked the
manuscript and have agreed to the submission.
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DE 7 4 2 1 1 3 (7)
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FDA 14 14 14 14 14 14 (2)

polyFrac 14 14 16 16 16 15 (1)
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Table 19: First column: Friedman Rank sum of other algorithms at dimension 50D. Second and third column: Raw and adjusted ρ-values from the
Wilcoxon test for other metaheuristics using the Holm procedure.

polyFrac vs. 50D 50D

Raw Adjusted

MOS-SOCO2011 2.578947368 (4)* 4.89E-01† 7.11E-01†
MOS-CEC2013 4.421052632 (6) 1.94E-07 6.01E-07
MOS-CEC2012 5.236842105 (7) 3.17E-08 1.54E-08
IACO R-Hybrid 2.236842105 (2) 5.46E-01† 5.75E-01†

2S-Ensemble 4.157894737 (5) 2.04E-05 1.43E-04
FDA 2.368421053 (3) 1.32E-07 2.06E-06

* the rank of algorithm with respect to the others.
† ρ-value > 0.05 fails to indicate the difference with significant level α =

0.05

Table 20: Average error on 50D functions.

MA-SSW-Chains jDElscop CHC mDE-bES DE MTS-LS1 SaDE FDA polyFrac

F1 0.00E+00 0.00E+00 1.67E-11 0.00E+00 0.00E+00 0.00E+00 2.68E+01 0.00E+00 0.00E+00
F2 7.61E-02 3.15E-02 6.19E+01 1.52E+01 8.84E-11 8.84E-14 1.21E+02 2.71E-12 1.33E-14
F3 4.79E+01 2.28E+01 1.25E+06 4.76E-05 1.63E+02 1.63E+02 7.46E+04 9.32E+01 5.90E-01
F4 1.19E-01 0.00E+00 7.43E+01 1.77E+01 0.00E+00 0.00E+00 1.07E+01 0.00E+00 0.00E+00
F5 0.00E+00 0.00E+00 1.67E-03 0.00E+00 7.68E-03 7.68E-03 1.87E-01 0.00E+00 0.00E+00
F6 4.89E-14 9.55E-14 6.15E-07 3.97E-14 0.00E+00 0.00E+00 4.63E-02 6.75E-14 5.01E-14
F7 0.00E+00 0.00E+00 2.66E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F8 3.06E-01 9.97E-03 2.24E+02 1.64E-09 9.56E-12 9.65E-12 6.92E+05 0.00E+00 0.00E+00
F9 2.94E+02 0.00E+00 3.10E+02 0.00E+00 1.03E+02 1.03E+02 3.00E-02 0.00E+00 0.00E+00
F10 0.00E+00 0.00E+00 7.30E+00 0.00E+00 0.00E+00 0.00E+00 2.94E-02 0.00E+00 0.00E+00
F11 4.49E-03 0.00E+00 2.16E+00 1.15E-08 1.04E+02 1.04E+02 8.35E-02 0.00E+00 0.00E+00
F12 0.00E+00 0.00E+00 9.57E-01 0.00E+00 1.34E+01 1.34E+01 4.80E+01 0.00E+00 0.00E+00
F13 3.02E+01 1.36E+01 2.08E+06 2.50E-01 2.94E+01 2.94E+01 3.42E+09 5.50E+01 7.81E-14
F14 0.00E+00 0.00E+00 6.17E+01 9.60E+00 5.52E+01 5.52E+01 4.22E+03 0.00E+00 0.00E+00
F15 0.00E+00 0.00E+00 3.98E-01 0.00E+00 0.00E+00 0.00E+00 8.50E-03 0.00E+00 0.00E+00
F16 4.06E-03 0.00E+00 2.95E-09 0.00E+00 4.06E+01 4.06E+01 1.36E+01 0.00E+00 0.00E+00
F17 2.60E+01 7.43E-03 2.26E+04 2.42E-01 2.17E+02 2.17E+02 2.36E+05 6.09E-04 5.90E-01
F18 0.00E+00 2.41E-14 1.58E+01 5.65E-05 5.65E+01 5.65E+01 2.72E+01 0.00E+00 0.00E+00
F19 0.00E+00 0.00E+00 3.59E+02 0.00E+00 0.00E+00 0.00E+00 1.15E-01 0.00E+00 0.00E+00

Table 21: Average error on 100D functions.

MA-SSW-Chains jDElscop CHC mDE-bES DE MTS-LS1 SaDE FDA polyFrac

F1 0.00E+00 0.00E+00 3.56E-11 0.00E+00 3.79E+00 1.09E-12 3.13E+01 0.00E+00 0.00E+00
F2 7.01E+00 1.21E+00 8.58E+01 4.00E+01 7.58E+01 4.66E-10 1.26E+02 8.48E-12 4.30E-14
F3 1.38E+02 6.13E+01 4.19E+06 4.90E-01 1.27E+02 2.32E+02 1.11E+05 5.09E+01 6.09E-02
F4 1.19E-01 0.00E+00 2.19E+02 1.87E+01 2.85E+00 1.05E-12 1.58E+01 0.00E+00 0.00E+00
F5 0.00E+00 0.00E+00 3.83E-03 0.00E+00 3.05E-01 6.70E-03 3.53E-01 0.00E+00 0.00E+00
F6 6.03E-14 2.00E-13 4.10E-07 1.44E-13 4.34E-01 1.20E-12 8.32E-02 1.35E-13 2.06E-14
F7 0.00E+00 0.00E+00 1.40E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F8 3.48E+01 5.57E+00 1.69E+03 2.32E-03 4.74E+02 1.43E-03 2.83E+05 0.00E+00 0.00E+00
F9 5.63E+02 7.18E-09 5.86E+02 0.00E+00 3.71E-03 2.20E+02 3.00E-02 0.00E+00 0.00E+00
F10 0.00E+00 0.00E+00 3.30E+01 0.00E+00 0.00E+00 0.00E+00 4.73E-02 0.00E+00 0.00E+00
F11 1.09E-01 8.17E-09 7.32E+01 0.00E+00 8.58E-04 2.10E+02 3.05E-01 0.00E+00 0.00E+00
F12 3.28E-03 0.00E+00 1.03E+01 5.36E-04 2.71E+00 3.91E+01 3.79E+01 0.00E+00 0.00E+00
F13 8.35E+01 5.11E+01 2.70E+06 8.50E+00 5.87E+01 1.75E+02 3.42E+09 1.68E+02 6.09E-02
F14 0.00E+00 0.00E+00 1.66E+02 1.16E+01 2.21E+00 2.04E+02 3.92E+03 0.00E+00 0.00E+00
F15 0.00E+00 0.00E+00 8.13E+00 0.00E+00 0.00E+00 0.00E+00 3.99E-02 0.00E+00 0.00E+00
F16 1.61E-02 0.00E+00 2.23E+01 0.00E+00 3.52E+00 1.04E+02 1.96E+01 0.00E+00 0.00E+00
F17 9.92E+01 3.21E-01 1.47E+05 6.65E-03 1.58E+01 4.17E+02 2.34E+05 6.22E+00 6.09E-02
F18 0.00E+00 6.33E-14 7.00E+01 4.46E-01 8.76E-01 1.22E+02 3.05E+01 0.00E+00 0.00E+00
F19 0.00E+00 0.00E+00 5.45E+02 0.00E+00 0.00E+00 0.00E+00 2.71E-01 0.00E+00 0.00E+00
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Table 22: Average error on 200D functions.

MA-SSW-Chains jDElscop CHC mDE-bES DE MTS-LS1 SaDE FDA polyFrac

F1 0.00E+00 0.00E+00 8.34E-01 0.00E+00 8.55E+00 2.29E+00 2.03E+01 0.00E+00 0.00E+00
F2 3.36E+01 7.54E+00 1.03E+02 4.15E+01 1.05E+02 4.54E-09 1.03E+02 1.23E-10 1.02E-11
F3 2.50E+02 1.40E+02 2.01E+07 1.35E+02 3.32E+05 1.69E+02 4.82E+04 2.51E+02 0.00E+00
F4 4.43E+00 0.00E+00 5.40E+02 9.27E-13 6.98E+00 2.34E-12 6.25E+00 0.00E+00 0.00E+00
F5 0.00E+00 0.00E+00 8.76E-03 0.00E+00 4.05E-01 5.42E-03 6.43E-02 0.00E+00 0.00E+00
F6 1.19E-13 4.52E-13 1.23E+00 0.00E+00 7.14E-01 2.38E-12 2.73E-02 2.52E-13 1.62E-13
F7 0.00E+00 0.00E+00 2.59E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F8 7.23E+02 2.52E+02 9.38E+03 8.71E-01 5.76E+03 1.42E+01 4.47E+05 0.00E+00 0.00E+00
F9 1.17E+03 4.30E-08 1.19E+03 0.00E+00 8.79E-03 4.27E+02 3.00E-02 0.00E+00 0.00E+00
F10 0.00E+00 0.00E+00 7.13E+01 0.00E+00 4.19E-02 0.00E+00 1.59E-02 0.00E+00 0.00E+00
F11 3.50E-01 9.58E-09 3.85E+02 0.00E+00 5.07E-03 4.28E+02 4.89E-03 0.00E+00 0.00E+00
F12 1.75E-02 0.00E+00 7.44E+01 0.00E+00 3.61E+00 8.42E+01 4.63E+01 0.00E+00 0.00E+00
F13 1.68E+02 1.10E+02 5.75E+06 9.45E+01 1.49E+02 2.53E+02 3.16E+09 7.07E+01 3.59E-13
F14 9.76E-01 4.11E-16 4.29E+02 1.20E+01 4.75E+00 3.98E+02 4.09E+03 0.00E+00 0.00E+00
F15 0.00E+00 0.00E+00 2.14E+01 0.00E+00 0.00E+00 0.00E+00 5.38E-03 0.00E+00 0.00E+00
F16 6.02E-02 0.00E+00 1.60E+02 0.00E+00 3.70E+00 1.97E+02 9.49E+00 0.00E+00 0.00E+00
F17 7.55E+01 2.39E+01 1.75E+05 8.39E-02 2.23E+01 6.07E+02 2.36E+05 9.31E+01 0.00E+00
F18 4.29E-04 2.04E-13 2.12E+02 8.93E-11 2.37E+00 2.34E+02 1.69E+01 0.00E+00 0.00E+00
F19 0.00E+00 0.00E+00 2.06E+03 0.00E+00 4.19E-02 0.00E+00 1.00E-01 0.00E+00 0.00E+00

Table 23: Average error on 500D functions.

MA-SSW-Chains jDElscop CHC mDE-bES DE MTS-LS1 SaDE FDA polyFrac

F1 0.00E+00 0.00E+00 2.84E-12 3.92E-13 2.46E+01 5.77E-12 1.34E+01 0.00E+00 0.00E+00
F2 7.86E+01 3.06E+01 1.29E+02 4.56E+01 1.44E+02 5.34E-06 9.23E+01 4.30E-04 9.00E-10
F3 6.07E+02 4.06E+02 1.14E+06 4.16E+02 1.12E+05 2.20E+02 2.62E+04 5.82E+02 0.00E+00
F4 1.78E+02 1.59E-01 1.91E+03 1.91E-11 1.63E+01 5.62E-12 1.31E+00 0.00E+00 0.00E+00
F5 0.00E+00 0.00E+00 6.98E-03 1.83E-13 4.73E-01 4.24E-03 7.48E-03 0.00E+00 0.00E+00
F6 2.63E-13 1.18E-12 5.16E+00 3.56E-14 1.06E+00 6.18E-12 4.63E-01 8.74E-13 7.27E-13
F7 4.69E-14 0.00E+00 1.27E-01 0.00E+00 0.00E+00 1.46E-12 0.00E+00 0.00E+00 0.00E+00
F8 1.32E+04 5.66E+03 7.22E+04 5.48E+02 6.70E+04 6.16E+03 3.21E+05 0.00E+00 0.00E+00
F9 2.53E+03 6.10E-08 3.00E+03 0.00E+00 1.12E-02 1.00E+03 3.00E-02 0.00E+00 0.00E+00
F10 2.80E-01 0.00E+00 1.86E+02 0.00E+00 2.93E-01 0.00E+00 8.41E-03 0.00E+00 0.00E+00
F11 4.21E+01 4.40E-08 1.81E+03 0.00E+00 2.43E-01 1.00E+03 2.22E-03 0.00E+00 0.00E+00
F12 2.55E+01 0.00E+00 4.48E+02 0.00E+00 1.16E+01 2.47E+02 4.61E+01 0.00E+00 0.00E+00
F13 4.00E+02 3.14E+02 3.22E+07 3.23E+02 4.02E+02 5.05E+02 2.97E+09 3.74E+02 9.02E-13
F14 5.65E+01 8.00E-02 1.46E+03 1.68E+01 1.16E+01 1.10E+03 3.91E+03 0.00E+00 0.00E+00
F15 5.53E+00 0.00E+00 6.01E+01 0.00E+00 4.19E-02 1.08E-12 2.84E-03 0.00E+00 0.00E+00
F16 1.08E-01 0.00E+00 9.55E+02 0.00E+00 1.32E+01 4.99E+02 5.82E+00 0.00E+00 0.00E+00
F17 1.38E+02 7.65E+01 8.40E+05 6.65E+01 6.94E+01 7.98E+02 2.38E+05 3.96E+02 0.00E+00
F18 2.41E-03 1.11E-12 7.32E+02 0.00E+00 3.87E+00 5.95E+02 9.43E+00 0.00E+00 0.00E+00
F19 0.00E+00 0.00E+00 1.76E+03 0.00E+00 8.39E-02 0.00E+00 1.00E-01 0.00E+00 0.00E+00
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Table 24: Average error on 1000D functions.

MA-SSW-Chains jDElscop CHC mDE-bES DE MTS-LS1 SaDE FDA polyFrac

F1 0.00E+00 0.00E+00 1.36E-11 8.24E-13 3.71E+01 1.15E-11 3.49E+01 0.00E+00 0.00E+00
F2 1.39E+02 6.14E+01 1.44E+02 5.97E+01 1.63E+02 2.25E-02 1.43E+02 3.11E-01 0.00E+00
F3 1.22E+03 8.48E+02 8.75E+03 9.00E+02 1.59E+05 2.10E+02 1.62E+05 1.13E+03 1.97E-12
F4 1.58E+03 1.99E-01 4.76E+03 4.03E+01 3.47E+01 1.15E-11 3.21E+01 0.00E+00 0.00E+00
F5 5.92E-04 0.00E+00 7.02E-03 0.00E+00 7.36E-01 3.55E-03 6.33E-01 0.00E+00 0.00E+00
F6 1.46E-09 2.67E-12 1.38E+01 1.28E-12 8.70E-01 1.24E-11 4.28E-01 1.91E-12 0.00E+00
F7 6.23E-13 0.00E+00 3.52E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F8 7.49E+04 3.21E+04 3.11E+05 7.98E+03 3.15E+05 1.23E+05 3.08E+05 0.00E+00 0.00E+00
F9 5.99E+03 4.40E-03 6.11E+03 0.00E+00 6.26E-02 1.99E+03 3.00E-02 0.00E+00 0.00E+00
F10 2.09E-05 0.00E+00 3.83E+02 0.00E+00 1.67E-01 0.00E+00 1.47E-01 0.00E+00 0.00E+00
F11 5.27E+01 8.58E-04 4.82E+03 0.00E+00 4.42E-02 1.99E+03 4.56E-01 0.00E+00 9.46E-05
F12 9.48E-02 0.00E+00 1.05E+03 0.00E+00 2.58E+01 5.02E+02 3.43E+01 0.00E+00 0.00E+00
F13 1.02E+03 6.57E+02 6.66E+07 6.34E+02 8.24E+04 8.87E+02 3.27E+09 7.69E+02 0.00E+00
F14 7.33E+02 3.98E-02 3.62E+03 2.45E+01 2.39E+01 2.23E+03 3.71E+03 0.00E+00 0.00E+00
F15 1.16E-13 0.00E+00 8.37E+01 0.00E+00 2.11E-01 0.00E+00 1.11E-01 0.00E+00 9.27E-13
F16 2.19E+00 8.04E-01 2.32E+03 0.00E+00 1.83E+01 1.00E+03 2.37E+01 0.00E+00 0.00E+00
F17 3.26E+02 1.72E+02 2.04E+07 1.88E+02 1.76E+05 1.56E+03 1.62E+05 1.95E+02 0.00E+00
F18 2.58E+01 1.65E-01 1.72E+03 2.49E-01 7.55E+00 1.21E+03 3.54E+01 0.00E+00 0.00E+00
F19 0.00E+00 0.00E+00 4.20E+03 0.00E+00 2.51E-01 0.00E+00 9.32E+02 0.00E+00 0.00E+00

Table 25: Average error on 50D functions for other metaheuristics.

MOS-SOCO2011 MOS-CEC2013 MOS-CEC2012 IACO R-Hybrid 2S-Ensemble FDA polyFrac

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 5.88E-01 1.10E+02 1.03E+02 0.00E+00 4.31E+01 2.71E-12 1.33E-14
F3 7.09E+01 7.39E+00 9.38E+02 0.00E+00 1.34E+03 9.32E+01 5.90E-01
F4 0.00E+00 0.00E+00 1.90E+02 0.00E+00 8.58E-01 0.00E+00 0.00E+00
F5 0.00E+00 0.00E+00 1.18E-03 0.00E+00 3.00E-03 0.00E+00 0.00E+00
F6 0.00E+00 0.00E+00 1.03E+00 0.00E+00 0.00E+00 6.75E-14 5.01E-14
F7 0.00E+00 2.56E-12 1.03E-13 0.00E+00 Inf. 0.00E+00 0.00E+00
F8 1.66E+05 5.98E+03 1.09E+03 0.00E+00 1.93E+05 0.00E+00 0.00E+00
F9 0.00E+00 2.51E+03 5.95E+03 0.00E+00 2.68E+00 0.00E+00 0.00E+00
F10 0.00E+00 1.58E+00 1.79E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F11 0.00E+00 2.54E+03 5.88E+03 0.00E+00 3.23E+00 0.00E+00 0.00E+00
F12 0.00E+00 9.99E+02 1.12E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F13 1.69E+02 1.23E+03 2.03E+03 8.77E-01 1.25E+03 5.50E+01 7.81E-14
F14 0.00E+00 3.37E+03 4.32E+03 2.90E-02 4.40E-02 0.00E+00 0.00E+00
F15 0.00E+00 1.93E-12 2.04E+01 0.00E+00 Inf. 0.00E+00 0.00E+00
F16 0.00E+00 8.02E+03 2.33E+03 1.12E-03 0.00E+00 0.00E+00 0.00E+00
F17 6.71E+01 3.55E+11 3.71E+03 1.84E-06 3.39E+01 6.09E-04 5.90E-01
F18 0.00E+00 2.03E+03 2.29E+03 9.20E-01 5.51E-01 0.00E+00 0.00E+00
F19 0.00E+00 2.05E+03 5.25E+01 0.00E+00 7.99E-17 0.00E+00 0.00E+00
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