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Abstract

The massive growth of the population with chronic diseases calls for a telecare sys-

tem to enhance their quality of life and reduce their treatment costs. Most of the

current solutions depend on reliable data, deterministic rules, or the similarity of

patients, while studies have shown otherwise. To this end, in this paper, we have

extended our previous work on the Hapicare framework to integrate probabilistic

diagnosis and self-adaptive treatment. Our new framework enables sensors’ datas-

tream analysis and online decision-making. Its ontology-based reasoning uses

Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT) ontol-

ogy to add contextual information to the collected data. Moreover, probabilistic

reasoning is applied for diagnosis and screening to manage the uncertainty and

unreliability of data as well as the indeterministic medical rules. The treatment

system is designed to be modifiable by the experts and automatically adaptable

to patients’ needs. The probabilistic diagnosis performance has been evaluated

based on two public datasets regarding symptoms and risk factors of two chronic

diseases: chronic kidney disease and dermatologic disease. The results show

that our solution outperforms a classical classifier specifically when more than

40% of the data are missing. The proposed framework is also validated using

four scenarios. The evaluation results demonstrate the ability of the proposed

framework to help patients and doctors diagnose and treat medical conditions

and episodes.

Keywords: Medical Telemonitoring, Bayesian Reasoning, Answer Set

Programming, Self-adaptive Systems
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1. Introduction

Chronic diseases have created one of the biggest challenges in public health,

as they are the leading cause of morbidity and mortality (Harris, 2019), in

particular, during the pandemic of COVID-19 that increases the mortality of

patients with chronic diseases (Paget et al., 2019). However, the quality of life

and life expectancy of patients with chronic diseases can be improved using

the existing knowledge (WHO, 2005). Nevertheless, given a high number of

patients with chronic diseases, managing them would require a lot of medical

efforts. To this end, the use of telecare has been favored. Telecare is a general

term of combining the Greek prefix tele, meaning at a distance, and the word

care, which Miller & O’Toole (2003b) have defined as the use of information

and telecommunications technologies to monitor patients and deliver health

care to them remotely. Telecare can be used for managing medical conditions,

including the important acute events during medical conditions, which are called

episodes (Miller & O’Toole, 2003a). For instance, a cardiac arrest is an acute

health event that may occur during a cardiovascular medical condition; i.e.,

cardiovascular disease is a medical condition, while cardiac arrest is an episode.

Moreover, hypoglycemic episode commonly occurs in patients suffering from

Diabetes Mellitus (DM) and Chronic Kidney Disease (CKD).

Studies have shown that telecare enables patients to feel safe and reassured. It

also provides an opportunity for better treatment to the physicians (Bujnowska-

Fedak & Grata-Borkowska, 2015; de Bruin et al., 2018). Predominantly, the

technology is used to remove the physical barrier between the medical team and

patients to enable treating patients at their homes. For example, Bhatti et al.

(2018) focus on treating patients in a remote area. However, the research is

trending to facilitate the treatment by providing useful suggestions to patients

and comprehensive information to their doctors. Parati et al. (2018) have shown

that telecare can better control the patient’s condition and support doctors to

optimize the treatment and, consequently, decrease healthcare expenditure.

Using telecare with different sensors would result in the holistic monitoring
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of patients. Nevertheless, there are various pitfalls to avoid (Bujnowska-Fedak

& Grata-Borkowska, 2015). The essential principle in designing such systems is

customizability; because each patient has a unique requirement, and a simplistic

design might not be useful for all patients (Sultan et al., 2018; Vitacca et al.,

2018). Another overlooked problem of such systems is the uncertainty of collected

data, which would hugely affect the use of that data (Knowles et al., 2018).

Monitoring vital signs, activities, and any other aspects of human life and health

patterns must consider the heterogeneity of the different source types producing

observations and the uncertainty of the observations.

We have proposed Hapicare in our previous work, a reactive telemonitoring

system with probabilistic reasoning using Bayesian Network (BN) (Kordestani

et al., 2019). BN is a probabilistic graphical model representing the initial

knowledge and relationships among variables of complex systems using a di-

rected acyclic graph. It also considers expert knowledge, empirical data, and

their uncertainties to enable probabilistic reasoning at the same time. Regarding

the categories of rules provided by Object Management Group, a computer

industry standards consortium (OMG, 2009); in Hapicare, two types of rules

are embedded in BN, namely (1) production rules that are used for diagnosis of

episodes and (2) reactive rules that are used for selection of treatments based

on the episode. The reactive rules are needed to be dynamic; however, the rules

embedded in BN are hardly modifiable. To overcome this limitation, we have

extended Hapicare in this paper to handle the uncertainty of data and rules for

diagnosing the medical conditions/episodes of patients, and to automatically

self-customize the treatment procedure based on patients’ experiences, which is

called self-adaptive treatment in the rest of this paper. Although the objective

of telecare is holistic monitoring of patients, nonetheless, the proposed system

can overcome missing data. The main contributions of the proposed Extended

Hapicare are the following:

• An IoT-based telemonitoring system that considers the medical files for

holistic monitoring of patients with chronic diseases
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• Ontology-based reasoning for obtaining contextual information

• A probabilistic diagnosis: a computer-aided diagnosis to handle missing

data, uncertain data, and probabilistic rules

• A self-adaptive treatment: A treatment service based on Answer Set

Programming (ASP) with easily modifiable rules and automatically cus-

tomizing itself for each patient

In Extended Hapicare, we have integrated a computer-aided diagnosis for

screening the health of patients. The use of computers and smart systems for

medical diagnosis has started roughly at the same time as the rest of computer-

based systems in the 1950s. Nowadays, there are two types of approaches, either

using expert systems or machine learning methods (Yanase & Triantaphyllou,

2019). On the other hand, according to Pramanik et al. (2017), smart health

systems can be pervasive, reactive, or hospital-based. In Extended Hapicare,

we have implemented hybrid methods to benefit from both expert systems and

machine learning methods in a reactive health monitoring system. Extended

Hapicare has been validated by clinicians and medical systems engineers collabo-

rating with Maidis in the context of the ITEA3 Medolution project1 and recent

proof-of-concepts projects. Doctors have been involved since the first design steps

of the implemented systems. Due to legal and ethical restrictions, the validation

of Extended Hapicare by involving patients in clinical tests is under investigation.

The remainder of the paper is organized as follows. First, we go through the

state of the art as well as the required theoretical basis of this study in Section

2. Next, Extended Hapicare is described in detail in Section 3, while in Section

4, the evaluation and the experimental results are presented. The discussion

regarding the observations in experiments is provided in Section 5. Lastly, we

conclude the paper with the conclusion in Section 6.

1https://itea3.org/project/medolution.html
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2. Literature Review

2.1. Telecare

Telecare has received massive attention; particularly after the emergence

of IoT sensors, researchers tend to apply them for telecare and telemedicine.

The telecare systems can be arguably divided into three groups in terms of

functionality: (1) telemonitoring: collecting patient’s information in real-time,

(2) telemonitoring with alerts: in addition to telemonitoring, raising the alarm

based on patients’ situations, and (3) teletreatment: in addition to telemonitoring

with alerts, suggesting treatments to patients based on their conditions. Most of

the existing telecare systems are limited to telemonitoring systems with alerts.

Telecare systems are commonly targeted to the public, but some are special-

ized for patients with a specific type of chronic condition. For instance, Parati

et al. (2018), Glykas & Chytas (2004), and Bucholc et al. (2019) have focused on

high blood pressure, asthma, and Alzheimer’s disease, respectively. Parati et al.

(2018) have proposed a solution for patients to better control their condition

and support the doctor for better follow-up. They point out that blood pressure

telemonitoring allows improving the quality of lives of patients, improving the

treatments, decreasing the face-to-face consultation sessions, and reducing the

costs of healthcare (Parati et al., 2018). While Glykas & Chytas (2004) have

introduced a web-based tool called AsthmaWeb. It accomplishes data gathering

and monitoring to manage patients according to their personalized asthma action

plan. Similarly, Bucholc et al. (2019) have introduced a decision support system

to predict the severity of Alzheimer’s disease based on biological and clinical

measures.

In recent years, many researchers have started working on teletreatment

systems. For instance, Xu et al. (2017) have proposed Cloud-MHMS, a monitoring

system to help doctors diagnose patients’ conditions better. In this system,

patients’ information is collected through their mobiles. Moreover, it uses

process mining and alpha algorithm to propose a treatment plan based on similar

patients’ medical files. Even though Cloud-MHMS is useful for doctors’ holistic
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diagnosis, it does not engage patients in their treatment. Likewise, Wong et al.

(2018) have focused on reducing adverse drug events in intensive care units.

This study discusses the effectiveness of decision systems regarding their rate

of overridden alerts. Another approach in teletreatment is using the smart

environment to help patients. For instance, Loreti et al. (2019) have proposed

a framework intertwining a rule-based complex event processing with reactive

event calculus to suggest a reaction based on patients’ states.

Many studies focus on using IoT sensors and mobile for data collection;

however, Habib et al. (2019) have designed a decision system based on wireless

body sensor networks. As a subset of wireless sensor networks, the latter enables

continuous monitoring of patients’ vital signs, which is useful for patients in a

critical state. In this study, the fuzzy inference system is used to calculate the

weight of patients’ risk. This study, like the mainstream of studies, overlooked

personalization and customizability. On the contrary, Afzal et al. (2018) have

introduced a mechanism to personalize wellness recommendations, using contex-

tual information, e.g., location and weather, along with the recommendations.

In this study, the general health recommendations are personalized to provide

the ones that are best suited, based on the requirements, interests, and demands

of the user.

Similarly, Rahimi & Wang (2013) have designed and implemented a framework

to run a patient-specific clinical decision model. It enables collecting the patients’

preferences and selecting one of the various options for them. This framework

relies on decision trees, which allows a full customizable decision model; however,

it requires patients to respond to multiple questionnaires, which is inconvenient

for most patients.

2.2. Uncertainty

In the field of reasoning, uncertainty is classified into two categories: 1)

Aleatory uncertainty is the intrinsic changing behavior, i.e., the observations

differ in each experiment. 2) Epistemic uncertainty is rooted in the insufficiency

of knowledge, i.e., principally, this type of uncertainty can be avoided with
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additional knowledge, and hence it is reducible (Kiureghian & Ditlevsen, 2009;

Billinton & Huang, 2008). In the field of telecare, both types of uncertainties

are possible. Faulty sensors, system failures, and human errors cause aleatory

uncertainty while lacking enough information about patients, their medical

files, and family history result in epistemic uncertainty. Since the medical

rules are obtained during study and experiments, they are rarely absolute and

deterministic. For instance, Table 1 depicts the features of hypercortisolism and

their probabilities that Friedman (2015) has provided. It shows that the medical

rule for hypercortisolism diagnosis using its features would consist of probabilistic

relationships, and hence, it would be an uncertain rule. Several approaches exist

for handling uncertainty, such as BN (Cooper & Herskovits, 1992), Dempster-

Shafer (DS)(Dempster, 2008; Shafer, 1992), and fuzzy logic; (Zadeh, 1965); each

of them is suitable for a specific purpose. DS is beneficial for gathering uncertain

information from different sources and reasoning to a conclusion. However, fuzzy

logic is a better fit when the states with low probability (membership values)

are vital, e.g., diagnosing the early stage of a disease, since DS and BN mainly

focus on the states with high probabilities. Verbert et al. (2017) have thoroughly

compared the DS and BN; the overall summary of their comparison is shown in

Table 2. As the BN is more suitable for the purpose of this paper, it is discussed

in more detail.

2.2.1. Bayesian Network

Bayesian Network (BN) is a probabilistic graphical model via a directed

acyclic graph. It embeds the conditional probabilities of various events and can

predict their probability based on the evidence. In the graphical representation

of a BN, each event is depicted as a vertex, and each edge shows a causal

relationship between two events (Cooper & Herskovits, 1992). The relative

dependence between two events is modeled into a conditional probability. For

instance, if A and B be two binary events, and the event B causes event A

to happen in one-fourth of times, this is depicted as P (A|B) = 0.25. A BN

enables Bayesian inference, which deduces the probability of an event based on
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Table 1: Features of hypercortisolism and their according probabilities (Friedman, 2015).

Feature Percentage of

Patients

Fat redistribution 95

Menstrual irregularities 80

Thin skin and plethora 80

Moon facies 75

Increased appetite 75

Sleep disturbances 75

Nocturnal hyperarousal 75

Hypertension 75

Hypercholesterolemia and hypertriglyceridemia 70

Altered mentation 70

Diabetes mellitus and glucose intolerance 65

Striae 65

Hirsutism 65

Proximal muscle weakness 60

Psychological disturbances 50

Decreased libido and erectile dysfunction 50

Acne 45

Osteoporosis and pathological fractures 40

Easy bruisability 40

Poor wound healing 40

Virilization 20

Edema 20

Increased infections 10

Cataracts 5
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its causes and its effects as shown formally in the following equations; where e,

c, and s respectively represent Event, Cause, and effect (Symptom) (Cooper &

Herskovits, 1992). Equation 1 is the formal equation to calculate causal inference.

Informally, based on the law of total probability, the probability of an event is

the sum of the probability of its conjunction with each of its causes.

P (e) =
∑

ci∈causes(e)

(
P (e|ci)× P (ci)

)
(1)

Equation 2 is the formal equation to calculate the inverse reference. Informally,

based on Bayes’ rule, the probability of an event regarding the observed effects

is the ratio of the probability of their conjunction on the event; the numerator

can be expanded to the product of the inverse conditional probability and the

probability of the effect.

P (e|s) =
P (s|e)× P (e)

P (s)
(2)

µA(x) ∧ µB(x) = min[µA(x), µB(x)], x ∈ X (3)

µA(x) ∨ µB(x) = max[µA(x), µB(x)], x ∈ X (4)

bel(A) =
∑

B|B⊆A

m(B) (5)

pl(A) =
∑

B|B∩A6=∅

m(B) (6)

2.3. Ontology

Borst (1997) has defined ontology as a “formal specification of a shared

conceptualization,” thus allowing the formal depiction of information and their

relationships (Dı́az Rodŕıguez et al., 2014). In the medical field, ontology is

attracting growing interest for formalizing and reasoning medical data. For

example, Disease Ontology (DO) is an open-source ontology for biomedical data

associated with human disease. Its vocabulary consists of 8,757 terms with
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Table 2: Comparison of DS and BN reasoning (Verbert et al., 2017)

Feature BN DS

Fit for causal and diagnostic reasoning + -

Fit for information fusion - +

Fit for making decision + +

Inference coherence + -

Adaptable + +

unique maximal cross-references with other terminologies like National Cancer

Institute Thesaurus and the National Drug File - Reference Terminology (NDF-

RT) (Kibbe et al., 2015). Systematized Nomenclature of Medicine (SNOMED)

is a well-known general terminology widely used as a medical ontology with

over 120,000 terms. International Health Terminology Standards Development

Organization have freely provided Systematized Nomenclature of Medicine –

Clinical Terms (SNOMED–CT). It includes four core components: 1) Concept

Codes: numerical codes identifying clinical conditions organized in hierarchies,

2) Descriptions: text describing the concept codes, 3) Relationships between

the concept codes, and 4) Reference Sets: limits and ranges for classification

(El-Sappagh et al., 2018). Figure 1 shows a sample visualization of concept fever

in SNOMED–CT.

SNOMED-CT is exploited by a growing number of medical applications,

including clinical decision support systems, electronic health records, e-Prescrip-

tion, and health research. For instance, the National Board of Health and Welfare

of Sweden has implemented medical alert information using SNOMED-CT, which

involves documentation of patients’ information regarding critical conditions,

such as allergies and contagious disease (Socialstyrelsen, 2015). Moreover, Snow

Owl MQ is a big-data platform that allows grouping the patients with similar
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Figure 1: Visualization of concept Fever in SNOMED-CT (Whetzel et al., 2011)
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characteristics, inspecting their health records for trends and correlation, and

statically analyzing them for verification of clinical hypotheses (Ulrich, 2017).

2.4. Answer Set Programming

Answer Set Programming (ASP) is a form of declarative programming that

focuses on severe search problems. ASP represents knowledge using logical

phrases, and it derives new knowledge using automated reasoning. The concept

of ASP is to represent a particular computational problem through a logic

program and find the solutions, called answer sets, for that problem using

automated reasoning performed by an ASP solver. ASP syntax is derived from

Prolog, and its semantics are described using stable model semantics introduced

by Michael Gelfond and Vladimir Lifschitz (Erdem et al., 2016). An ASP rule

consists of two main parts: (i) Head and (ii) Body; if the body of an ASP rule is

true, the ASP solver concludes that the head of that rule is also true. An ASP

rule is formalized as follows:

Rule : Head← Body.

l← b1, ..., bk, not bk+1, ..., not bk+n (k, n ≥ 0). (7)

where b1, ..., bk, not bk+1, ..., not bk+n represents the rule’s body and l represents

its head. In ASP, a finite collection of ASP rules constructs an ASP program.

Each rule in the ASP program can be seen as a limitation on answer sets of that

ASP program. An answer set includes knowledge inferred using the reasoning

on the ASP program. For instance, if an ASP program consists of the rule used

in Equation 7 and its answer set includes all of b1, ..., bk atoms and none of

bk+1, ..., bk+n atoms, it should also include l. An answer set, also called stable

model, is minimal and justified and composed of ground atoms, which are atoms

with no variables. The formal definition of answer set is as follows (Lifschitz,

2010): Suppose the program Π consists of ASP rules. Grounding is performed

on the program Π to replace the variables used in the program with all the

constants appearing in the program. S is a set of ground atoms obtained using

grounding. A Reduct ΠS , with no negated atoms, is obtained using two main
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Figure 2: ASP example

1 %Facts

2 condition(" hypotension " , 50 , 5) .

3 suggestion(" hypotension " , " eating " , 50) .

4 suggestion(" hypotension " , " takingpill " , 40) .

5

6 %Rule

7 simpletreatment(Episode, Action , T) :− condition( Episode , Pc ,T) ,suggestion( Episode ,

Action , Ps) .

steps: (i) for each atom a ∈ S, drop rules with not a in their body, (ii) drop

literals not a from all other rules. The minimal model of the reduct (ΠS) is the

answer set S.

Consider the illustrative example depicted in Figure 2 with an ASP program

Π with three facts and one rule, where a fact is a rule without body and with

a single disjunct in the head. The predicate condition( Episode , Pc ,T) represents

the fact that there is a specific episode Episode with the probability Pc at the

timestamp T. The predicate suggestion( Episode , Action , Ps) describes the fact that

the suitable treatment for the specific episode Episode is the action Action with

the probability Ps. The predicate simpletreatment(Episode, Action , T) depicts the

fact that there is one possible treatment using the action Action at the timestamp

T for the episode Episode . Where the Episode and timestamp are " hypotension "

and T, respectively. Two actions as possible treatements are " eating " and "

takingpill ". The inferred information, simpletreatment("hypotension" , " eating " , 5)

and simpletreatment("hypotension" , " takingpill " , 5), are obtained using reasoning

performed by answer set solvers.

The rich knowledge representation and efficient solvers are the main charac-

teristics of ASP. Moreover, the non-monotonicity of ASP motivates us to use it

for the treatment.

3. The Proposed Approach

3.1. General Overview

As depicted in Figure 3, Extended Hapicare operates in two phases for each
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Proposing Treatment

Evaluate and

Adapt Treatment
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Trigger

Monitoring

Notify doctor

An episode

is diagnosed

Figure 3: General overview of Extended Hapicare

medical condition: screening and monitoring. The medical condition has not been

diagnosed during the former, and Extended Hapicare allows detecting potential

medical conditions. In the case of any finding, Extended Hapicare will notify the

doctor. With or without the notification of Extended Hapicare, the doctor can

establish a diagnosis of the medical condition; and then prescribes monitoring for

some specific episodes related to the diagnosed medical condition. Consequently,

the phase of Extended Hapicare is changed from screening to monitoring for

the diagnosed medical condition. Extended Hapicare provides telemonitoring

and self-adaptive treatment; in this phase, the focus is to diagnose and react to

episodes related to the diagnosed medical condition.

Since medical conditions are not exclusive and a patient might suffer from

multiple medical conditions, Extended Hapicare can be in the monitoring phase

for some medical conditions and in the screening phase for other medical con-

ditions. For instance, in the case of a patient diagnosed with DM, Extended

Hapicare is in the monitoring phase of DM and the screening phase of other

medical conditions. In the former phase, it manages episodes related to DM,

e.g., hypoglycemic episode, while in the latter phase, it diagnoses other medical

conditions, e.g., chronic kidney diseases.

For both phases, Extended Hapicare applies IoT sensors, questionnaires, and

manual inputs for capturing data, and ontology-based reasoning and probabilistic

reasoning for enabling probabilistic diagnosis. The episodes are by definition

acute and temporary; therefore, it is vital to diagnose them in real-time and

react accordingly. On the other hand, the medical conditions last longer and
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usually are more complex to diagnose and react; therefore, in Extended Hapicare,

in the case of diagnosing a medical condition, it notifies the doctor for further

treatment.

3.2. Architecture

Extended Hapicare is designed in three primary layers taking advantage of

three technologies. The first layer is ontology-based reasoning, which provides

contextual information; the second layer is Bayesian reasoning, which provides

probabilistic diagnosis; and the third one is the ASP layer, which provides the

self-adaptive treatment. Figure 4 shows the overall architecture of Extended

Hapicare.

3.3. Data

A broad range of data can be beneficial in diagnosing medical condition-

s/episodes; therefore, in Extended Hapicare, various types of data are considered.

The data used in Extended Hapicare can be classified into the following four

categories:

• Medical information: The medical information provided by the patient,

including vital signs, e.g., body temperature.

• Medical file: The medical information provided by an expert; blood test

results.

• Non-medical information: The information which is not considered health

or medical information, but might be useful, e.g., room temperature.

• Deduced knowledge: The information that is not primarily fed to Extended

Hapicare, but deduced from the analysis and reasoning on the data in

Extended Hapicare.

Various sources might provide the aforementioned data. The source of data used

in Extended Hapicare can be classified into four following categories:
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Figure 4: Overall architecture of Extended Hapicare

• IoT Sensors: IoT sensors capture the information from the patient ei-

ther continuously or on-demand, and then the captured information is

transferred to extended Hapicare.

• Manual Input: For capturing the information without sensor, e.g., pain,

the data are provided manually by the patient.

• External system: For the medical file, the information are stored in a health

information system, which can be transferred to Extended Hapicare.

• Extended Hapicare: The deduced knowledge is produced internally in Ex-
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tended Hapicare; hence, the latter is the source of information resulting

from reasoning on input data.

Any data, regardless of its type and source, are transmitted to the ontology-based

reasoning component to be mapped to an ontology and then processed.

3.4. Ontology-based Reasoning

The data within Extended Hapicare are modeled in ontological terms for

uniform depiction, i.e., the collected data are transformed into an ontology for

further investigations. To this end, from the ontologies discussed in Section 2.3,

we have opted for SNOMED-CT ontology due to its prevalence in research.

The data perceived from sensors are raw and sometimes meaningless on their

own; hence, the ontology-based part processes the collected data and provides

contextual information. In Extended Hapicare, trends and thresholds are applied

for composing the context of patients. The threshold-based context depicts how

the data compare with predefined thresholds, while the trend-based context

shows how the collected data compare with the previous readings for the same

user. Both types of context are necessary in order to model the health situation

of a patient. For instance, a healthy weight is defined using a threshold. However,

sudden weight gain or weight loss is a symptom of many medical conditions,

which is modeled as a trend context.

In Extended Hapicare, we have implemented the ontology-based reasoning

using JBoss Drools, which is a business rule management system with a rich

feature set (Bali, 2009). The rules used in this reasoning are based on ontological

definitions of vital signs, medical conditions, and episodes by experts, i.e., doctors.

3.5. Probabilistic Diagnosis

Reliable treatment is not possible except with a reliable diagnosis and rea-

soning; in other words, telecare can only provide a suggestion for a successfully

diagnosed condition. To this end, we have used probabilistic reasoning to diag-

nose medical conditions and episodes. It analyzes the collected data which have

undergone ontology-based reasoning. The challenge for using these data is their
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unreliability, i.e., the collected data from lay patients in their homes are not

reliable because they might mismeasure their vital signs or make a mistake in

the manual input. Moreover, some manufacturers produce sensors for personal

use only and not for high precision measurement. Albeit a patient might not

notice a faulty sensor for some time. Hence, we cannot afford to throw away

the unreliable data as they might include valuable information about patients.

Another challenge is collecting all the required information about patients at

their homes. It would require many sensors and even many questions that are

not convenient for patients; hence, missing data should deprive a diagnosis.

Moreover, each medical condition/episode has a set of causes or risk factors

that affect the probability of that medical condition/episode. It causes some

changes in patients, including symptoms. Because BN is successfully applied

for causal inference and prediction and estimation when the data are missing

or unreliable (Acid et al., 2004); it is selected for probabilistic reasoning for

both phases of screening and monitoring in Extended Hapicare. Such that all

undiagnosed medical conditions and the episodes of diagnosed medical condi-

tions are each modeled in an individual BN, where the causes are modeled as

parents and the symptoms as descendants of a medical condition/episode, to

maintain the existent causal relation of features to the medical rule. Each medical

condition/episode is modeled separately in order to avoid the complication of

models and undesired interrelations between medical rules.

3.5.1. Creation of Bayesian Network

The creation of BNs has two steps: (1) creation of its structure, i.e., the shape

of the graph; and (2) creation of the Conditional Probability Table (CPT), i.e.,

the probabilistic relationships between the nodes of the graph. These two steps

can be performed as knowledge-driven, data-driven, or hybrid. In BN’s knowl-

edge-driven creation, both steps should be carried out by experts; who model the

known probabilistic relationship between events (symptoms, causes, and medical

conditions/episodes) and then use them to create a Bayesian network of each med-

ical condition/episode. For example, the last row of the medical rule presented in
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Table 1, is modeled as P (cataracts|hypercortisolism) = 0.05. The prevalence

of cataracts enables a backward inference for diagnosing hypercortisolism based

on this conditional probability. In data-driven training, the BN is trained using

data. In the hybrid training, experts provide the structure of the BN. At the

same time, CPTs are extracted using data records of different patients regarding

each medical condition/episode. In Extended Hapicare, data-driven training is

not used in order to assure the expected structure that symptoms and causes

of a medical condition/episode are respectively represented as descendants and

parents of that condition in the BN. Therefore, in Extended Hapicare, the

structure of BN is created by experts with respect to the description given in

Section 3.5.2. Since the medical conditions are numerous and usually complex

to be modeled by experts, the CPTs of BNs used in the screening phase are

created using datasets. Moreover, as the accuracy of the diagnosis of episodes is

critical, the CPTs of BNs used in the monitoring phase are created by experts

(doctors) according to their experiences on the intended patient or other similar

patients. In other words, the creation of BNs used in the screening phase and

monitoring phase are, respectively, performed hybrid and knowledge-driven.

3.5.2. Bayesian inference for medical diagnosis

As established in Section 2.2 diagnostic rules for medical conditions/episodes

are a set of cause-effect rules. The modeling of medical conditions and episodes

are performed similarly; for the sake of illustration, we depict the modeling

of Acute Kidney Injury (AKI), which is one of the possible episodes of CKD

(Hatakeyama et al., 2017). AKI can dramatically increase the chance of mortal-

ity and morbidity (Khadzhynov et al., 2019); however, (Yang et al., 2015) have

discussed that AKI can remain undetected in the majority of cases (74 %). The

cause-effect rules can be classified into three main categories:

• Immediate causes: Those are the events that affect the probability of a di-

agnosis in the short term. For example, hypotension and infection episodes

increase the chance of AKI (Khadzhynov et al., 2019). Hence these medical

conditions are considered as immediate causes of AKI.
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• Background causes: Those are the underlying events that affect the probabil-

ity of a diagnosis in an extended period of time. For example, Friedman (2015)

has discussed that comorbidities are significant risk factors for AKI;

i.e., patients with DM and heart diseases are more susceptible to AKI

(Khadzhynov et al., 2019). Hence these medical conditions are considered

as background causes of AKI.

• Symptoms: Those are the effects of the medical condition/episode, i.e.,

the events whose probability is affected by the occurrence of a medical

condition/episode. For instance, reduced body weight, irregular heart rate,

and swelling are more plausible in AKI (Friedman, 2015)

AKI

DMheart diseases

hypotension

infection

reduced body weight

irregular heart rate

swelling

Figure 5: BN modeling of cause-effect relationships for diagnosis of AKI

Figure 5 depicts simplified modeling of cause-effect relationships for diagnosis

of AKI episodes, where the simple red arrow, doubled green arrow, and dotted

blue arrow show the cause-effect relationships of immediate causes, background

causes, and symptoms, respectively. Each cause-effect relationship can hold a

probability, and each event can have a probabilistic value. Hence, Bayesian infer-

ence can deduce the probability of this episode with respect to any information

on the other events. The second step in modeling an episode is the creation of

the CPTs. For modeling medical conditions in BN, the creation of CPTs can

be done using the datasets, i.e., training a BN with the given structure using

the existing datasets. In the case of modeling episodes in BN, experts provide

CPTs. However, the expert might benefit from the explicit probabilities provided
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in the medical studies. For instance, regarding the background causes of AKI,

Khadzhynov et al. (2019) have reported that P (heart failure ∩AKI) = 6.12%,

P (DM ∩AKI) = 8.81%, P (heart failure) = 11.49%, and P (DM) = 18.50%,

which result in the following conditional probabilities:

P (AKI|heart failure) = 53.26% (8)

P (AKI|DM) = 47.62% (9)

In some cases, the existing medical rules do not include explicit probabilities;

e.g., Lehman et al. (2010) have reported that for each hour of severe hypotension,

the probability of AKI increases by 22%. Both explicit and implicit conditional

probabilities can help the experts in creating CPT of the BN of the medical

condition/episode.

3.6. Self-adaptive Treatment

It is vital to help patients regarding their medical episodes to improve their

quality of life. However, a common pitfall is uniforming the treatment services

for all patients. Each patient has a different set of requirements, and even for one

patient, the treatment might vary through time (Vitacca et al., 2018). Hence,

a treatment service should be developed that facilitates manual modification

by doctors and automatic customization for patients’ needs. To this end, in

Extended Hapicare, we have implemented a self-adaptive treatment service using

commonsense reasoning implemented by Answer Set Programming (ASP).

As discussed in Section 2.4, ASP finds the answers to achieve the defined

objective, considering the facts and rules. The predefined facts include different

episodes and their possible treatments; the input facts are the episodes with

their associated probabilities. The experts, e.g., doctors and caregivers, provide

the predefined facts, while the probabilistic diagnosis component computes the

input facts. The objective is a state with no episodes with a probability above a

threshold, which is a safe state in the patients’ lives. In this study, self-adaptive

treatment is formalized in ASP.
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For the automatic customization of treatment, the ASP-solver is called in

any diagnosis update to adapt the treatment service for patients. Each solver

call results in answer sets that extract the following information: (i) the updated

episodes and the most recent action, (ii) the possible actions at this point; and

(iii) the obtained awards based on the updated episodes and the most recent

action. When the system suggests the next action, and the patient performs

this action, the system will observe the new state, i.e., the system monitors the

episodes after performing the selected action. The system knowledge is then

updated using changing the award of the selected action for that episode.

In ASP, a transition system Dm = {Sm, A, fm} is represented where Sm

represents a set of states and always is discrete, A represents a set of actions, and

fm represents transition function, fm : Sm×A→ Sm and always is deterministic.

This kind of representation allows fast decision-making for treatment. The set

of states is represented by predicates representing episodes that may change

their true values at different times, such as condition(" hypotension " , 50 , 5), where

5 is the time step of the predicate. Actions, A, are selected actions for the

treatment based on the episodes and possible treatments. For instance, the

predicate selectedAct(" takingpill " , " hypotension " , 5) is used to represent that the

action " takingpill " is selected as action at time step 5 for treating the episode

" hypotension ". The main ASP rules used in the self-adaptive treatment are shown

in Figure 6. The award value for a specific action is changed according to

the effect of that action on episodes. After D time step of the conduction of

the selected action for the treatment, observation is done to obtain updated

episodes in order to update knowledge. The changing amount of award value

in each iteration, step(S), is defined as a predefined fact, see line 1 in Figure 6,

provided by the doctor. Line 3 is used to obtain all possible actions regarding

the diagnosed episodes and their possible treatments, represented by suggestion

( Episode , Action , Ps). Line 4 is used to illustrate that if the probability of the

episode decreases with performing the specific action, the award value of that

action should increase, i.e., the selected action has been suitable to mitigate

the episode. Therefore, the ASP rules are updated after each iteration. On the
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Figure 6: Main ASP rules for self-adaptive treatment

1 step(2) .

2 timeStep(4).

3 possibleAction(Action , award(Action, Episode , Ps) , T) :− condition( Episode , Pc ,T) ,

suggestion( Episode , Action , Ps) .

4 possibleAction(Action , award(Action, Episode , NewValue ) , T+ D):−possibleAction(Action

, award(Action, Episode , Value ) , T) , condition( Episode , Pc , T) , condition(

Episode , PcNew , T+ D), PcNew<Pc, timeStep(D), NewValue=Value+S, step(S) .

5 possibleAction(Action , award(Action, Episode , NewValue ) , T+ D):−possibleAction(Action

, award(Action, Episode , Value ) , T) , condition( Episode , Pc , T) , condition(

Episode , PcNew , T+ D), PcNew>Pc, timeStep(D), NewValue=Value−S, step(S) .

6 1{max sel weight(X)}1 :− possibleAction( , award( , , X) , ) , #max {V :

possibleAction(Action, award(Action, Episode , V) , T)} = X.

7 selectedAct(Action , Episode , T):−max sel weight(X), possibleAction(Action , award(

Action, Episode , X) , T) .

8 #show selectedAct/3.

contrary, line 5 is used to illustrate that if the probability of episode increases

with performing that action, the award value of that action should decrease,

i.e., the selected action has been ineffective in mitigating the episode. Line 6

and line 7 are used to select an action with the maximum award value for the

treatment. The rules show that in Extended Hapicare, self-adaptive treatment is

online with choosing a suitable action, observing the consequences of that action,

and changing the award value of that action.

3.7. Workflow

3.7.1. Workflow in Screening Phase

A typical workflow of screening phase in Extended Hapicare is presented in

Figure 7. First, the data are collected from the patient, either directly from the

IoT sensors or manually input by the patient or his/her caregiver. Later, the data

are processed using ontology-based reasoning to yield contextual information.

Afterward, all the data and their context are processed within the probabilistic

diagnosis to estimate the probability of different medical conditions. For each

medical condition, the sensing action state is defined as when the probability

of that medical condition is between THwary and THdiag, where the former is

a predefined threshold for suspecting a medical condition, while the latter is a
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Figure 7: Flowchart of screening phase in Extended Hapicare
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predefined threshold for diagnosing a medical condition. Sensing action state

signifies that the medical condition is possible, but more evidence is required

to confirm or reject this diagnosis. To this end, Extended Hapicare selects a

cause/symptom related to that medical condition, where no recent information

exists about that cause/symptom. Then Extended Hapicare requests the mea-

surement of the selected cause/symptom. In order to minimize sensing actions, in

Extended Hapicare, the most effective cause/symptom of that medical condition

is selected, i.e., they are close to being considered as pathognomonic or sine

qua non causes/symptoms. The former case is used to confirm the presence of

the medical condition, i.e., if the response is positive, it is most likely that the

medical condition is present; however, the latter case is exploited to confirm

the absence of the medical condition, i.e., if the response is positive, it is most

likely that the medical condition is absent. This cycle continues until either

the probabilities fall below THwary, which shows it was a false doubt, or one

surpasses THdiag, which signifies detection of a possible medical condition. In

the former case, the flow of continuous telemonitoring continues, while in the

latter case, the patient’s doctor is notified.

If the doctor establishes the diagnosis of a medical condition, which can be

as a result of a notification from Extended Hapicare; the doctor can prescribe

telemonitoring for managing that medical condition. To this end, the doctor

triggers the monitoring phase for the episodes related to the diagnosed medical

condition.

3.7.2. Workflow in Monitoring Phase

A typical workflow of the monitoring phase in Extended Hapicare is presented

in Figure 8. The data gathering and ontology-based and probabilistic reasoning

parts are the same as those in the screening phase. The chance of occurrence

of various episodes is low, as they are temporary and acute; on the other hand,

the occurrence of multiple medical conditions is not rare, but many medical

conditions are more susceptible in the presence of other medical conditions.

Hence, in the sensing action state of the monitoring phase, differential diagnosis
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Figure 8: Flowchart of telemonitoring phase in Extended Hapicare
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(a) CKD dataset (b) Dermatology dataset

Figure 9: Comparison of F1 score between Extended Hapicare diagnosis and random forest

is performed; that is, the selection of sensing action is affected by all the suscep-

tible episodes with their probabilities between THwary and THdiag. Similar to

the screening phase, when no episode is susceptible, Extended Hapicare pursues

continuous telemonitoring. However, if one or multiple episodes are detected,

i.e., their probabilities surpass THdiag; these diagnosed episodes alongside their

probabilities are forwarded to the self-adaptive treatment component to process

them using ASP and propose a customized treatment to the patient. Further-

more, during this treatment, the patient’s state is closely monitored to modify

the patient’s profile based on changes in the probabilities of episodes. If the

suggested treatment were effective, the patient would start feeling better, and the

probability of the episode would decrease; hence, the probability of the ASP rule

related to that suggested treatment should increase. When the recommended

treatment is not beneficial for the patient, the ASP reduces the recommended

treatment probability.

4. Evaluation

A comprehensive evaluation of Extended Hapicare requires access to monitor

real-world patients to verify whether the proposed solution is fully adapted to
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their needs. The aforementioned environment was not accessible due to legal

and ethical restrictions; however, Extended Hapicare is validated by clinicians

and medical systems engineers collaborating with the Maidis company in the

context of the ITEA3 Medolution project.

Probabilistic diagnosis is an integral component in screening and monitoring

phases; in the screening phase, a reliable screening is only possible with a power-

ful diagnosis component; moreover, in the monitoring phase, as the self-adaptive

treatment component relies on the result of the probabilistic diagnosis component,

the performance of the latter can depict the expected performance of the whole

system. Hence, a comparative study of the diagnosis component is provided to

illustrate its strengths, specifically in the case of patients’ inadequate information.

Moreover, four scenarios are provided to validate Extended Hapicare.

4.1. Comparative Study

Since the use of probabilistic diagnosis is similar in both phases, in the rest

of this section, without losing generality, we focus on the use of probabilistic

diagnosis in the screening phase, i.e., for detecting plausible medical conditions.

The performance of the probabilistic diagnosis component is evaluated based on

a classical classifier method, namely random forest, to demonstrate how the loss

of data affects their respective performance. First, the numeric features were

processed using the ontology-based reasoning component of Extended Hapicare

to produce a nominal context. Then both random forest and BN are trained using

the dataset. We have created BN using hybrid creation for a valid comparison

(see Section 3.5.1). The evaluation is made by comparing the performance of

both methods to predict while increasingly removing random data features.

4.1.1. Dataset description

In order to demonstrate the performance of the probabilistic diagnosis in

Extended Hapicare, we have implemented the evaluation using two datasets on

medical conditions, namely, chronic kidney disease and dermatology datasets.
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Chronic kidney disease Dataset: The first dataset is for the prediction of

chronic kidney diseases; this dataset includes 11 numeric and 13 nominal features

to predict chronic kidney disease, from which 4 are causes and 20 are symptoms.

The causes in this model are age, hypertension, DM , and coronary artery disease;

while the symptoms include the measurements of blood pressure, hemoglobin,

red blood cell count , and white blood cell count . The dataset is collected from

400 patients in a hospital in India and labeled regarding the presence of chronic

kidney disease. This dataset is available on the machine learning repository of

the University of California, Irvine (Dua & Graff, 2017).

Dermatology Dataset: The second dataset focuses on the diagnosis of

different types of erythemato-squamous illnesses in dermatological patients.

They all share clinical characteristics of erythema and scaling, and hence it is

challenging to distinguish them. Psoriasis, seborrheic dermatitis, lichen planus,

rosea pityriasis, chronic dermatitis, and pityriasis rubra pilaris are the illnesses

in this group. Unfortunately, the exact diagnosis requires biopsy in most cases.

To this end, Güvenir et al. (1998) have collected this dataset to decrease the

cost of prediction among these illnesses. The dataset has 33 linear and one

nominal features and include 366 records, of which 2 are causes, and the rest are

symptoms. This dataset is accessible on the machine learning repository of the

University of California Irvine (Dua & Graff, 2017).

4.1.2. Comparison

Since the random forest model obtains a well-established prediction perfor-

mance for the aforementioned datasets, it was selected as a rival for comparison.

Figure 9 depicts how removing the data from the records affects the performance

of Extended Hapicare and random forest. They perform almost similarly when

the data are complete. However, as the number of missing data increases, the

drop of performance in the random forest model is enormous, which confirms the

selection of BN for handling missing data in the core of reasoning in Extended

Hapicare.
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4.1.3. Robustness Analysis

A BN is robust when the values of its target class slightly depend on the

inputs of its causes (Surhone et al., 2011). In a robust BN, the changes in

one of the causes hardly result in dramatic changes in the target class. Chan

& Darwiche (2004) have implemented a tool integrating multiple approaches

for quantification of robustness, also known as sensitivity analysis. We have

used their tool to conduct sensitivity analysis based on the algorithm of Shenoy

& Shafer (1986), on the target class, representing the medical condition. The

results show that the three causes can raise the probability of the disease to

37.04% in the case of the chronic kidney diseases dataset. For the dermatology

dataset, there are only two causes and they can raise the probability to 68.72%

on average for the six illnesses of this dataset. This high sensitivity is due to

the unbalanced values of the two causes as they are similar in 66.56% of data

records.

4.2. Use case

In this use case, the patient is Frank Smith, a user of the Extended Hapicare

application; the summary of his medical file is shown in Table 3. In Extended

Hapicare, Frank Smith is under screening for various chronic diseases including

high blood pressure, chronic kidney disease, and COVID-19. He is also under

monitoring for diabetic and heart attack episodes. In this use case, we assume

THwary = 70% and THdiag = 90%.

4.2.1. Scenario 1

Once Frank felt shortness of breath, he consulted the Extended Hapicare

application. In the latter, the new information, shortness of breath, is processed

as follows:

• The data are mapped into SNOMED-CT ontology; hence, Dyspnea (Con-

cept Id: 267036007) is obtained and then added to the knowledge base.

• Ontology-based reasoning processes the ontology-mapped data; since no

recent activity is present in the knowledge base, Dyspnea at rest (Concept
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Table 3: Summary of medical file of patient

Item Value

Name Frank Smith

Gender Male

Year of Birth 1960

BMI 36 kg/m² (10-Jan-2021)

Smoking Yes

Chronic Diseases DM Type II (5-Dec-2016)

Medical History Heart Attack (7-Jun-2018)

Family Doctor Dr. Anna Doe

Id: 161941007) is deduced using the ontology-based reasoning and then

added to the knowledge base.

• Medical conditions/episodes that are related to the new finding are nar-

rowed down to COVID-19 medical condition.

• The probability of COVID-19 is recalculated based on the knowledge base

(including the new finding), which results in P(COVID-19) = 73%.

• Since the obtained probability is between THwary and THdiag, the appli-

cation selects Fever (Concept Id: 386661006) as missing information for

sensing action.

• The sensing action is mapped to the following patient-friendly statement:

“Please measure your body temperature.”

• Frank uses an IoT sensor to measure his body temperature, which is 40oC.

• The obtained temperature is analyzed and then mapped into SNOMED-

CT; hence, Fever (Concept Id: 386661006) is obtained and then added to

the knowledge base.
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• Medical conditions/episodes that are related to the new finding are nar-

rowed down to COVID-19 and hypoglycemia medical conditions.

• The probabilities of COVID-19 and hypoglycemia are recalculated based on

the knowledge base (including the new finding), which results in P(COVID-

19) = 91% and P(Hypoglycemia) = 64%.

• Since the probability of COVID-19 exceeds THdiag, the diagnosis is added

to the knowledge base. Extended Hapicare notifies Frank’s doctor about

the possible presence of COVID-19 medical condition and encourages Frank

to book an appointment with his doctor.

Frank visits his doctor for further diagnosis and possible treatments of his medical

condition.

4.2.2. Scenario 2

In the second scenario, Dr. Anna Doe, Frank’s family doctor, notices an

alert from Extended Hapicare reminding a complete blood test for Frank as the

previous one is old; hence, she orders a blood test for him. The results of his

blood tests are processed in Extended Hapicare similar to the steps discussed in

Section 4.2.1. Given the medical file and the new information from the blood test,

using the model described in Section 4.1, the probability of CKD is calculated,

and the obtained probability exceeds the diagnosis threshold; hence, Dr. Doe is

notified. She examines Frank and confirms CKD diagnosis. Dr. Doe decides to

start the monitoring phase for Frank regarding CKD. Frank is currently following

peritoneal dialysis treatment at home that uses the lining of the abdomen to

filter the blood inside his body; moreover, he is under continuous monitoring

for the related episodes, e.g., Urinary Tract Infection (UTI) and Acute Kidney

Injury (AKI), and further complications due to comorbidities. The doctor also

prescribes him some antibiotics to take in the case of a UTI.

4.2.3. Scenario 3

Few months after diagnosis of CKD, Frank displays symptoms of hypoten-

sion and consequently Extended Hapicare diagnoses a hypotension episode. It
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follows the treatment discussed in Section 3.6. As mentioned in Section 3.5.2,

episodes of hypotension affect the probability of AKI. Hence, after the diagnosis

of hypotension, the probability of AKI is increased, but it is still under THwary;

so no further action is performed.

4.2.4. Scenario 4

Frank feels sick and consults Extended Hapicare; the application selects

the sensing action measuring body temperature. Ontology-based reasoning de-

duces fever and then adds it to the knowledge base. Given the knowledge base,

probabilistic reasoning results in increasing the probabilities of COVID-19 and

UTI, which are now both surpassing THwary. For differential diagnosis of the

two possible choices, Extended Hapicare selects cough as a sensing action. Once

Frank responds that he does not cough, the probability of COVID-19 is reduced.

Since the probability of UTI is still over THwary, Extended Hapicare asks Frank

for a burning sensation while urinating as a sensing action; his positive response

increases the probability of UTI. For validation of this diagnosis, Extended

Hapicare selects a pathognomonic sensing action and asks Frank to use test

strips for UTI detection2. As Frank reports the color of the UTI test, Extended

Hapicare confirms the presence of UTI, and based on the prescribed antibiotics

in the treatment rules, the self-adaptive treatment module selects one of them

and recommends Frank to start taking it. After a few days, Extended Hapicare

asks Frank to take UTI test strips to see the changes in the state of infection. As

Frank’s health state regarding UTI is not improving, Extended Hapicare reduces

the selected antibiotic’s probability and recommends the patient take another

antibiotic. After a few days, Extended Hapicare increases the probability of the

second antibiotic as Frank recovers from UTI. Dr. Doe is notified at each step,

and she can directly take over the medical treatment or change the treatment

rules on the fly.

2UTI test strips are diagnosis kits that change color in contact with urine and can be

used at home. The presented color shows the presence and type of infection.
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5. Discussion

In telecare, most sensors require an action from the patient, e.g., it needs

to put the hand inside the cuff of a sphygmomanometer for measuring blood

pressure. Moreover, for some of the critical information, there are no sensors; for

example, no sensor can measure the pain’s location. However, the more sensing

actions, the more inconvenient for the user, and patients will eventually opt out

if a system asks too many questions. On the other hand, holistic treatment is

only possible with all the information. Hence, in Extended Hapicare, we have

applied BN for diagnosis, which resulted in semi-holistic treatment with minimal

data.

The evaluation results support the selection of the BN; they show the perfor-

mance of diagnosis with minimum information; for both datasets, the results are

hugely in favor of the BN. Albeit having more than half of the data, BN and

random forest performed similarly.

On the other hand, one of the common pitfalls is depending too much on

specific causes for diagnosis, which results in a biased prediction. In medical

diagnosis, the causes only affect the general probability of a medical condition,

and a diagnosis is only possible using the effects, also known as symptoms.

The robustness analysis shows that the BN’s training is efficient and learning

about all the causes is not enough for the diagnosis of CKD in the first dataset.

However, for the second dataset, there are only two causes, and they have similar

values for most of the records; hence the BN training is not robust.

The scenarios presented in Section 4.2 demonstrate how Extended Hapicare

can help patients and doctors with screening and monitoring of medical condition-

s/episodes. In the first two scenarios, the screening of a patient is shown. In the

first scenario, the proposed framework captures the patient’s information at his

home for screening an urgent medical condition. The step-by-step interactions of

Extended Hapicare illustrate the workflow of the system. In the second scenario,

the medical file and external data are used for screening a medical condition.

These two scenarios depict how Extended Hapicare can help a doctor in his/her
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diagnosis by providing insights into possible medical conditions.

In the last two scenarios, the monitoring phase is shown. In the third scenario,

the treatment process and self-adaptive treatment are discussed. Moreover, we

have demonstrated that a diagnosis of an episode might affect the probabilities

of other medical conditions/episodes. In the last scenario, we have shown that

Extended Hapicare can help patients diagnose and treat medical condition-

s/episodes even when the first treatment is not sufficient. This process might

take several weeks with traditional methods of diagnosis and treatment. The

result of the self-adaptive treatment can also help doctors treat other medical

conditions/episodes; because the doctor can see which treatments were more

effective.

6. Conclusion

The number of patients struggling with chronic diseases is growing; the

traditional treatments are inefficient and massively costly. Efficient and holistic

treatment is required to enhance their quality of life. However, comprehensive

data collection is intrusive and expensive. In this paper, we have introduced

Extended Hapicare as a compromise to achieve the semi-holistic diagnosis with

the least possible intrusion. Additionally, we have used ASP to adapt treatment

to the specific needs of each patient. Extended Hapicare collects data from

IoT-based sensors as well as self-assessment; these data are processed through

ontology-based reasoning for contextual information of collected data. The

probabilistic diagnosis is responsible for diagnosing medical conditions/episodes.

The diagnosis is based on the patients’ contextual information of collected

data. Hence, it creates a list of episodes and their associated probabilities and

forwards it to the ASP component to suggest the most suitable treatment to each

patient. Our experiments have shown the performance of probabilistic diagnosis

in comparison with random forest model. Moreover, the validation of Extended

Hapicare using four scenarios demonstrates its effectiveness in diagnosing and

treating medical conditions and episodes of patients. However, a comprehensive

36



experiment regarding the whole package of Extended Hapicare requires real

patients with real-world rules and situations, which can be conducted as future

works. Moreover, research on patients’ security and privacy in this system is

also planned for future studies.
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