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Abstract: Background. In recent years, deep learning has been increasingly applied to a vast array
of ophthalmological diseases. Inherited retinal diseases (IRD) are rare genetic conditions with a
distinctive phenotype on fundus autofluorescence imaging (FAF). Our purpose was to automatically
classify different IRDs by means of FAF images using a deep learning algorithm. Methods. In this study,
FAF images of patients with retinitis pigmentosa (RP), Best disease (BD), Stargardt disease (STGD),
as well as a healthy comparable group were used to train a multilayer deep convolutional neural
network (CNN) to differentiate FAF images between each type of IRD and normal FAF. The CNN
was trained and validated with 389 FAF images. Established augmentation techniques were used.
An Adam optimizer was used for training. For subsequent testing, the built classifiers were then
tested with 94 untrained FAF images. Results. For the inherited retinal disease classifiers, global
accuracy was 0.95. The precision-recall area under the curve (PRC-AUC) averaged 0.988 for BD, 0.999
for RP, 0.996 for STGD, and 0.989 for healthy controls. Conclusions. This study describes the use of a
deep learning-based algorithm to automatically detect and classify inherited retinal disease in FAF.
Hereby, the created classifiers showed excellent results. With further developments, this model may
be a diagnostic tool and may give relevant information for future therapeutic approaches.

Keywords: retinal imaging; artificial intelligence; deep learning; inherited retinal diseases;
fundus autofluorescence

1. Introduction

Inherited retinal diseases (IRDs) encompass a large, clinically and genetically heterogeneous
cluster of diseases that affect around 1 in 3000 people, with a total of more than 2 million people
worldwide [1]. Considering that IRDs are the most frequent inherited forms of human visual handicap,
this group of diseases has a profound impact on both patients and society [2,3].

In this context, the advent of noninvasive imaging techniques has allowed for refined assessment
of IRDs. Color fundus photography, fundus autofluorescence (FAF), as well as high-resolution
spectral-domain optical coherence tomography have become fundamental to the diagnosis and follow
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up of IRDs. Of these noninvasive imaging techniques, FAF is an in vivo imaging method of the
metabolic mapping of both natural and pathological fluorophores in the retina [4]. Using FAF, early
stages of retinal disease as well as phenotyping (given the altered intensities of FAF imaging) are
possible. The wide range of wavelengths (500–800 nm) of FAF captures lipofuscin fluorescence
deposition, hence creating a topographical map of lipofuscin distribution. As lipofuscin is formed
by N-retinyledene-N-retinylethanolamine (A2E), which is a metabolite from the visual cycle [5,6],
this mapping of lipofuscin accumulation within the retinal pigment epithelium (RPE) provided by FAF
is particularly important. Lipofuscin accumulation within the RPE is a consequence of the incomplete
phagocytosis of photoreceptor outer segments by the RPE [4]. Increased lipofuscin content appears
hyperautofluorescent in FAF. Moreover, it has been previously demonstrated that lipofuscin as well as
its constituent A2E may exert toxic effects on normal RPE cellular processes [7–9]. FAF has been recently
used to assess geographic atrophy (GA), patchy atrophy in pathologic myopia, as well as various
monogenic IRDs, such as Best disease and Stargardt disease [5,6,10–12]. Interestingly, the alterations of
FAF intensity are much more readily delineated on FAF images compared to color fundus photographs
in IRDs such as Stargardt disease [13], Best disease [14], and retinitis pigmentosa [15]. In Stargardt
disease, several phenotypes of FAF alterations can be distinguished in IRDs, from early/subclinical stages
to advanced stages [12–15], proving that this type of imaging may be helpful not only for the detection
of affected areas but also for the differential diagnosis and the follow up of IRDs [12]. In particular,
FAF can capture the high-concentration intracellular A2E as hyperautofluorescent small lesions,
corresponding to the flecks typically seen in Stargardt disease [12,13]. Moreover, atrophy, appearing
in late stages of Stargardt disease, would appear hypoautofluorescent due to the disappearance of
both RPE and choriocapillaris [12,13]. In retinitis pigmentosa, the most common FAF phenotype is the
hyperautofluorescent Robson–Holder parafoveal ring. Interestingly, the Robson–Holder ring is not
visualized on color fundus photography [12,15]. In Best disease, several progression stages are reflected
by FAF imaging, with a progression from increased autofluorescence to atrophy of the photoreceptors
leading to decrease in the hyperautofluorescence and finally to damage to the RPE. [6,12,14].

Nevertheless, IRDs are relatively rare, with an estimated prevalence of 1 in 16,500 to 1 in 21,000
for Best disease [16], 1 in 8000 to 1 in 10,000 for Stargardt disease [2,17], and 1 in 4000 for retinitis
pigmentosa [18]. Given their rarity, these conditions are often difficult to diagnose and patients can
endure a long journey involving many ophthalmologists. Over the past years, machine learning
and more recently deep learning have been increasingly applied to a vast array of ophthalmological
diseases from diabetic retinopathy (DR) [19] to age-related macular degeneration (AMD) [20,21] and
glaucoma [22], with sensitivities and specificities above 90% [19–24]. Deep learning approaches
were also in used in less frequent conditions, for instance to detect and to analyze to progression
of chorioretinal atrophy [25] or to distinguish GA from Stargardt diseases using FAF imaging [26].
Deep learning is based on artificial neural networks, inspired by the biological neural networks [23].
The self-learning algorithms in the deep convolutional neural network (CNN) allow for automated
detection of different structures. CNN is a class of artificial neural networks that is most commonly
used for image recognition and classification. However, deep learning approaches for automated
image analysis require large volumes of high-quality training data, which may be a challenging premise
in a clinical setting. These high volumes of data are even more difficult to obtain in the case of IRDs
due to the rareness of these genetic conditions. We describe a preliminary study to evaluate the use of
deep learning for the automated classification of FAF images from a cohort of patients with Stargardt
disease (STGD), Best disease (BD), and Retinitis Pigmentosa (RP).

2. Methods

2.1. Datasets

This retrospective study was conducted in accordance with the tenets of the Declaration of
Helsinki. This study had the approval of the Ethics Committee of the Federation France Macula
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2018-27 and was carried out in compliance with French legislation. Written consent was waived
because of the retrospective nature of the study. This retrospective analysis included FAF imaging of
patients from the Department of Ophthalmology of the University Paris Est Creteil who presented
between April 2007 and April 2019 with three of the most frequent IRDs: Stargardt disease (STGD),
Best diseases (BD), and Retinitis Pigmentosa (RP). Diagnosis of STGD, BD, and RP for the included eyes
was substantiated using clinical data, mode of inheritance, multimodal imaging, electroretinogram
(ERG) findings, and molecular genetic testing, when available, by two retina specialists (A.M. and
K.B.). Patients with no evidence of retinal disease as determined by a retina specialist were defined
as healthy controls. We used macula-centered fundus autofluorescence retinal images from the
Department of Ophthalmology of Créteil, France. FAF images had been obtained in the Ophthalmology
outpatient clinic in the Department of Ophthalmology in Créteil between April 2007 and April 2019,
using Spectralis HRA + OCT (Heidelberg Eye Explorer, Version 1.10.4.0, Heidelberg Engineering,
Heidelberg, Germany). High-resolution (1536 × 1536 pixels), 30 × 30, and 55 × 55 degree-field-of-view
images centered on the fovea with a minimum average of 30 frames were captured. All images were
deidentified, and all personal data (e.g., patient name, birth date, and study date) were removed.
FAF images were cropped to a size of 768 × 768 pixels with the fovea at the center. Images were labeled
as either normal, STGD, BD, or RP by two retina specialists (A.M. and K.B.). A four-class classification
system (normal, STGD, BD, and RP) was implemented. The images were partitioned in three sets:
the training set (70% of the images), the validation set (10% of the images), and the test set (20% of the
images). Assignment of the images towards the training, the validation, and testing set was performed
randomly. Images were separated at eye-level to strictly separate the training data from the validation
and test data to prevent intra-eye correlations. Images that were used for training the deep learning
classifier were not used to test it.

2.2. Development of a Deep Learning Classifier

For this study, the deep learning framework TensorFlow™ (Google Inc., Mountain View, CA, USA)
was used. We used ResNet 101 (Microsoft ResNet; Microsoft Research Asia, Beijing, China) to perform
the classification task [27]. This deep CNN is widely used for image classification. ResNet 101 has
the advantage of introducing residual connections to increase the network depth without negative
outcomes and to thus improves classification results [27,28]. Transfer learning from the ImageNet
dataset (http://www.image-net.org/) was used to provide base knowledge to the CNN before fine-tuning
it. To fit our task, we reduced the number of output neurons in the last fully connected layer to four.
Moreover, we fixed the first ResNet 101 block during the training process to keep low-level features
learned on ImageNet and to speed up the training. Data augmentation was used to increase the
original dataset and to reduce overfitting of the final model. This was achieved through a combination
of image translation, cropping, and rotation. Moreover, Gaussian noise augmentation was used to
mimic low-quality noisy images. The images were normalized using the mean and standard deviation
of the ImageNet dataset to match the model initialization. The model was optimized using Adam
Optimization Algorithm during 5000 iterations [29]. The model was then evaluated with the test set of
94 images. By using integrated gradients, attribution maps were generated, allowing to assess the
impact of each pixel in the classification and showing on which areas the model relies to perform the
classification [30]. The method is summarized in Figure 1.

http://www.image-net.org/
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Figure 1. Illustration of the development of a deep learning classifier: fundus autofluorescence 
images of Stargardt disease, retinitis pigmentosa, and Best vitelliform macular dystrophy as well as 
of healthy controls were extracted from the Créteil database. After data preparation, transfer learning 
from the ImageNet dataset (http://www.image-net.org/) was used. The images were randomly 
partitioned in three sets: the training set (70% of the images), the validation set (10% of the images), 
and the test set (20% of the images). Data augmentation was performed on the training set to increase 
the original dataset and to reduce overfitting of the final model. The images were normalized using 
the mean and standard deviation of the ImageNet dataset to match the model initialization. The 
model was optimized using Adam Optimization Algorithm during 5000 iterations. The model was 
then evaluated with the test set of 94 images. The output of the model was the metric evaluation of 
the performance of the model (accuracy, sensitivity, and specificity) and integrated gradient 
visualization. 

Performance was evaluated through a comparison of the CNN output to the ground truth, set 
by clinical diagnosis by expert readers. Three metrics were used for this purpose: accuracy, 
sensitivity, and specificity. Confusion matrices, area under (AUC) receiver operating characteristics 
(ROC), and precision-recall (PRC) curves were generated. The deep learning model’s confidence was 
assessed using softmax regression on the test set. In addition, multiple Kernel density estimation 
(KDE), a nonparametric probability density estimation, was also generated to compare the model’s 
confidence throughout the four classes. 

3. Results 

The data used to train, validate, and test the algorithm were composed of 73 FAF images from 
participants with a normal retina and 410 FAF images from participants with IRDs: 125 FAF images 
from patients with STGD, 160 FAF images from patients with RP, and 125 FAF images from patients 
with BD. Of these, 389 FAF images were used for training and validation and the remaining 94 FAF 
images (23 STGD, 32 RP, 25 BD, and 14 healthy controls) were used for testing. For STGD, the 
ROC-AUC was 0.998, the PRC-AUC was 0.986, the sensitivity for STGD FAF image classification 
was 0.96, and the specificity was 1. For RP, the ROC-AUC was 0.999, the PRC AUC was 0.999, the 

Figure 1. Illustration of the development of a deep learning classifier: fundus autofluorescence images
of Stargardt disease, retinitis pigmentosa, and Best vitelliform macular dystrophy as well as of healthy
controls were extracted from the Créteil database. After data preparation, transfer learning from the
ImageNet dataset (http://www.image-net.org/) was used. The images were randomly partitioned in
three sets: the training set (70% of the images), the validation set (10% of the images), and the test set
(20% of the images). Data augmentation was performed on the training set to increase the original
dataset and to reduce overfitting of the final model. The images were normalized using the mean
and standard deviation of the ImageNet dataset to match the model initialization. The model was
optimized using Adam Optimization Algorithm during 5000 iterations. The model was then evaluated
with the test set of 94 images. The output of the model was the metric evaluation of the performance of
the model (accuracy, sensitivity, and specificity) and integrated gradient visualization.

Performance was evaluated through a comparison of the CNN output to the ground truth, set by
clinical diagnosis by expert readers. Three metrics were used for this purpose: accuracy, sensitivity,
and specificity. Confusion matrices, area under (AUC) receiver operating characteristics (ROC),
and precision-recall (PRC) curves were generated. The deep learning model’s confidence was assessed
using softmax regression on the test set. In addition, multiple Kernel density estimation (KDE),
a nonparametric probability density estimation, was also generated to compare the model’s confidence
throughout the four classes.

3. Results

The data used to train, validate, and test the algorithm were composed of 73 FAF images from
participants with a normal retina and 410 FAF images from participants with IRDs: 125 FAF images
from patients with STGD, 160 FAF images from patients with RP, and 125 FAF images from patients
with BD. Of these, 389 FAF images were used for training and validation and the remaining 94
FAF images (23 STGD, 32 RP, 25 BD, and 14 healthy controls) were used for testing. For STGD, the
ROC-AUC was 0.998, the PRC-AUC was 0.986, the sensitivity for STGD FAF image classification was
0.96, and the specificity was 1. For RP, the ROC-AUC was 0.999, the PRC AUC was 0.999, the sensitivity

http://www.image-net.org/
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was 1, and the specificity averaged 0.97. For BD, the ROC-AUC was 0.995, the PRC AUC was 0.988,
the sensitivity averaged 0.92, and the specificity averaged 0.97. For healthy controls, the ROC-AUC was
0.998, the PRC-AUC was 0.989, the sensitivity for normal FAF image classification was 0.86, and the
specificity averaged 0.99. The overall accuracy for the classification was 0.95.

These results are summarized in Tables 1 and 2 and Figure 2.

Table 1. Area under the curve (AUC) for receiver operating characteristics (ROC) and precision-recall
(PRC) curves and sensitivity and specificity of the deep learning classifier for inherited retinal diseases
(IRDs) fundus autofluorescence (FAF) images.

Class ROC-AUC PRC-AUC Sensitivity Specificity

Stargardt disease FAF 0.998 0.986 0.96 1
Retinitis pigmentosa FAF 0.999 0.999 1 0.97

Best disease FAF 0.995 0.988 0.92 0.97
Healthy controls FAF 0.998 0.989 0.86 0.99

Table 2. Confusion matrix of the deep learning classifier test dataset on a total of 94 fundus
autofluorescence (FAF) images of inherited retinal disease (23 Stargardt disease, 32 retinitis pigmentosa,
and 25 Best disease images) and healthy controls (14 images).

Ground Truth Class
Predicted Class

Stargardt Disease Retinitis Pigmentosa Best Disease Healthy Control

Stargardt Disease 22 0 1 0
Retinitis Pigmentosa 0 32 0 0

Best Disease 0 1 23 1
Healthy Control 0 1 1 12
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Figure 2. Receiver operating characteristics (ROC) and precision-recall (PRC) area under the curve
(AUC) for the 4 classes: Stargardt disease (STGD), Retinitis pigmentosa (RP), Best vitelliform macular
dystrophy (BD), and healthy controls. For STGD, the ROC-AUC (left panel) was 0.998 and the PRC-AUC
(right panel) was 0.986. For RP, the ROC-AUC (left panel) was 0.999 and the PRC AUC (right panel)
was 0.999. For BD, the ROC-AUC (left panel) was 0.995 and the PRC AUC (right panel) was 0.988.
For healthy controls, the ROC-AUC (left panel) was 0.998 and the PRC-AUC (right panel) was 0.989.

Figure 3 illustrates integrated gradient visualization for correct attributions, while Figure 4
illustrates integrated gradient visualization for incorrect attributions.
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Figure 3. Fundus autofluorescence (FAF) images (upper panels) of correct attribution with integrated
gradient visualization (lower panels): (A) FAF image of Best vitelliform macular dystrophy, correctly
classified by the deep learning model; (B) integrated gradient visualization reflects distinctive features
(in this case, the presence of hyperautofluorescent vitelliform deposit) of the input image; (C). FAF image
of retinitis pigmentosa, correctly classified by the deep learning model; (D). integrated gradient
visualization reflects distinctive features (in this case, the presence of hyperautofluorescent ring) of
the input image; (E) FAF image of Stargardt disease, correctly classified by the deep learning model;
and (F) integrated gradient visualization reflects distinctive features (in this case, the presence of
hyperautofluorescent flecks and centra atrophy) of the input image.
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present in the central macular region have determined a predicted diagnosis of Best disease by the
deep learning model.
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In order to assess model uncertainty, softmax regression was employed on the test set. The average
confidence probability for correctly predicted test images was 0.943 (median 0.993), whereas the
average confidence probability for erroneously predicted elements was 0.645 (median 0.595) (Figure 5).
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note that the average confidence probability for correctly predicted test images was 0.943 (median
0.993) (blue box), whereas the average confidence probability for erroneously predicted elements was
0.645 (median 0.595) (green box).

Moreover, multiple KDE graphs show the highest estimated probability for each of the four classes
(Figure 6).

The model was then trained separately only with 30 × 30 degree-field-of-view and 55 × 55
degree-field-of-view FAF images of the four classes, obtaining a classification accuracy of 0.94 for
30 × 30 degree-field-of-view FAF images and of 0.94 for 55 × 55 degree-field-of-view FAF images.
The confusion matrices corresponding to these trainings are shown in Table 3.
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Figure 6. Kernel density estimation (KDE) graphs showing the estimated probability for each of the
four classes: upper panel, Best disease KDE; second panel, healthy control KDE; third panel, retinitis
pigmentosa KDE; and fourth panel, Stargardt disease KDE. The deep learning model generates a
probability for the affiliation of each image of the test dataset to one of the four classes. The images
are then compared to each ground truth class to which they were originally assigned, leading to four
different KDE graphs. A peak towards 1 corresponds to FAF images for which the probability of the
predicted class coincides with the tested ground truth class, while a peak towards 0 corresponds to FAF
images for which the probability for the tested ground truth class is low and is, therefore, not likely to
correspond to the studied ground truth class.
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Table 3. Confusion matrix of the deep learning classifier test dataset for 30× 30 degree-field-of-view (test
dataset = 66 images) and 55× 55 degree-field-of-view (test dataset = 32 images) fundus autofluorescence
(FAF) images.

30 × 30 Degree-Field-of-View

Ground Truth Class
Predicted Class

Stargardt Disease Retinitis Pigmentosa Best Disease Healthy Control

Stargardt Disease 10 0 1 0
Retinitis pigmentosa 0 24 0 0

Best disease 0 0 17 0
Healthy control 0 0 2 11

55 × 55 Degree-Field-of-View

Ground Truth Class
Predicted Class

Stargardt Disease Retinitis Pigmentosa Best Disease Healthy Control

Stargardt disease 9 0 0 0
Retinitis pigmentosa 0 17 0 0

Best disease 2 0 4 0
Healthy control 0 0 0 0

4. Discussion

In this study, we demonstrated the feasibility of automated classification of several IRDs using
FAF images, employing a convolutional neural network. Our study showed high sensitivity and
specificity, with an overall accuracy of 0.95. Fundus autofluorescence imaging, providing a metabolic
mapping of the retina, provides crucial information for the diagnosis of IRDs and typical phenotypes
in each of the IRDs included in this study. Stargardt disease is produced by a mutation in the ABCA4
gene. The ABCA4 gene product is an ATP-binding cassette transporter that transports all-trans-retinol
produced in a light-exposed photoreceptor outer segment to the extracellular space [31,32]. As a result
of the mutation, A2E (N-retinylidene-N-retinylethanolamine) accumulates within the outer segment of
photoreceptors, subsequently phagocytosed by RPE cells. As an in vivo metabolic mapping of the
retina, FAF can visualize the high-concentration intracellular A2E as hyperautofluorescent lesions,
corresponding to the flecks typically seen in Stargardt disease [12,13]. In late stages of Stargardt
disease, hypoautofluorescent atrophy is visible on FAF due to the disappearance of both RPE and
choriocapillaris [12,13,32].

The most frequent FAF phenotype in retinitis pigmentosa is the hyperautofluorescent
Robson–Holder parafoveal [12,15], which is not visualized on color fundus photography. The parafoveal
hyperautofluorescent ring may be a result of rod system dysfunction, according to the distribution of
rod photoreceptors and to the low density of cones outside the foveal area [12]. In the rest of the cases,
FAF in retinitis pigmentosa displays abnormal central hyperautofluorescence extending centrifugally
from the fovea in 18% of cases and neither pattern in 24% of cases [12,33].

Best vitelliform macular dystrophy is caused by mutations in the BEST1 gene located on
chromosome 11q13, which encodes bestrophin-1, a protein localized to the basolateral surface of the RPE.
Spaide et al. hypothesized that the central accumulation of a well-demarcated hyperautofluorescent
vitelliform deposit is subsequent to the inadequate removal of subretinal fluid, leading to physical
separation of the photoreceptors from the RPE, progressively resulting in the accumulation of
lipofuscin at the outer side of the neurosensory retina (due to shedding of the outer segment discs
that cannot be phagocyted by the RPE cells) [6]. Several progression stages of BD are reflected by FAF
imaging, from initial increased autofluorescence to late-stage atrophy of the photoreceptors [6,12,14].
Fundus autofluorescence is therefore an important tool for the phenotypic characterization of
retinal dystrophies.

Furthermore, by using integrated gradient visualization, we were able to ascertain the impact
of each pixel in the classification and to visualize areas that the model relies on to predict one
class or the other. Interestingly, by using integrated gradient visualization, the regions of interest
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for CNN corresponded to the areas of interest described above, i.e., increased autofluorescence
either parafoveal, such as in the Robson–Holder ring, or focal, in flecks or in vitelliform deposits.
When well-circumscribed, hypoautofluorescent atrophy was present, integrated gradient visualization
allowed to demonstrate that this feature was also taken into account. These findings are illustrated in
Figure 3. However, no reference databases to classify consistently the normal and pathological FAF
phenotypes are available.

To date, the use of both deep learning classification for IRDs and of FAF imaging for deep learning
purposes have been scarce in the literature. Concerning the automated classification of IRDs, there has
been one study by Fujinami-Yokokawa et al. [34], using OCT and a commercially available deep
learning platform (Inception-v3 CNN) [35]. The authors reported a mean overall test accuracy of 0.909.
However, in their study, three different OCT devices were used and the total number of OCT macular
images was 178. Moreover, the authors performed four repeated tests, with a significant increase in
test accuracy, which may suggest overfitting of their model. Recently, Shah et al. demonstrated that it
is possible to use deep learning classification models to differentiate between normal OCT images and
STGD OCT images and to distinguish the severity of STGD from OCT images. The authors used on a
small dataset a pretrained model (VGG19) and a new classification model, obtaining an accuracy of
0.996, a sensitivity of 99.8%, and a specificity 98.0% for the pretrained model and an accuracy of 0.979,
a sensitivity 97.9%, and a specificity 98.0% with the new classification model [36]. The high accuracy,
sensitivity, and specificity are consistent with our results (Table 1).

FAF imaging has been used in a deep learning-based algorithm to automatically detect and
classify GA by Treder et al. [21] as well as to detect chorioretinal atrophy by Ometto et al. [26] and to
distinguish GA from Stargardt disease by Wang et al. [27]. In the study performed by Treder et al.,
two classifiers were built to differentiate between GA and healthy-eye FAF images and between GA
and a group named other retinal diseases (ORD), with a training and validation set of 200 GA FAF
images, 200 healthy-eye FAF images, and 200 FAF images of ORD. The test set consisted of 60 untrained
FAF images in each case (GA 30, healthy 30, or ORD 30). For the GA classifiers, their model achieved a
training accuracy of 99/98 and a validation accuracy of 96/91. Wang et al. used 320 FAF images from
normal subjects, 320 FAF images with GA, and 100 with Stargardt disease in atrophic stage, obtaining
a high screening accuracy with 0.98 for GA and 0.95 for atrophic Stargardt disease [27]. The excellent
results confirm that automated classification with a deep learning classifier is possible in GA using
FAF images.

Considerable efforts continue to be made to develop automated image analysis systems for the
precise detection of disease in several medical specialties. In recent years, the use of CNNs has
become increasingly popular for feature learning and object classification. Following the ImageNet
Large Scale Visual Recognition Challenge, Russakovsky and collaborators demonstrated that the
object classification capabilities of CNN architectures can surpass those of humans [37]. While the
applications of artificial intelligence have mainly focused on diabetic retinopathy and age-related
macular degeneration or glaucoma [19–23], IRDs would make an interesting candidate due to the
typical, symmetrical phenotype of these disorders.

Our study has several limitations, one of which is the use of a small dataset. Moreover, our deep
learning classifier was trained to only distinguish between three of the less rare IRDs, for which
we have sufficient training data. Moreover, eye-level partitioning of the dataset and the use of a
training/validation/test split are other limitations due to the sample variability and to the fact that,
when training on different images, the model might not perform as well. Lack of molecular genetic
testing for a part of the included eyes is another limitation. Due to the vast spectrum and genotypic and
phenotypic variability of IRDs, it is difficult to assess how such a classifier would perform in a clinical
setting. Moreover, image noise and the presence of interindividual and intraindividual variability in
terms of media opacities, lipofuscin content, and genetic expression impact FAF imaging and may
become a significant challenge.
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Confidence estimation allows for quantifying model uncertainty. This is of the utmost importance
when the deep learning model has to make predictions in a clinical setting, possibly on out of
distribution data (therefore different from the distribution of the data on which the model was trained)
resulting in variations in accuracy. Interestingly, in our series, the average confidence probability for
when the predicted class for FAF images was correct was 0.943 (median 0.993), whereas the average
confidence probability for the erroneously predicted FAF images was 0.645 (median 0.595). This analysis
shows that, when correctly classifying images, the deep learning model is more confident than when
it classifies images incorrectly (Figure 5). Furthermore, KDE graphs (Figure 6) offer complementary
information on the model’s confidence in correctly predicting the four classes.

Moreover, our limited dataset made further classifications according to the disease stage impossible.
Nevertheless, given that IRDs are orphan diseases, large datasets would only be available through
multi-institutional collaborations. With further developments, this model may be a diagnostic tool and
may give relevant information for future therapeutic approaches.
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