
HAL Id: hal-04127274
https://hal.u-pec.fr/hal-04127274v1

Submitted on 13 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Order-Invariance in the Two-Variable Fragment of
First-Order Logic

Julien Grange

To cite this version:
Julien Grange. Order-Invariance in the Two-Variable Fragment of First-Order Logic. 31st
EACSL Annual Conference on Computer Science Logic (CSL 2023), Feb 2023, Warsaw, Poland.
�10.4230/LIPIcs.CSL.2023.23�. �hal-04127274�

https://hal.u-pec.fr/hal-04127274v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Order-Invariance in the Two-Variable Fragment of
First-Order Logic
Julien Grange #

LACL, Université Paris-Est Créteil, France

Abstract
We study the expressive power of the two-variable fragment of order-invariant first-order logic. This
logic departs from first-order logic in two ways: first, formulas are only allowed to quantify over
two variables. Second, formulas can use an additional binary relation, which is interpreted in the
structures under scrutiny as a linear order, provided that the truth value of a sentence over a finite
structure never depends on which linear order is chosen on its domain.

We prove that on classes of structures of bounded degree, any property expressible in this logic
is definable in first-order logic. We then show that the situation remains the same when we add
counting quantifiers to this logic.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases Finite model theory, Two-variable logic, Order-invariance

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.23

1 Introduction

The restriction of first-order logic to two variables (FO2) holds an important place among
the fragments of first-order logic (FO), since it is the maximal fragment, with respect to the
number of variables, for which the finite and general satisfiability problems are decidable [14]
– see [5] for a complete survey on these issues. They become undecidable as soon as we allow
formulas to make use of three variables, as three variables are enough to encode grids, and
thus runs of Turing machines. Tame as it is in this regard, FO2 is still fairly expressive
(in particular, it embeds modal logic). It is thus natural to investigate its order-invariant
extension < -inv FO2.

In the order-invariant extension < -inv L of a logic L, one can make use in the L-formulas
of a linear order on the vertices of the structures at hand, provided that the validity of
said formulas in a given finite structure does not depend on the choice of a particular order.
Such a notion is very natural and useful both in database theory (where it corresponds to
the requirement for a query to be independent of the order in which the data is stored on
disk) and in descriptive complexity (where structures are needed to be ordered for a logic to
capture complexity classes such as PTIME [10] and PSPACE [17]).

If L = FO, we get < -inv FO, whose syntax is not recursively enumerable. It has however
been proven by Harwath and Zeume [19] that on the other hand, < -inv FO2 has a recursive
syntax. The natural follow-up to this result is to study the expressive power of < -inv FO2.
This shall be our endeavor in this article.

Perhaps surprisingly, it has been shown by Gurevich (see Section 5.2 of [13]) that such
an order can indeed bring additional expressive power to FO, even when restricted in this
way: there exist properties which are not definable in FO, but which can be expressed as
soon as the use of a linear order is authorized, even in an invariant fashion. In symbols:
< -inv FO ̸⊆ FO. It is not hard to observe that < -inv FO2 ̸⊆ FO2 (for instance, one can
state in < -inv FO2 that a set has at least three elements, which is not possible in FO2).
It is however not clear whether < -inv FO2 ⊆ FO, or whether even when restricted to two

© Julien Grange;
licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julien.grange@lacl.fr
https://doi.org/10.4230/LIPIcs.CSL.2023.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Order-Invariance in the Two-Variable Fragment of First-Order Logic

variables, the addition of an order allows one to express properties beyond the scope of FO.a
This question is asked in [19]. Is this paper, we prove that on any class of bounded degree,
the inclusion < -inv FO2 ⊆ FO indeed holds - this is Theorem 1, whose proof is the object of
Sections 4 and 5. We then explain in Section 6 how to extend this result from < -inv FO2 to
< -inv C2, where C2 is the extension of FO2 with counting quantifiers. Precisely, we show
with Theorem 10 that < -inv C2 ⊆ FO when the degree is bounded. Let us already mention
that both of these inclusions are strict. This matter is further discussed in the conclusion.

Related work

The question of the order-invariance of an FO2-sentence has been shown to be decidable
in [19]. The expressive power of < -inv FO2 is only mentioned there as a follow up question.

We borrow the dichotomy between rare and frequent neighborhood types when the
degree is bounded from [7]. Beyond that, the philosophies of the constructions differ widely:
in [7], successor relations are constructed in a very regular way, in order to create as few
neighborhood types as possible in the structures with successor. On the other hand, we make
sure to realize all the possible types in our construction.

One line of research investigates the expressive power of < -inv FO. Let us mention [3]
and [8], which prove that < -inv FO has the same expressive power as FO respectively on
trees and on hollow trees. The present paper focuses on a weaker logic, but in a broader
setting. Furthermore, while the techniques used in these papers involve the construction of
several intermediate orders, making only localized changes at each step (in the fashion of [9],
in which it is proved that < -inv FO retains the locality of FO), we equip in one go each of
our structures with a linear order.

Although not directly related to our inquiries, [18] is also concerned with the expressive
power of FO2 on ordered structures. This paper establishes a strict hierarchy, based on the
quantifier rank and quantifier alternation, among properties definable in FO2 on words.

2 Preliminaries

We use the standard definition of first-order logic FO(Σ) with equality (written FO when Σ
is clear from the context) on a finite signature Σ composed of relation and constant symbols.
By FO2 we denote the fragment of FO in which the only two variables are x and y.

Structures are denoted by a name that starts with (or consists of) a calligraphic upper-
case letter, while their universes are denoted by the same name starting with a standard
upper-case letter instead of the calligraphic one; for instance, Ex is the universe of the
structure Ex. Throughout this paper, we consider only finite structures.

A sentence φ ∈ FO2(Σ ∪ {<}), where < is a binary relation symbol not belonging to
Σ, is said to be order-invariant if for every finite Σ-structure A, and every pair of strict
linear orders <0 and <1 on A, (A, <0) |= φ iff (A, <1) |= φ. It is then convenient to omit the
interpretation for the symbol <, and to write A |= φ iff (A, <0) |= φ for any (or, equivalently,
every) linear order <0. The set of order-invariant sentences using two variables is denoted
< -inv FO2.

a We have recently become aware [2] of an upcoming result leading us to believe that, in general,
< -inv FO2 can capture properties that are not FO-definable. More precisely, this result states the
existence of two classes of structures (of unbounded degree) C′ ⊆ C such that C′ is not definable in
FO, but can be defined in C by an FO2-sentence using a linear order, which is order-invariant on all
structures of C. Although this does not exactly imply < -inv FO2 ̸⊆ FO according to our definition
of invariance (since said sentence is not invariant on all finite structures), it leads us to believe that
< -inv FO2 can express properties beyond FO’s reach.



J. Grange 23:3

Let L,L′ be two logics defined over the same signature, and C be a class of finite structures
on this signature. We say that a property P ⊆ C is definable (or expressible) in L if there
exists an L-sentence φ such that P = {A ∈ C : A |= φ}. We say that L ⊆ L′ on C if every
property on C definable in L is also definable in L′.

It is quite clear that FO2 ⊆ < -inv FO2: any sentence which does not make use of the
order is indeed order-invariant. Furthermore, this inclusion is strict. For instance, over the
empty signature, the property of having at least three elements is not definable in FO2

(this can easily be seen with the tools presented in Section 5.1), but can be expressed in
< -inv FO2, for instance via the formula ∃x ∃y (x < y ∧ (∃x y < x)) .

The quantifier rank of a formula is the maximal number of quantifiers in a branch of
its syntactic tree. Given two Σ-structures A0 and A1, and L being one of FO,FO2 and
< -inv FO2, we write A0 ≡L

k A1 if A0 and A1 satisfy the same L-sentences of quantifier rank
at most k. In this case, we say that A0 and A1 are L-similar at depth k.

We write A0 ≃ A1 if A0 and A1 are isomorphic.

Atomic types

Let a be an element of a structure A. The atomic type tp0
A(a) of a in A is the set of atomic

formulas φ with at most one free variable x such that A, x 7→ a |= φ.
We define similarly the atomic type tp0

A(a, b) of a pair (a, b) of elements of A as the set
of atomic formulas φ with free variables in {x, y} such that A, x 7→ a, y 7→ b |= φ.

Given a linearly ordered Σ-structure (A, <), tp0
(A,<)(a, b) can be divided into tp0

<(a, b)
and tp0

A(a, b), where tp0
<(a, b) is one of {x < y}, {x > y} and {x = y}.

Gaifman graphs

The Gaifman graph GA of a structure A is defined as (A,E) where (a, b) ∈ E iff a and b

appear in the same tuple of a relation of A. Notice that if a graph is seen as a structure on
the signature consisting of a single binary relation symbol, its Gaifman graph is none other
than the unoriented version of itself.

By distA(a, b), we denote the distance between a and b in GA. For B ⊆ A, we note NA(B)
the set of elements at distance exactly 1 from B in GA. In particular, B ∩NA(B) = ∅.

The degree of A is the maximal degree of its Gaifman graph, and a class C of Σ-structures
is said to have bounded degree if there exists some d ∈ N such that the degree of every
A ∈ C is at most d.

3 Main result

We are now able to state the main result of this article. Remember that < -inv FO2 allows
us to express properties that are beyond the scope of plain FO2. We give an upper bound to
its expressive power, when the degree is bounded:

▶ Theorem 1. Let C be a class of structures of bounded degree.
Then < -inv FO2 ⊆ FO on C.

For the remainder of this paper, we fix a signature Σ, an integer d and a class C of
Σ-structures of degree at most d.

Let us now show the skeleton of our proof. The technical part of the proof will be
the focus of Sections 4 and 5. Our general strategy is to show the existence of a function
f : N → N such that every formula φ ∈ < -inv FO2 of quantifier rank k is equivalent on C
(i.e. satisfied by the same structures of C) to an FO-formula ψ of quantifier rank at most
f(k).

CSL 2023



23:4 Order-Invariance in the Two-Variable Fragment of First-Order Logic

To prove this, it is enough to show that for any two structures A0,A1 ∈ C such that
A0 ≡FO

f(k) A1, we have A0 ≡<-inv FO2

k A1. Indeed, the class of structures satisfying a formula
φ ∈ < -inv FO2 of quantifier rank k is a union of equivalence classes for the equivalence
relation ≡<-inv FO2

k , whose intersection with C is in turn the intersection of C with a union of
equivalence classes for ≡FO

f(k). It is folklore (see, e.g., [13]) that the equivalence relation ≡FO
f(k)

has finite index, and that each of its equivalence classes is definable by an FO-sentence of
quantifier rank f(k). Then ψ is just the finite disjunction of these FO-sentences.

In order to show that A0 ≡<-inv FO2

k A1, we will construct in Section 4 two particular
orders <0, <1 on these respective structures, and we will prove in Section 5 that

(A0, <0) ≡FO2

k (A1, <1) . (1)

This concludes the proof, since any sentence θ ∈ < -inv FO2 with quantifier rank at most k
holds in A0 iff it holds in (A0, <0) (by definition of order-invariance), iff it holds in (A1, <1)
(by (1)), iff it holds in A1.

4 Constructing linear orders on A0 and A1

Recall from Section 3 that our goal is to find a function f such that, given two structures
A0,A1 in C such that

A0 ≡FO
f(k) A1 , (2)

we are able to construct two linear orders <0, <1 such that (A0, <0) ≡FO2

k (A1, <1).
In this section, we define f and we detail the construction of such orders. The proof of

< -inv FO-similarity between (A0, <0) and (A1, <1) will be the focus of Section 5.
Let us now explain how we define f . For that, we need to introduce the notion of

neighborhood and neighborhood type. These notions are defined in Section 4.1. We then
explain in Section 4.2 how to divide neighborhood types into rare ones and frequent ones.
Finally, the details of the construction are given in Section 4.3.

4.1 Neighborhoods
Let us now define the notion of neighborhood of an element in a structure.

Let c be a new constant symbol, and let A ∈ C. For k ∈ N and a ∈ A, the (pointed) k-
neighborhood N k

A(a) of a in A is the (Σ∪{c})-structure whose restriction to the vocabulary
Σ is the substructure of A induced by the set Nk

A(a) = {b ∈ A : distA(a, b) ≤ k} , and where
c is interpreted as a. In other words, it consists of all the elements at distance at most k
from a in A, together with the relations they share in A; the center a being marked by
the constant c. We sometimes refer to Nk

A(a) as the k-neighborhood of a in A as well, but
the context will always make clear whether we refer to the whole substructure or only its
domain. The k-neighborhood type τ = neigh-tpk

A(a) of a in A is the isomorphism class
of its k-neighborhood. We say that τ is a k-neighborhood type over Σ, and that a is an
occurrence of τ . We denote by |A|τ the number of occurrences of τ in A, and we write
JA0Kk =t JA1Kk to mean that for every k-neighborhood type τ , |A0|τ and |A1|τ are either
equal, or both larger than t.

Let NeighTyped
k denote the set of k-neighborhood types over Σ occurring in structures

of degree at most d. Note that NeighTyped
k is a finite set.

The interest of this notion resides in the fact that when the degree is bounded, FO
is exactly able to count the number of occurrences of neighborhood types up to some
threshold [4]. We will only use one direction of this characterization, namely:



J. Grange 23:5

▶ Proposition 2. For all integers k and t, there exists some f̂(k, t) ∈ N (which also depends
on the bound d on the degree of structures in C) such that for all structures A0,A1 ∈ C,

A0 ≡FO
f̂(k,t) A1 → JA0Kk =t JA1Kk .

We now exhibit a function Θ : N → N such that, if JA0Kk =Θ(k) JA1Kk, then one can
construct <0, <1 satisfying (1). Proposition 2 then ensures that f : k 7→ f̂(k,Θ(k)) fits the
bill. Let us now explain how the function Θ is chosen.

4.2 Frequency of a neighborhood type
Let us denote |NeighTyped

k| as N .
Recall that every A ∈ C has degree at most d. What this means is that if we consider the

set Freq[A]k of k-neighborhood types that have enough occurrences in A (where “enough”
will be given a precise meaning later on), each type in Freq[A]k must have many occurrences
that are scattered across A. Not only that, but we can also make sure that such occurrences
are far from all the occurrences of every k-neighborhood type not in Freq[A]k, which by
definition have few occurrences in A. Since the degree is bounded, N is bounded too, which
prevents our distinction (which will be formalized later on) between rare neighborhood types
and frequent neighborhood types from being circular.

Such a dichotomy is introduced and detailed in [7]; we simply adapt this construction to
our needs. In the remainder of this section, we describe this construction at a high level, and
leave the technical details (such as the exact bounds) to the reader.

The proof of the following lemma (in the vein of [1]) is straightforward, and relies on
the degree boundedness hypothesis. Intuitively, Lemma 3 states that when the degree is
bounded, it is not possible for all the elements of large sets to be concentrated in one corner
of the structure, thus making it possible to pick elements in each set that are scattered across
the structure.

▶ Lemma 3. Given three integers m, δ, s, there exists a threshold g(m, δ, s) ∈ N such that for
all A ∈ C, all B ⊆ A of size at most s, and all subsets C1, · · · , Cn ⊆ A (with n ≤ N) of size
at least g(m, δ, s), it is possible to find elements c1

j , · · · , cm
j ∈ Cj for all j ∈ {1, · · · , n}, such

that for all j, j′ ∈ {1, · · · , n} and i, i′ ∈ {1, · · · ,m}, distA(ci
j , B) > δ and distA(ci

j , c
i′

j′) > δ

if (j, i) ̸= (j′, i′).

Note that the N is this lemma could be replaced by any constant.
Our goal is, given a structure A ∈ C, to partition the k-neighborhood types into two

classes: the frequent types, and the rare types. The property we wish to ensure is that there
exist in A some number m (which will be made precise later on, but only depends on k) of
occurrences of each one of the frequent k-neighborhood types which are both

at distance greater than δ (which, as for m, is a function of k and will be fixed in the
following) from one another, and
at distance greater than δ from every occurrence of a rare k-neighborhood type.

To establish this property, we would like to use Lemma 3, with s being the total number of
occurrences of all the rare k-neighborhood types, and C1, · · · , Cn being the sets of occurrences
of the n distinct frequent k-neighborhood types.

The number N of different k-neighborhood types of degree at most d is bounded by a
function of k (as well as Σ and d, which are fixed). Hence, we can proceed according to the
following (terminating) algorithm to make the distinction between frequent and rare types:

CSL 2023



23:6 Order-Invariance in the Two-Variable Fragment of First-Order Logic

1. First, let us mark every k-neighborhood type as frequent.
2. Among the types which are currently marked as frequent, let τ be one with the smallest

number of occurrences in A.
3. If |A|τ is at least g(m, δ, s) (g being the function from Lemma 3) where s is the total

number of occurrences of all the k-neighborhood types which are currently marked as
rare, then we are done and the marking frequent/rare is final. Otherwise, mark τ as rare,
and go back to step 2 if there remains at least one frequent k-neighborhood type.

Notice that we can go at most N times through step 2, where N depends only on k.
Furthermore, each time we add a type to the set of rare k-neighborhood types, we have the
guarantee that this type has few occurrences (namely, less than g(m, δ, s), where s can be
bounded by a function of k).

It is thus apparent that the threshold t such that a k-neighborhood type τ is frequent in
A iff |A|τ ≥ t can be bounded by some T depending only on k - importantly, T is the same
for all structures of C.

Let us now make the above more formal. For t ∈ N and A ∈ C, let Freq[A]≥t
k ⊆

NeighTyped
k denote the set of k-neighborhood types which have at least t occurrences in A.

By applying the procedure presented above, we derive the following lemma:

▶ Lemma 4. Let k,m, δ ∈ N. There exists T ∈ N such that for every A ∈ C, there exists
some t ≤ T such that

t ≥ g(m, δ,
∑

τ /∈Freq[A]≥t
k

|A|τ ) .

Let Freq[A]k := Freq[A]≥t
k for the smallest threshold t given in Lemma 4. Some

k-neighborhood type τ ∈ NeighTyped
k is said to be frequent in A ∈ C if it belongs to

Freq[A]k; that is, if |A|τ ≥ t. Otherwise, τ is said to be rare. With the definition of g in
mind, Lemma 4 can then be reformulated as follows: in every structure A ∈ C, one can find
m occurrences of each frequent k-neighborhood type which are at distance greater than δ

from one another and from the set of occurrences of every rare k-neighborhood type.
All that remains is for us to give a value (depending only on k) to the integers m and δ:

let M := max{|τ | : τ ∈ NeighTyped
k} (M indeed exists, and is a function of k - recall that

the signature Σ and the degree d are assumed to be fixed). Let us consider

m := 2 · (k + 1) ·M ! and δ := 4k . (3)

We then define Θ(k) as the integer T provided by Lemma 4 for these values of m and δ. The
threshold Θ(k) indeed only depends on k. Finally, notice that if JA0Kk =Θ(k) JA1Kk , then
Freq[A0]k = Freq[A1]k .

As discussed in Section 4.1, there exists a function f such that A0 ≡FO
f(k) A1 entails

JA0Kk =Θ(k) JA1Kk. We also make sure that f(k) ≥ Θ(k) ·N + 1 for every k.
Let us now consider A0,A1 ∈ C such that A0 ≡FO

f(k) A1 for such an f . If Freq[A0]k = ∅,
then |A0| ≤ Θ(k) ·N . This guarantees that A0 ≃ A1, and in particular that A0 ≡<-inv FO2

k A1.
From now on, we suppose that there is at least one frequent k-neighborhood type.

The construction of two linear orders <0 and <1 satisfying (A0, <0) ≡FO2

k (A1, <1) is the
object of Section 4.3.

4.3 Construction of <0 and <1

This section is dedicated to the definition of two linear orders <0, <1 on A0,A1 ∈ C. We
then prove in Section 5 that (A0, <0) and (A1, <1) are FO2-similar at depth k.



J. Grange 23:7

Recall that by hypothesis, A0 and A1 are FO-similar at depth f(k), which entails that
they have the same number of occurrences of each τ ∈ NeighTyped

k up to a threshold Θ(k).
To construct our two linear orders, we need to define the notion of k-environment: given

A ∈ C, a linear order < on A, k ∈ N and an element a ∈ A, we define the k-environment
Envk

(A,<)(a) of a in (A, <) as the restriction of (A, <) to the k-neighborhood of a in A, where
a is the interpretation of the constant symbol c. Note that the order is not taken into account
when determining the domain of the substructure (it would otherwise be A, given that any
two distinct elements are adjacent for <). The k-environment type env-tpk

(A,<)(a) is the
isomorphism class of Envk

(A,<)(a). In other words, env-tpk
(A,<)(a) contains the information

of N k
A(a) together with the order of its elements in (A, <).

Given τ ∈ NeighTyped
k, we define Env(τ) as the set of k-environment types whose

underlying k-neighborhood type is τ .
For i ∈ {0, 1}, we aim to partition Ai into 2(2k + 1) + 2 segments:

Ai = Xi ∪
2k⋃

j=0
(Lj

i ∪Rj
i ) ∪Mi .

Once we have set a linear order on each segment, the linear order <i on Ai will result from
the concatenation of the orders on the segments as follows:

(Ai, <i) := Xi · L0
i · L1

i · · ·L2k
i ·Mi ·R2k

i · · ·R1
i ·R0

i .

Each segment Lj
i , for j ∈ {0, · · · , 2k} is itself decomposed into two segments NLj

i · ULj
i .

The ULj
i for j ∈ {k + 1, · · · , 2k} will be empty; they are defined solely in order to keep the

notations uniform. The ’N’ stands for “neighbor” and the ’U’ for “universal”, for reasons
that will soon become apparent. Symmetrically, each Rj

i is decomposed into URj
i ·NRj

i , with
empty URj

i as soon as j ≥ k + 1.
For i ∈ {0, 1} and r ∈ {0, · · · , 2k}, we define Sr

i as

Sr
i := Xi ∪

r⋃
j=0

(Lj
i ∪Rj

i ) .

Let us now explain how the segments are constructed in A0; see Figure 1 for an illustration.

· · · · · · · · ·X0 NL0
0 UL0

0 NL1
0 UL1

0 NLk
0 ULk

0 NLk+1
0 NL2k

0 M0 NR2k
0 UR1

0 NR1
0 UR0

0

L0
0 L1

0 Lk
0 Lk+1

0 L2k
0 R2k

0 R1
0 R0

0

Figure 1 The black curvy edges represent the edges between elements belonging to different
segments. Edges between elements of the same segment are not represented here. The order <0

grows from the left to the right.

For every τ ∈ Freq[A0]k, let τ1, · · · , τ|Env(τ)| be an enumeration of Env(τ). Recall that
we defined M in Section 4.2 as max{|τ | : τ ∈ NeighTyped

k}. Thus, we have |Env(τ)| ≤ M !
for every τ ∈ NeighTyped

k.
In particular, by definition of frequency, and by choice of m and δ in (3), Lemma 4

ensures that we are able to pick, for every τ ∈ Freq[A0]k, every l ∈ {1, · · · , |Env(τ)|} and
every j ∈ {0, · · · , k}, two elements a[τl]jL and a[τl]jR which have τ as k-neighborhood type
in A0, such that all the a[τl]j∗ are at distance at least 4k + 1 from each other and from any
occurrence of a rare k-neighborhood type in A0.

CSL 2023



23:8 Order-Invariance in the Two-Variable Fragment of First-Order Logic

Construction of X0 and NL0
0

We start with the set X0, which contains all the occurrences of rare k-neighborhood types,
together with their k-neighborhoods.
Formally, the domain of X0 is

⋃
a∈A0: neigh-tpk

A0
(a)/∈Freq[A0]

k
Nk

A0
(a) .

We set NL0
0 := NA0(X0) (the set of neighbors of elements of X0), and define the order <0

on X0 and on NL0
0 in an arbitrary way.

Construction of ULj
0

If k < j ≤ 2k, then we set ULj
0 := ∅. Otherwise, for j ∈ {0, · · · , k}, once we have constructed

L0
0, · · · , Lj−1

0 and NLj
0, we construct ULj

0 as follows.
The elements of ULj

0 are
⋃

τ∈Freq[A0]
k

⋃|Env(τ)|
l=1 Nk

A0
(a[τl]jL) .

Note that ULj
0 does not intersect the previously constructed segments, by choice of the a[τl]jL

and of δ = 4k in (3). Furthermore, the Nk
A0

(a[τl]jL) are pairwise disjoint, hence we can fix
<0 freely and independently on each of them. Unsurprisingly, we order each Nk

A0
(a[τl]jL) so

that env-tpk
(A0,<0)(a[τl]jL) = τl. This is possible because for every τ ∈ Freq[A0]k and each l,

neigh-tpk
A0

(a[τl]jL) = τ by choice of a[τl]jL.
Once each Nk

A0
(a[τl]jL) is ordered according to τl, the linear order <0 on ULj

0 can be completed
in an arbitrary way. Note that every possible k-environment type extending a frequent
k-neighborhood type in A0 occurs in each ULj

0. The ULj
0 are universal in that sense.

Construction of NLj
0

Now, let us see how the NLj
0 are constructed. For j ∈ {1, · · · , 2k}, suppose that we have

constructed L0
0, · · · , Lj−1

0 . The domain of NLj
0 consists of all the neighbors (in A0) of the

elements of Lj−1
0 not already belonging to the construction so far. Formally, NA0(Lj−1

0 ) \(
X0 ∪

⋃j−2
m=0 L

m
0

)
.

The order <0 on NLj
0 is chosen arbitrarily.

Construction of Rj
0

We construct similarly the Rj
0, for j ∈ {0, · · · , 2k}, starting with NR0

0 := ∅, then UR0
0 which

contains each a[τl]0R together with its k-neighborhood in A0 ordered according to τl, then
NR1

0 := NA0(R0
0), then UR1

0, etc.
Note that the a[τl]jR have been chosen so that they are far enough in A0 from all the segments
that have been constructed so far, allowing us once more to order their k-neighborhood in
A0 as we see fit.

Construction of M0

M0 contains all the elements of A0 besides those already belonging to S2k
0 . The order <0

chosen on M0 is arbitrary.

Transfer on A1

Suppose that we have constructed S2k
0 . We can make sure, retrospectively, that the index

f(k) in (2) is large enough so that there exists a set S ⊆ A1 so that A0|S2k
0 ∪NA0 (S2k

0 ) ≃ A1|S
(this is ensured as long as f(k) ≥ |S2k

0 ∪NA0(S2k
0 )| + 1, which can be bounded by a function

of k, independent of A0 and A1).



J. Grange 23:9

Let φ0 : A0|S2k
0

→ A1|S′ be the restriction to S2k
0 of said isomorphism, and let φ1 be its

converse. By construction, the k-neighborhood of every a ∈ Sk
0 is included in S2k

0 ; hence
every such a has the same k-neighborhood type in A0 as has φ0(a) in A1.
We transfer alongside φ0 all the segments, with their order, from (A0, <0) to A1, thus defining
X1, NL

j
1, UL

j
1, · · · as the respective images by φ0 of X0, NL

j
0, UL

j
0, · · · , and define M1 as the

counterpart to M0. Note that the properties concerning neighborhood are transferred; e.g.
all the neighbors of an element in Lj

1, 1 ≤ j < 2k, belong to Lj−1
1 ∪ Lj

1 ∪ Lj+1
1 .

By construction, we get the following lemma:

▶ Lemma 5. For each a ∈ Sk
0 , we have env-tpk

(A0,<0)(a) = env-tpk
(A1,<1)(φ0(a)) .

Lemma 5 has two immediate consequences:
The set X1 contains the occurrences in A1 of all the rare k-neighborhood types (just
forget about the order on the k-environments, and remember that A0 and A1 have the
same number of occurrences of each rare k-neighborhood type).
All the universal segments ULj

1 and URj
1, for 0 ≤ j ≤ k, contain at least one occurrence

of each environment in Env(τ), for each τ ∈ Freq[A0]k.

Our construction also guarantees the following result:

▶ Lemma 6. For each a, b ∈ Sk
0 , we have tp0

(A0,<0)(a, b) = tp0
(A1,<1)(φ0(a), φ0(b)) .

In particular, for a = b ∈ Sk
0 , we have tp0

(A0,<0)(a) = tp0
(A1,<1)(φ0(a)) .

5 Proof of the FO2-similarity of (A0, <0) and (A1, <1)

In this section, we aim to show the following result:

▶ Proposition 7. We have that (A0, <0) ≡FO2

k (A1, <1) .

5.1 The two-pebble Ehrenfeucht-Fraïssé game
To establish Proposition 7, we use Ehrenfeucht-Fraïssé games with two pebbles. These games
have been introduced by Immerman and Kozen [11]. Let us adapt their definition to our
context.

The k-round two-pebble Ehrenfeucht-Fraïssé game on (A0, <0) and (A1, <1) is
played by two players: the spoiler and the duplicator. The spoiler tries to expose differences
between the two structures, while the duplicator tries to establish their indistinguishability.

There are two pebbles associated with each structure: px
0 and py

0 on (A0, <0), and px
1 and

py
1 on (A1, <1). Formally, these pebbles can be seen as the interpretations in each structure

of two new constant symbols, but it will be convenient to see them as moving pieces.
At the start of the game, the duplicator places px

0 and py
0 on elements of (A0, <0), and

px
1 and py

1 on elements of (A1, <1). The spoiler wins if the duplicator is unable to ensure
that tp0

(A0,<0)(px
0 , p

y
0) = tp0

(A1,<1)(px
1 , p

y
1). Otherwise, the proper game starts. Note that in

the usual definition of the starting position, the pebbles are not on the board; however, it
will be convenient to have them placed in order to uniformize our invariant. This change is
not profound and does not affect the properties of the game.

For each of the k rounds, the spoiler starts by choosing a structure and a pebble in this
structure, and places this pebble on a element of the chosen structure. In turn, the duplicator
must place the corresponding pebble in the other structure on an element of that structure.
The spoiler wins at once if tp0

(A0,<0)(px
0 , p

y
0) ̸= tp0

(A1,<1)(px
1 , p

y
1). Otherwise, another round is

played. If the spoiler has not won after k rounds, then the duplicator wins.

CSL 2023



23:10 Order-Invariance in the Two-Variable Fragment of First-Order Logic

The main interest of these games is that they capture the expressive power of FO2 [11].
We will only need the fact that these games are correct:

▶ Theorem 8. If the duplicator has a winning strategy in the k-round two-pebble Ehrenfeucht-
Fraïssé game on (A0, <0) and (A1, <1), then (A0, <0) ≡FO2

k (A1, <1) .

Thus, in order to prove Proposition 7, we show that the duplicator wins the k-round two-
pebble Ehrenfeucht-Fraïssé game on (A0, <0) and (A1, <1) . For that, let us show by a
decreasing induction on r = k, · · · , 0 that the duplicator can ensure, after k − r rounds, that
the three following properties (described below) hold:

∀i ∈ {0, 1},∀α ∈ {x, y}, pα
i ∈ Sr

i → pα
1−i = φi(pα

i ) (Sr)
∀α ∈ {x, y}, env-tpr

(A0,<0)(pα
0 ) = env-tpr

(A1,<1)(pα
1 ) (Er)

tp0
(A0,<0)(px

0 , p
y
0) = tp0

(A1,<1)(px
1 , p

y
1) (Tr)

The first property, (Sr), guarantees that if a pebble is close (in a sense that depends on the
number of rounds left in the game) to one of the <i-minimal or <i-maximal elements, the
corresponding pebble in the other structure is located at the same position with respect to
this <i-extremal element.
As for (Er), it states that two corresponding pebbles are always placed on elements sharing
the same r-environment type. Once again, the satefy distance decreases with each round
that goes.
Finally, (Tr) controls that both pebbles have the same relative position (both with respect
to the order and the original vocabulary) in the two ordered structures. In particular, the
duplicator wins the game if (Tr) is satisfied at the begining of the game, and after each of
the k rounds of the game.

5.2 Base case: proofs of (Sk), (Ek) and (Tk)
We start by proving (Sk), (Ek) and (Tk).
At the start of the game, the duplicator places both px

0 and py
0 on the <0-minimal element of

(A0, <0), and both px
1 and py

1 on the <1-minimal element of (A1, <1). In particular,

px
1 = py

1 = φ0(px
0) = φ0(py

0) .

This ensures that (Sk) holds, while (Ek) and (Tk) respectively follow from Lemma 5 and
Lemma 6.

5.3 Strategy for the duplicator
We now describe the duplicator’s strategy to ensure that (Sr), (Er) and (Tr) hold no matter
how the spoiler plays.

Suppose that we have (Sr+1), (Er+1) and (Tr+1) for some 0 ≤ r < k, after k − r − 1
rounds of the game. Without loss of generality, we may assume that, in the (k − r)-th round
of the Ehrenfeucht-Fraïssé game between (A0, <0) and (A1, <1), the spoiler moves px

0 in
(A0, <0). Let us first explain informally the general idea behind the duplicator’s strategy.

1. If the spoiler plays around the endpoints (by which we mean the elements that are
<i-minimal and maximal), the duplicator has no choice but to play a tit-for-tat strategy,
i.e. to respond to the placement of pα

i near the endpoints by moving pα
1−i on φi(pα

i ).



J. Grange 23:11

If the duplicator does not respond this way, then the spoiler will be able to expose
the difference between (A0, <0) and (A1, <1) in the subsequent moves, by forcing the
duplicator to play closer and closer to the endpoint, which will prove to be impossible at
some point.
On top of that, the occurrences of rare neighborhood types are located in (Ai, <i) near
the <i-minimal element. If the duplicator does not play according to φ0 in this area, it
will be easy enough for the spoiler to win the game.
The reason we introduced the segments NLj

i , UL
j
i , NR

j
i and URj

i is precisely to bound
the area in which the duplicator must implement the tit-for-tat strategy. Indeed, as soon
as a pebble is placed in Mi, there is no way for the spoiler to join the endpoints in less
than k moves while forcing the duplicator’s hand.
The case where the spoiler plays near the endpoints corresponds to Case (I) below, and
is detailed in Section 5.4.

2. Next, suppose that the spoiler places a pebble, say px
0 , next (in A0) to py

0, i.e. such that
px

0 ∈ N1
A0

(py
0). The duplicator must place px

1 on an element whose relative position to py
1

is the same as the relative position of px
0 with respect to py

0. Note that once this is done,
the spoiler can change variable, and place py

0 (or py
1, if they decide to play in (A1, <1))

in N1
A0

(px
0), thus forcing the duplicator to play near px

1 . In order to prevent the spoiler
from being able, in k such moves, to expose the difference between (A0, <0) and (A1, <1),
the duplicator must make sure, with r rounds left, that px

0 and px
1 (as well as py

0 and py
1)

share the same r-environment in (A0, <0) and (A1, <1). This will guarantee that the
duplicator can play along if the spoiler decides to take r moves adjacent (in Ai) to one
another.
The case where the spoiler places a pebble next (in the structure without ordering) to
the other pebble is our Case (II), and is treated in Section 5.5.

3. Suppose now that the spoiler’s move does not fall under the previous templates. Let us
assume that the spoiler plays in (A0, <0), and moves px

0 to the left of py
0 (i.e. such that

(A0, <0) |= px
0 < py

0).
In order to play according to the remarks from Cases 1 and 2, the duplicator must place
px

1 on an element which shares the same r-environment with px
0 (where r is the number

of rounds left in the game), which is not near the endpoints.
It must be the case that the k-neighborhood type of px

0 in A0 is frequent, since it is
not near the endpoints of (A0, <0), hence not in X0. By construction, every universal
segment ULj

1, for 0 ≤ j ≤ k, contains elements of each k-environment type extending
any frequent k-neighborhood type. In particular, it contains an element having the same
r-environment as px

0 . The duplicator will place px
1 on such an element in the leftmost

segment ULj
1 which is not considered to be near the endpoints (this notion depends on

the number r of rounds left in the game). This is detailed in Cases (III) and (V) (for the
symmetrical case where px

0 is placed to the right of py
0) below.

However, we have to consider a subcase, where py
1 is itself in the leftmost segment Lj

1
which is not near the endpoints. Indeed, in this case, placing px

1 as discussed may result
in px

1 being to the right of py
1, or being in N1

A1
(py

1); either of which being game-losing to
the duplicator. However, since py

1 was considered to be near the endpoints in the previous
round of the game, we know that the duplicator played a tit-for-tat strategy at that point,
which allows us to replicate the placement of px

0 according to φ0. This subcase, as well as
the equivalent subcase where the spoiler places px

0 to the right of py
0, are formalized in

Cases (IV) and (VI) below.

CSL 2023



23:12 Order-Invariance in the Two-Variable Fragment of First-Order Logic

We are now ready to describe formally the strategy implemented by the duplicator:
(I) If px

0 ∈ Sr
0 , then the duplicator responds by placing px

1 on φ0(px
0).

This corresponds to the tit-for-tat strategy implemented when the spoiler plays near
the endpoints, as discussed in Case 1.

(II) Else, if px
0 /∈ Sr

0 , and px
0 ∈ N1

A0
(py

0), then (Er+1) ensures that there exists an isomorph-
ism ψ : Envr+1

(A0,<0)(p
y
0) → Envr+1

(A1,<1)(p
y
1) . The duplicator responds by placing px

1 on
ψ(px

0).
This makes formal the duplicator’s response to a move next to the other pebble, as
discussed in Case 2 above.

(III) Else suppose that (A0, <0) |= px
0 < py

0 and py
0 /∈ Lr+1

0 . Note that τ := neigh-tpk
A0

(px
0) ∈

Freq[A0]k, since px
0 /∈ X0. Let τl := env-tpk

(A0,<0)(px
0).

The duplicator responds by placing px
1 on φ0(a[τl]r+1

L ).
(IV) Else, if (A0, <0) |= px

0 < py
0 and py

0 ∈ Lr+1
0 , then the duplicator moves px

1 on φ0(px
0)

(by (Sr+1), px
0 indeed belongs to the domain of φ0).

(V) Else, suppose that (A0, <0) |= py
0 < px

0 and py
0 /∈ Rr+1

0 . This case is symmetric to
Case (III).
Similarly, the duplicator opts to play px

1 on φ0(a[τl]r+1
R ), where τl := env-tpk

(A0,<0)(px
0).

(VI) If we are in none of the cases above, it means that the spoiler has placed px
0 to the

right of py
0, and that py

0 ∈ Rr+1
0 . This case is symmetric to Case (IV).

Once again, the duplicator places px
1 on φ0(px

0).

It remains to show that this strategy satisfies our invariants: under the inductive assump-
tion that (Sr+1), (Er+1) and (Tr+1) hold, for some 0 ≤ r < k, we need to show that this
strategy ensures that (Sr), (Er) and (Tr) hold.

We treat each case in its own section: Section 5.4 is devoted to Case (I) while Section 5.5
covers Case (II). Both Cases (III) and (IV) are treated in Section 5.6. Cases (V) and (VI),
being their exact symmetric counterparts, are left to the reader.
▶ Note 9. Note that some properties need no verification. Since py

0 and py
1 are left untouched

by the players, (Sr+1) ensures that half of (Sr) automatically holds, namely that

∀i ∈ {0, 1}, py
i ∈ Sr

i → py
1−i = φi(py

i ) .

Similarly, the part of (Er) concerning py
0 and py

1 follows from (Er+1):

env-tpr
(A0,<0)(p

y
0) = env-tpr

(A1,<1)(p
y
1) .

Lastly, notice that once we have shown that (Er) holds, it follows that{
tp0

A0
(px

0) = tp0
A1

(px
1)

tp0
A0

(py
0) = tp0

A1
(py

1)

5.4 When the spoiler plays near the endpoints: Case (I)
In this section, we treat the case where the spoiler places px

0 near the <0-minimal or <0-
maximal element of (A0, <0). Obviously, what “near” means depends on the number of
rounds left in the game; the more rounds remain, the more the duplicator must be cautious
regarding the possibility for the spoiler to reach an endpoint and potentially expose a
difference between (A0, <0) and (A1, <1).

As we have stated in Case (I), with r rounds left, we consider a move on px
0 by the spoiler

to be near the endpoints if it is made in Sr
0 . In that case, the duplicator responds along the

tit-for-tat strategy, namely by placing px
1 on φ0(px

0).



J. Grange 23:13

Let us now prove that this strategy guarantees that (Sr), (Er) and (Tr) hold. Recall
from Note 9 that part of the task is already taken care of.

Proof of (Sr) in Case (I)

We have to show that ∀i ∈ {0, 1}, px
i ∈ Sr

i → px
1−i = φi(px

i ) . This follows directly from the
duplicator’s strategy, since px

1 = φ0(px
0) (thus px

0 = φ1(px
1)).

Proof of (Er) in Case (I)

We need to prove that env-tpr
(A0,<0)(px

0) = env-tpr
(A1,<1)(px

1) , which is a consequence of
Lemma 5 given that px

1 = φ0(px
0) and r < k.

Proof of (Tr) in Case (I)

First, suppose that py
0 ∈ Sr+1

0 . By (Sr+1), we know that py
1 = φ0(py

0). Thus, Lemma 6 allows
us to conclude that tp0

(A0,<0)(px
0 , p

y
0) = tp0

(A1,<1)(px
1 , p

y
1).

Otherwise, py
0 /∈ Sr+1

0 and (Sr+1) entails that py
1 /∈ Sr+1

1 .
We have two points to establish:

tp0
A0

(px
0 , p

y
0) = tp0

A1
(px

1 , p
y
1) (4)

tp0
<0

(px
0 , p

y
0) = tp0

<1
(px

1 , p
y
1) (5)

Notice that{
tp0

A0
(px

0 , p
y
0) = tp0

A0
(px

0) ∪ tp0
A0

(py
0)

tp0
A1

(px
1 , p

y
1) = tp0

A1
(px

1) ∪ tp0
A1

(py
1)

This is because, by construction, the neighbors in Ai of an element of Sr
i all belong to Sr+1

i .
Equation (4) follows from this remark and Note 9.
As for Equation (5), either

px
0 ∈ X0 ∪

⋃
0≤j≤r

Lj
0 and px

1 ∈ X1 ∪
⋃

0≤j≤r

Lj
1 ,

in which case tp0
<0

(px
0 , p

y
0) = {x < y} = tp0

<1
(px

1 , p
y
1) , or

px
0 ∈

⋃
0≤j≤r

Rj
0 and px

1 ∈
⋃

0≤j≤r

Rj
1 ,

in which case tp0
<0

(px
0 , p

y
0) = {x > y} = tp0

<1
(px

1 , p
y
1) .

5.5 When the spoiler plays next to the other pebble: Case (II)
Suppose now that the spoiler places px

0 next to the other pebble in A0 (i.e. px
0 ∈ N1

A0
(py

0)),
but not in Sr

0 (for that move would fall under the jurisdiction of Case (I)). In that case, the
duplicator must place px

1 so that the relative position of px
1 and py

1 is the same as that of px
0

and py
0.

For that, we can use (Er+1), which guarantees that env-tpr+1
(A0,<0)(p

y
0) = env-tpr+1

(A1,<1)(p
y
1) .

Thus there exists an isomorphism ψ between Envr+1
(A0,<0)(p

y
0) and Envr+1

(A1,<1)(p
y
1). Note that

this isomorphism is unique, by virtue of <0 and <1 being linear orders.
The duplicator’s response is to place px

1 on ψ(px
0). Let us now prove that this strategy is

correct with respect to our invariants (Sr), (Er) and (Tr).

CSL 2023



23:14 Order-Invariance in the Two-Variable Fragment of First-Order Logic

Proof of (Sr) in Case (II)

Because the spoiler’s move does not fall under Case (I), we know that px
0 /∈ Sr

0 .
Let us now show that px

1 is not near the endpoints either: suppose that px
1 ∈ Sr

1 . By
construction, since px

1 and py
1 are neighbors in A1, this entails that py

1 ∈ Sr+1
1 . But then,

we know by (Sr+1) that py
0 = φ1(py

1); and because ψ is the unique isomorphism between
Envr+1

(A0,<0)(p
y
0) and Envr+1

(A1,<1)(p
y
1), ψ is equal to the restriction φ̃0 of φ0:

φ̃0 : Envr+1
(A0,<0)(p

y
0) → Envr+1

(A1,<1)(p
y
1) .

Thus px
0 = ψ−1(px

1) = φ̃0
−1(px

1) = φ1(px
1), and by definition of the segments on (A1, <1),

which are just a transposition of the segments of (A0, <0) via φ0, px
1 ∈ Sr

1 then entails that
px

0 ∈ Sr
0 , which is absurd.

Since we neither have px
0 ∈ Sr

0 nor px
1 ∈ Sr

1 , (Sr) holds - recall from Note 9 that the part
concerning py

0 and py
1 is always satisfied.

Proof of (Er) in Case (II)

Recall that the duplicator placed px
1 on the image of px

0 by the isomorphism

ψ : Envr+1
(A0,<0)(p

y
0) → Envr+1

(A1,<1)(p
y
1) .

It is easy to check that the restriction ψ̃ of ψ: ψ̃ : Envr
(A0,<0)(px

0) → Envr
(A1,<1)(px

1) is
well defined, and is indeed an isomorphism.
This ensures that env-tpr

(A0,<0)(px
0) = env-tpr

(A1,<1)(px
1) , thus completing the proof of (Er).

Proof of (Tr) in Case (II)

This follows immediately from the fact that the isomorphism ψ maps px
0 to px

1 and py
0 to py

1:
all the atomic facts about these elements are preserved.

5.6 When the spoiler plays to the left: Cases (III) and (IV)
We now treat our last case, which covers both Cases (III) and (IV), i.e. the instances where
the spoiler places px

0 to the left of py
0 (formally: such that (A0, <0) |= px

0 < py
0), which do

not already fall in Cases (I) and (II).
Note that the scenario in which the spoiler plays to the right of the other pebble is the
exact symmetric of this one (since the Xi play no role in this case, left and right can be
interchanged harmlessly).

The idea here is very simple: since the spoiler has placed px
0 to the left of py

0 , but neither
in Sr

0 nor in N1
A0

(py
0), the duplicator responds by placing px

1 on an element of ULr+1
1 (the

leftmost universal segment not in Sr
1) sharing the same k-environment. This is possible

by construction of the universal segments: if τl := env-tpk
(A0,<0)(px

0) (which must extend a
frequent k-neighborhood type, since px

0 /∈ X0), then φ0(a[τl]r+1
L ) satisfies the requirements.

There is one caveat to this strategy. If py
1 is itself in Lr+1

1 , two problems may arise: first,
it is possible for px

1 and py
1 to be in the wrong order (i.e. such that (A1, <1) |= px

1 > py
1).

Second, it may be the case that px
1 and py

1 are neighbors in A1, which, together with the
fact that px

0 and py
0 are orthogonal in A0 (i.e. tp0

A0
(px

0 , p
y
0) = tp0

A0
(px

0) ∪ tp0
A0

(py
0)), would

break (Tr).
This is why the duplicator’s strategy depends on whether py

1 ∈ Lr+1
1 :



J. Grange 23:15

if this is not the case, then the duplicator places px
1 on φ0(a[τl]r+1

L ). This corresponds to
Case (III).
if py

1 ∈ Lr+1
1 , then (Sr+1) guarantees that py

0 ∈ Lr+1
0 . Hence px

0 , which is located to the
left of py

0, is in the domain of φ0: the duplicator moves px
1 to φ0(px

0). This situation
corresponds to Case (IV).

Let us prove that (Sr), (Er) and (Tr) hold in both of these instances.

Proof of (Sr) in Case (III)

Since the spoiler’s move does not fall under Case (I), we have that px
0 /∈ Sr

0 .
By construction, a[τl]r+1

L ∈ Lr+1
0 , thus φ0(a[τl]r+1

L ) ∈ Lr+1
1 , and px

1 /∈ Sr
1 .

Proof of (Er) in Case (III)

It follows from env-tpk
(A0,<0)(a[τl]r+1

L ) = τl together with Lemma 5 that

env-tpk
(A0,<0)(px

0) = env-tpk
(A1,<1)(px

1) .

A fortiori, env-tpr
(A0,<0)(px

0) = env-tpr
(A1,<1)(px

1).

Proof of (Tr) in Case (III)

Because the spoiler’s move does not fall under Case (II), px
0 /∈ N1

A0
(py

0). In other words,

tp0
A0

(px
0 , p

y
0) = tp0

A0
(px

0) ∪ tp0
A0

(py
0) .

Recall the construction of ULr+1
0 : the whole k-neighborhood of a[τl]r+1

L was included in this
segment. In particular, N1

A1
(px

1) = N1
A1

(φ0(a[τl]r+1
L )) ⊆ ULr+1

1 . By assumption, py
1 /∈ Lr+1

1 ,
which entails that tp0

A1
(px

1 , p
y
1) = tp0

A1
(px

1) ∪ tp0
A1

(py
1) .

It then follows from the last observation of Note 9 that tp0
A0

(px
0 , p

y
0) = tp0

A1
(px

1 , p
y
1) .

Let us now prove that tp0
<1

(px
1 , p

y
1) = {x < y}.

We claim that py
1 /∈ X1 ∪

⋃
0≤j≤r+1 L

j
1. Suppose otherwise: (Sr+1) would entail that

py
0 ∈ X0 ∪

⋃
0≤j≤r+1 L

j
0 which, together with the hypothesis py

0 /∈ Lr+1
0 and px

0 < py
0, would

result in px
0 being in Sr

0 , which is absurd.
Thus, tp0

<1
(px

1 , p
y
1) = {x < y} = tp0

<0
(px

0 , p
y
0), which concludes the proof of (Tr).

Proof of (Sr), (Er) and (Tr) in Case (IV)

Let us now move to the case where py
1 ∈ Lr+1

1 . Recall that under this assumption, py
0 =

φ1(py
1) ∈ Lr+1

0 and since px
0 < py

0 and px
0 /∈ Sr

0 , we have that px
0 ∈ Lr+1

0 .
The duplicator places the pebble px

1 on φ0(px
0); in particular, px

1 ∈ Lr+1
1 .

The proof of (Sr) follows from the simple observation that px
0 /∈ Sr

0 and px
1 /∈ Sr

1 .
As for (Er) and (Tr), they follow readily from Lemma 5 and 6 and the fact that px

1 = φ0(px
0)

and py
1 = φ0(py

0).

6 Counting quantifiers

We now consider the natural extension C2 of FO2, where one is allowed to use counting
quantifiers of the form ∃≥ix and ∃≥iy, for i ∈ N. Such a quantifier, as expected, expresses
the existence of at least i elements satisfying the formula which follows it. This logic C2

has been extensively studied. On an expressiveness standpoint, C2 stricly extends FO2

CSL 2023



23:16 Order-Invariance in the Two-Variable Fragment of First-Order Logic

(which cannot count up to three), and contrary to the latter, C2 does not enjoy the small
model property (meaning that contrary to FO2, there exist satisfiable C2-sentences which
do not have small - or even finite - models). However, the satisfiability problem for C2 is
still decidable [6, 15, 16]. To the best of our knowledge, it is not known whether < -inv C2

has a decidable syntax. Let us now explain how the proof of Theorem 1 can be adapted to
show the following stronger version:

▶ Theorem 10. Let C be a class of structures of bounded degree.
Then < -inv C2 ⊆ FO on C.

Proof. The proof is very similar as to that of Theorem 1. The difference is that we now need
to show, at the end of the construction, that the structures (A0, <0) and (A1, <1) are not
only FO2-similar, but C2-similar. More precisely, we show that for every k ∈ N, there exists
some f(k) ∈ N such that if A0 ≡FO

f(k) A1, then it is possible to construct two linear orders
<0 and <1 such that (A0, <0) and (A1, <1) agree on all C2-sentences of quantifier rank at
most k, and with counting indexes at most k, which we denote (A0, <0) ≡C2

k,k (A1, <1) . This
is enough to complete the proof, as these classes of C2-sentences cover all the C2-definable
properties.

In order to prove that (A0, <0) ≡C2

k,k (A1, <1), we need an Ehrenfeucht-Fraïssé-game
capturing ≡C2

k,k. It is not hard to derive such a game from the Ehrenfeucht-Fraïssé-game
for C2 [12]. This game only differs from the two-pebble Ehrenfeucht-Fraïssé-game in that
in each round, once the spoiler has chosen a structure (say (A0, <0)) and a pebble to
move (say px

0), the spoiler picks not only one element of that structure, but a set P0 of
up to k elements. Then the duplicator must respond with a set P1 of same cardinality
in (A1, <1). The spoiler then places px

1 on any element of P1, to which the duplicator
responds by placing px

0 on some element of P0. As usual, the spoiler wins after this round if
tp0

(A0,<0)(px
0 , p

y
0) ̸= tp0

(A1,<1)(px
1 , p

y
1) . Otherwise, the game goes on until k rounds are played.

It is not hard to establish that this game indeed captures ≡C2

k,k, in the sense that
(A0, <0) ≡C2

k,k (A1, <1) if and only if the duplicator has a winning strategy for k rounds of
this game. The restriction on the cardinal of the set chosen by the spoiler (which is at most
k) indeed corresponds to the fact that the counting indexes of the formulas are at most k.
As for the number of rounds (namely, k), it corresponds as usual to the quantifier rank. This
can be easily derived from a proof of Theorem 5.3 in [12], and is left to the reader.

Let us now explain how to modify the construction of <0 and <1 presented in Section 4
in order for the duplicator to maintain similarity for k-round in such a game. The only
difference lies in the choice of the universal elements. Recall that in the previous construction,
we chose, for each k-environment type τl extending a frequent k-neighborhood type and each
segment ULj

0, an element a[τl]jL whose k-environment type in (A0, <0) is destined to be τl

(and similarly for URj
0 and a[τl]jR).

In the new construction, we pick k such elements, instead of just one. Just as previously,
all these elements must be far enough from one another in the Gaifman graph of A0. Once
again, this condition can be met by virtue of the k-neighborhood type τ underlying τl being
frequent, and thus having many occurrences scattered across A0 (remember that we have a
bound on the degree of A0, thus all the occurrences of τ cannot be concentrated). We only
need to multiply the value of m by k in (3).

When the spoiler picks a set of elements of size at most k in one of the structures (say
P0 in (A0, <0)), the duplicator responds by selecting, for each one of the elements of P0, an
element in (A1, <1) along the strategy for the FO2-game explained in Section 5.3. All that
remains to be shown is that it is possible for the duplicator to answer each element of P0
with a different element in (A1, <1).



J. Grange 23:17

Note that if the duplicator follows the strategy from Section 5.3, they will never answer
two moves by the spoiler falling under different cases among Cases (I)-(VI) with the same
element. Thus we can treat separately each one of these cases; and for each case, we show
that if the spoiler chooses up to k elements in (A0, <0) falling under this case in P0, then the
duplicator can find the same number of elements in (A1, <1), following the aforementionned
strategy.

For Case (I), this is straightforward, since the strategy is based on the isomorphism
between the borders of the linear orders. The same goes for Cases (II), (IV) and (VI), as
the strategy in these cases also relies on an isomorphism argument.
Suppose now that py

0 /∈ Lr+1
0 , and assume that the spoiler chooses several elements to the

left of py
0 , but outside of Sr

0 and not adjacent to py
0 . This corresponds to Case (III). Recall

that our new construction guarantees, for each k-environment type extending a frequent
k-neighborhood type, the existence in Lr+1

1 of k elements having this environment. This
lets us choose, in Lr+1

1 , a distinct answer for each element in the set selected by the
spoiler, sharing the same k-environment type. Case (V) is obviously symmetric.

This concludes the proof of Theorem 10. ◀

7 Conclusion

We have established that, when the degree is bounded, properties definable in the order-
invariant extension of the two-variable fragment of first-order logic with counting are definable
in first-order logic. From there, there seem to be three axes in which one can try to complete
the picture.

The first natural question is whether this inclusion of expressiveness still holds when we
release the hypothesis on the degree. As stated in the introduction, an upcoming result [2]
exhibits two classes of structures (of unbounded degree) C′ ⊆ C such that (i) C′ is definable
in C by an FO2-sentence φ using an order, such that φ is order-invariant on all structures
of C (ii) C′ is not FO-definable, and (iii) C is FO3-definable but not FO2-definable. Note
that according to the standard definition, φ is not a sentence of < -inv FO2, because its
order-invariance does not hold on all finite structures. However, in view of this construction,
it stands to reason to believe that in general, < -inv FO2 ̸⊆ FO. Formally proving this
non-inclusion would be an interesting goal.

Second, it is quite clear that the inclusion < -inv C2 ⊆ FO when the degree is bounded
is a severe over-approximation of the expressive power of < -inv C2. For instance, it is not
hard to prove that < -inv C2 cannot define the class of triangle-free graphs: no sentence from
< -inv C2 can make a distinction between a large enough cycle and the disjoint union of a
large enough cycle together with a triangle. This can be seen, following the general strategy
detailed in Section 3, by constructing two carefully chosen linear orders on these graphs.
Figure 2 illustrates the construction of such orders. Notice that there are only three kinds of
elements: those whose two neighbors are on their left, those for which they are on their right,
and those which have one neighbor on each side. By making sure to always respond to a move
by the spoiler with an element of the same kind (and, of course, by implementing a tit-for-tat
strategy near the endpoints), the duplicator can easily win the Ehrenfeucht-Fraïssé-game
capturing ≡C2

k,k, provided that the cycles are long enough with respect to k.
It would be interesting to find upper bounds for < -inv FO2 and < -inv C2 tighter than

FO; that is, tighter than the fragment ∃∗∀∗∃∗FO, to which FO collaspes when the degree
is bounded [4] (since already in this fragment, one can count the number of occurrences of
neighborhood types up to some threshold). Let us briefly explain why we fall short of giving

CSL 2023



23:18 Order-Invariance in the Two-Variable Fragment of First-Order Logic

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Figure 2 Illustration of two linear orders (growing from left to right) on a cycle (left figure) and the
disjoint union of a cycle and a triangle (right figure), which are indistinguishable by any C2-sentence
of small enough quantifier rank and maximal counting index (where “small” is understood with
respect to the length of the cycles).

such a bound: in such an attempt, the initial assumption about the similarity between A0
and A1 would be weaker than FO-similarity, and it would not be possible to base our work
on neighborhoods. In this context, the starting hypothesis on the two structures would lack
the rigidity which seems necessary to construct linear orders preserving FO2-similarity or
C2-similarity. Establishing such a tighter bound thus seems to call for new techniques.

Last, we conjecture that the inclusion still holds when we lift the restriction on the
number of variables; namely that < -inv FO = FO when the degree is bounded. This would
generalize the equality Succ-inv FO = FO when the degree is bounded, obtained in [7]. Our
hope is that a construction inspired by this one, albeit significantly refined, and in particular
by the alternation of universal and neighbors segments, could possibly lead to establish such
a result. We leave these three questions, as well as the issue of the syntactic decidability of
< -inv C2, for further research.

References
1 Albert Atserias, Anuj Dawar, and Martin Grohe. Preservation under extensions on well-behaved

finite structures. SIAM Journal on Computing, 2008.
2 Bartosz Bednarczyk. Personal communication, July 2022.
3 Michael Benedikt and Luc Segoufin. Towards a characterization of order-invariant queries over

tame graphs. J. Symb. Log., 2009.
4 Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. On monadic NP vs. monadic co-NP.

Inf. Comput., 1995.
5 Erich Grädel and Martin Otto. On logics with two variables. Theor. Comput. Sci., 1999.
6 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable. In

LICS, 1997.
7 Julien Grange. Successor-invariant first-order logic on classes of bounded degree. Log. Methods

Comput. Sci., 2021.
8 Julien Grange and Luc Segoufin. Order-Invariant First-Order Logic over Hollow Trees. In

Computer Science Logic, CSL, 2020.
9 Martin Grohe and Thomas Schwentick. Locality of order-invariant first-order formulas. ACM

Trans. Comput. Log., 2000. doi:10.1145/343369.343386.
10 Neil Immerman. Relational queries computable in polynomial time. Information and Control,

1986.
11 Neil Immerman and Dexter Kozen. Definability with bounded number of bound variables. Inf.

Comput., 1989.
12 Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph canoniz-

ation. In Complexity theory retrospective. Springer, 1990.
13 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An

EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.
14 Michael Mortimer. On languages with two variables. Math. Log. Q., 1975.
15 Ian Pratt-Hartmann. Complexity of the guarded two-variable fragment with counting quantifi-

ers. J. Log. Comput., 2007.
16 Ian Pratt-Hartmann. The two-variable fragment with counting revisited. In WoLLIC, 2010.

https://doi.org/10.1145/343369.343386
https://doi.org/10.1007/978-3-662-07003-1


J. Grange 23:19

17 Moshe Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th
Annual ACM Symposium on Theory of Computing, 1982.

18 Philipp Weis and Neil Immerman. Structure theorem and strict alternation hierarchy for FOˆ2
on words. Log. Methods Comput. Sci., 2009.

19 Thomas Zeume and Frederik Harwath. Order-invariance of two-variable logic is decidable. In
LICS, 2016.

CSL 2023


	1 Introduction
	2 Preliminaries
	3 Main result
	4 Constructing linear orders on A0 and A1
	4.1 Neighborhoods
	4.2 Frequency of a neighborhood type
	4.3 Construction of <0 and <1

	5 Proof of the FO2-similarity of (A0,<0) and (A1,<1)
	5.1 The two-pebble Ehrenfeucht-Fraïssé game
	5.2 Base case: proofs of (Sk), (Ek) and (Rk)
	5.3 Strategy for the duplicator
	5.4 When the spoiler plays near the endpoints: Case (I)
	5.5 When the spoiler plays next to the other pebble: Case (II)
	5.6 When the spoiler plays to the left: Cases (III) and (IV)

	6 Counting quantifiers
	7 Conclusion

