Algorithme d'optimisation de paramètres en thermique instationnaire appliqué au refroidissement d'un four

Raouf KHELALFA, Jean-Félix DURASTANTI, Youssef SFAXI, Olivier RIOU Université Paris-Est Créteil Val de Marne (UPEC), Centre d'Etudes et de Recherche en Thermique, Environnement et Systèmes, CERTES 61 Avenue du Général de Gaulle 94000 Créteil Résumé L'optimisation de systèmes thermiques est une étape qui nécessite généralement des temps de calcul longs lorsque l'on utilise des méthodes classiques. Le problème se pose en instationnaire lors du réajustement de paramètres physiques dans la résolution de l'équation de la chaleur. La réanalyse présentée ici permet de remédier à cette difficulté en découplant la phénoménologie et les conditions aux limites. On obtient un système de taille réduite plus simple à résoudre. On présente ici le cas du refroidissement d'un four. On compare les résultats de la réanalyse avec ceux des éléments finis. 

Nomenclature

{ } { } [ ] n t t t t K T R +∆ +∆ = (1) avec la matrice [ ] K : [ ] [ ] [ ] K C t K θ = + ∆
tel que : θ un coefficient qui vaut : 0 ; 0.5 ou 1 

et le vecteur { } t t R +∆ de taille ( 1 n × ) : { } { } { } ( ) { } { } (1 ) (1 )[ ] [ ] n n t t t t t t t R t F F t K T C T θ θ θ +∆ +∆ = -∆ + - -∆ - + Le groupement [ ] K qu'on a défini ci-

Réécriture du modèle discrétisé

Dans l'équation thermique discrétisée (1), on sépare les conditions aux limites de l'aspect phénoménologique par la décomposition de la matrice de conductance [ ]

K sous la forme [1] : [ ] [ ] [ ] v s K K K = + où [ ] v
K dépend de l'élément de volume qui caractérise la phénoménologie du problème. La matrice [ ] s K modélise quant à elle, l'impact des conditions aux limites sur la frontière du volume étudié. La forme matricielle de l'équation de la chaleur en régime instationnaire (1) devient :

{ } { } ( ) { } { } ( ) { } { } [ ] [ ] (1 ) 
(1 ) 0

n n v n n t t t t t t g g t t t C T T t K T T t F t F θ θ θ θ +∆ +∆ +∆ - + ∆ + - + ∆ + - ∆ = (2) avec { } g t
F le vecteur des sollicitations globales de taille ( 1 n × ) tel que :

{ } { } [ ]{ } g s n t t t F F K T = + (3) En posant que : [ ] r v K C t K θ     = + ∆     et { } { } { } ( ) [ ] ( ){ } (1 ) (1 ) r g g v n t t t t t t R t F F C t K T θ θ θ +∆ +∆   = -∆ + - + -∆ -  
on obtient à partir de (2) le nouveau système de taille ( n n × ) qu'on résout à chaque pas de temps :

{ } { } r n r t t t t K T R +∆ +∆   =   (4) 
Les sollicitations thermiques { } 

{ } { } { } { } [ ] { } g d r d t t t t t F F F F L φ = + = + La matrice [ ] L de taille ( n p × ) est
{ } t t D + ∆ de dimension ( 1 n × ) par l'expression : { } ( ){ } { } { } [ ] { } ( ) ( ) (1 ) r v n d d t t t t t t t D K t K T t F F L θ θ φ + ∆ +∆     = -∆ + ∆ + - +     Le système (4) devient ; { } { } [ ] { } r n t t t t t t K T D t L θ φ +∆ + ∆ + ∆   = + ∆   (5) 
A partir de là, la solution générale des températures nodales s'écrit :

{ } { } [ ] { } 1 1 n r r t t t t t t T K D t K L θ φ - - +∆ + ∆ + ∆     = + ∆     (6) 
On voit d'après cette expression (6) que la résolution du problème thermique par la réanalyse revient donc à rechercher les nouvelles variables { } t t φ + ∆ qu'on détermine à chaque pas de temps.

Prise en compte des conditions de frontière

Pour que le problème thermique instationnaire (5) soit bien posé, on introduit p conditions aux limites indépendantes [1], décrites par le système linéaire suivant : 

[ ]{ } [ ]{ } { } n t
[ ] [ ] [ ] [ ] 1 r TR t CT K L CF θ -   = ∆ +  
on obtient le système de réanalyse de taille ( p p × ) :

[ ] { } { } [ ] { } 1 r t t t t t t TR CT K D φ δ - + ∆ + ∆ + ∆   = -   (8)
La résolution de (8), nous donne les variables d'interfaces : 

{ } [ ] { } [ ] [ ] { } 1 1 1 r t t t t t t TR TR CT K D φ δ - - - + ∆ + ∆ + ∆   = -   ( 

Conditions aux limites mixtes

Dans une configuration particulière où on impose des conditions aux mixtes, la matrice

[ ] CT et [ ] CF peuvent être identifiées par [3] : [ ] [ ] . t CT L K   =   [ ] [ ] 0 CF = (Matrice nulle) De là, le vecteur { } t t δ + ∆ d'après (7) à pour expression : { } [ ] { } . t t t t t L R δ + ∆ +∆ =

Conditions aux limites en température

Dans le cas des conditions aux limites de type Dirichlet (température imposée), les

matrices [ ] CT et [ ] CF ainsi que le vecteur { } t t δ + ∆ peuvent être assimilées à : [ ] [ ] . t v CT L K   =   [ ] p CF I   = -  { } { } 0 t t δ + ∆ =

Application dans le cas d'un refroidissement d'un four

Position et données du problème

L'algorithme de réanalyse développé précédemment (5)-( 9) est appliqué ici dans un cas test d'un problème de paramétrage des données physiques de refroidissement d'un four ( 

Ecriture du modèle sans dimension

En choisissant de prendre pour ce problème de diffusion instationnaire les variables sans dimensions suivantes :

0 0 0 0 1 1 1 p I p T T c x y t k x y t T L L T T c k ρ τ ρ ∞ ∞ - = = = = = = = - (10) 
l'équation de la chaleur sous forme adimensionnelle s'écrit :

2 2 2 2 0 T T T t x y   ∂ ∂ ∂ - + =   ∂ ∂ ∂   (11) 
avec comme conditions aux limites et initiales : 0 ( ; ; ) 1 ( ; ; ) (0; ; )

I I E E E E C C C C C C T T T t x y Bi T t x y T x y T x y ∂ ∂ = - = - = = ∂ ∂ (12) 
Pour l'échelle de temps 0 τ on a pris : 

Conclusion

Dans ce travail on a pu montrer à travers le cas du refroidissement du four que l'algorithme d'optimisation de la réanalyse, basé essentiellement sur la décomposition phénoménologique du problème et des conditions aux limites, est particulièrement bien adapté à un problème de thermique à deux dimensions. La réanalyse permet manifestement d'obtenir des gains de temps de calcul intéressants.
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Figure

  Figure 4 : Gain de temps en fonction du nombre de noeud nvar

2. Réanalyse de la thermique instationnaire 2.1. Principe de l'algorithme d'optimisation

  

		Dans le traitement numérique d'un problème de thermique instationnaire, on rappelle
	que la discrétisation spatiale et temporelle de l'équation d'évolution nous donne le système matriciel de taille ( n n × ) suivant :
	T	Température, C	[K v ] Matrice volumique
	K	Conductivité thermique, W.m -1 .°C -1	[K s ] Matrice surfacique
	C p Chaleur spécifique, J. kg -1 .°C -1	[K] Matrice de conductance thermique
	h	Coefficient de convection, W. m -2 .°C -1	[C] Matrice de capacité thermique
	L, l Dimension du four, m	[I p ] Matrice identité de dimension p
	T 0	Température initiale, °C	{F g } t Vecteur des sollicitations thermiques
	T ∞ Température ambiante, °C	{F d } t Vecteur flux connu
	t	Temps, s	{F r } t Vecteur flux inconnu
	t cpu Temps cpu machine	{Φ} t Vecteur de la variable de réanalyse
	t rea Temps cpu réanalyse	Bi	Nombre de Biot
	t elf	Temps cpu éléments finis	nvar Nombre de variation de paramètre
	x,y Coordonnées cartésiennes	Nd Numéro de noeud
	1. Introduction	
		Lors de la conception d'un dispositif thermique, la recherche d'un fonctionnement
	opérationnel optimal nécessite souvent un paramétrage des données physiques ou géométriques obtenu
	à la suite de plusieurs séries de tests. Le problème qui se pose dans ce type de procédure est le coût
	élevé du processus de validation. Pour remédier à cette contrainte d'étude, on s'intéresse dans ce cas à
	une diminution du temps de calcul dans les traitements numériques.
	Dans ce contexte, on présente une approche particulière de la résolution de l'équation de la chaleur
	instationnaire où certains paramètres physiques et sollicitations thermiques du problème sont variables
	(coefficient d'échange convectif, température et flux de chaleur à la frontière,…etc.). Le travail exposé
	ici est une adaptation de l'algorithme de réanalyse [1], [2], appliqué à l'optimisation d'un four dans le
	cas d'un système spatio-temporel discrétisé en éléments finis et en différences finies. Par
	l'introduction de nouvelles variables d'interfaces, on réduit ainsi le nombre de degrés de liberté lors de
	la réévaluation des solutions du problème.	

  aux flux de chaleur qu'échange le système physique avec l'extérieur. Le vecteur { } t t δ + ∆ dont les p composantes peuvent être des températures ou des flux de chaleur est calculé à chaque pas de temps. En injectant maintenant l'expression (6) de { }

												n t T + ∆	t	dans (7) et en posant que :
	CT T	t +∆	+	CF φ	t	+ ∆	t	=	δ	t	+ ∆	t		(7)
	La matrice [ ]												

CT de taille ( p n × ) caractérise la prise en compte des valeurs de frontière, limitées aux températures. Quant à la matrice [ ] CF de dimension ( p p × ) est la matrice des conditions aux limites, relative