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Abstract

Characteristics of patients at risk of developing severe forms of COVID-19 disease have

been widely described, but very few studies describe their evolution through the following

waves. Data was collected retrospectively from a prospectively maintained database from a

University Hospital in Paris area, over a year corresponding to the first three waves of

COVID-19 in France. Evolution of patient characteristics between non-severe and severe

cases through the waves was analyzed with a classical multivariate logistic regression

along with a complementary Machine-Learning-based analysis using explainability meth-

ods. On 1076 hospitalized patients, severe forms concerned 29% (123/429), 31% (66/214)

and 18% (79/433) of each wave. Risk factors of the first wave included old age (� 70 years),

male gender, diabetes and obesity while cardiovascular issues appeared to be a protective

factor. Influence of age, gender and comorbidities on the occurrence of severe COVID-19

was less marked in the 3rd wave compared to the first 2, and the interactions between age

and comorbidities less important. Typology of hospitalized patients with severe forms

evolved rapidly through the waves. This evolution may be due to the changes of hospital

practices and the early vaccination campaign targeting the people at high risk such as

elderly and patients with comorbidities.

Introduction

The world has been facing a pandemic of COVID-19 caused by the SARS-Cov-2 virus since

March 2020. COVID-19 causes a respiratory tract infection of varying severity. It has been esti-

mated that approximately 20% of hospitalized patients develop a severe respiratory infection

requiring admission to the Intensive Care Units (ICU) or leading to death [1]. During an epi-

demic wave, the virus spreads very quickly in the population and the hospitals are overloaded.

In particular, ICU for patients with organ failure are insufficient in many countries affected by
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an epidemic wave [2]. Many hospitals or health agencies have developed surveillance systems

to predict the intensity of epidemic waves in order to adapt the necessary medical resources,

either human or material [3, 4].

Based on these surveillance systems, several risk factors for developing a severe form of

COVID-19 have been identified: age, cardiovascular comorbidities, history of cancer, over-

weight and several clinical predicting score of worse outcomes have been developed [5, 6].

However, most studies focused on a restrained time period [5–8], and when they took into

account a longer time period in order to compare the different COVID-19 waves they mainly

focused on a global view of the pandemic evolution, such as numbers of infected patients, hos-

pital admissions or death incidences [9], or were restricted to very basic medical information

[10, 11]. Therefore, the evolution and interaction of the risk factors through the different waves

is not clearly described. Understanding the role and interactions of risk factors associated to

severe forms of COVID-19 as well as the variation in their significance during different epi-

demic waves are important elements in adapting the medical resources needed to manage

patients in the hospital. Multivariate logistic regression is the classical method used to analyze

risk factors. It provides a global vision of each feature effects, but it also suffers from several dif-

ficulties, notably concerning the non-linearities and interactions of some features. It is mostly

fastidious with such type of analysis to construct a model that truly captures the effect that each

feature has on an individual (a patient in our context), since a patient can suffer from more or

less strong interactions between his characteristics, and in a non-linear way. While this indi-

cates that differences between individuals are difficult to account for properly, this problem can

be tackled by using state-of-the-art Machine Learning techniques that deal with non-linearity

and interaction more easily, especially models based on an ensemble of decision trees, as done

in [12] which benchmarked Logistic Regression versus Random Forest or [13] that highlighted

the superior performances of a Boosted Tree Ensemble in a medical survival analysis context.

Then Explainability based methods, which are part of a subdomain of the Machine Learn-

ing field called Explainable Artificial Intelligence [14], also provide a way to measure the effect

of each feature for each patient individually [15]. This is particularly useful for the purpose of

identifying trends between variables and pointing out sub-groups of patients with common

effects [16].

France is one of the most affected countries in Europe [9] and had to face 3 successive

waves of COVID-19 patients, which led to 3 periods of population lockdowns. These 3 waves

of COVID-19 varied in characteristics and intensity [17] in a context where vaccination

against SARS-Cov-2 started in January 2021, initially targeting healthworkers and people aged

75 and older, before being progressively generalized to the adult population in June 2021 [18].

Additionally, the third wave was characterized by the emergence of the Alpha variant of con-

cern (B.1.1.7), which became predominant from February to June 2021 [19]. These parameters

could have changed the profiles of patients at risk to develop severe COVID-19. The aim of

this study was to better understand the influence of age and comorbidities during the different

epidemic waves. To do this, clinical risk factors associated with severe COVID- 19 outcome

during the 3 first waves of epidemic in a university hospital in Paris area were compared using

machine learning methods.

Patients and methods

Study population and design

In this prospective study, all patients hospitalized because of COVID-19 at the Centre Hospita-

lier Intercommunal de Créteil (CHIC) with an admission stay between the 11/03/2020 and the

01/06/2021 were included. The CHIC is a 500-bed general hospital with numerous care
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services and notably adult and pediatric emergency departments, a medical ICU, medicine,

oncology, pneumology, pediatrics, obstetrics departments, etc.

All hospitalizations were primarily due to COVID-19, meaning that patients presented

clear signs of COVID-19 infection which lead to their hospital stay or their transfer to a unit

specifically dedicated to COVID-19 if they were already hospitalized. Thus all included

patients had a positive Nucleic Acid Amplification Test (NAAT) or a chest tomography scan

showing findings suggestive of COVID-19 disease (multiple bilateral ground glass opacities,

often rounded in morphology, with peripheral and lower lung distribution) which is in accor-

dance with the World Health Organization definition of COVID-19 [20]. No patient positive

to COVID-19 but asymptomatic was included, since their hospitalization is only related but

not directly caused by COVID-19 problems.

In order to assess the evolution of patient characteristics through the pandemic, three dis-

tinct periods, called waves, were defined as follows:

• Wave 1: all patients with an admission date between the 11/03/2020 and the 13/05/2020, cor-

responding to the first complete lockdown in France.

• Wave 2: all patients with an admission date between the 03/10/2020 and the 30/11/2020 cor-

responding roughly to the second France lockdown.

• Wave 3: all patients with an admission date between the 01/03/2021 and the 01/06/2021 cor-

responding to the third France lockdown.

The period between the first and second waves was not included since it corresponds to

summer during which few patients were admitted due to COVID-19 related reasons, as well as

the period between the second and third wave since it does not correspond to a new rise of

cases but rather a long stagnation.

Data collection

Data collected consists in extractions of COVID-19 hospitalized cases from the Programme de
médicalisation des systèmes d’information, abbreviated as PMSI, which contains standardized

medical information about hospitalizations, such as the diagnoses under the International
Classification of Diseases standard v10 (ICD-10). The data was entered on an ongoing basis by

medical information technicians from the electronic medical record and checked by the physi-

cian in charge of the medical information (MR). Retained explanatory variables about each

patient were age, gender and 18 comorbidities that were selected based on French national rec-

ommendations about people eligible for early vaccination [21, 22]. Table 1 indicates searched

terms for the construction of each comorbidity.

Moreover a patient was considered to be a severe case, which is the binary target variable, if

one of the following conditions was fulfilled.

• J80� (which corresponds to Adult respiratory distress syndrome) or R4028 (Unspecified

coma) is identified in the ICD-10 diagnoses.

• Transfer to Intensive Care Unit.

• Death.

Statistical tests and multivariate analysis

Statistical tests were performed on each wave separately in order to see the actual differences

between non-severe and severe patients. Student test was used for quantitative variable (age),
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while the Chi-square test was applied for qualitative variables (gender, pregnancy and comor-

bidities, which all happen to be binary features).

Logistic regression was used to perform a classical multivariate analysis. Some comorbidi-

ties were excluded from this analysis since their low numbers prevent the computation of all

p-values because of the Hessian matrix being non-invertible in the optimization process.

There was no interaction term in the logistic regression analysis since interaction effects will

be detailed thanks to the Machine Learning based analysis (see next subsection), but so as to

fully take into account the potential non-linearity of age, which was the single continue feature,

a spline based transformation of age was performed as described in [23].

Machine learning based analysis

Another technique to analyze data is to use Machine Learning models that easier and better

capture non-linearities and interactions than more traditional methods. This is the case for

tree ensemble models [12, 13], and notably boosted tree ensemble in the context of COVID-19

aggravation score [24, 25]. Nevertheless, as these Machine Learning based models are more

complex to interpret, explainability techniques (or eXplainable Artificial Intelligence abbrevi-

ated as XAI [14]) are applied in order to get further and more detailed insights from feature

effects and interactions.

First, for each wave separately, a model was trained to distinguish between severe and non-

severe cases based on all the features listed previously (age, gender and the 18 comorbidities).

More precisely, to avoid biasing our results with overfitting, a K-fold cross-validation was per-

formed with K = 5. Data for a particular wave was split into 5 distinct groups, with five steps

consisting in a model learning on four groups (also called training set) then predicting only on

the last group (named test set). Moreover, hyperparameter search using another 5-fold cross-

Table 1. Searched terms for binary comorbidity indicator in ICD-10.

Comorbidity Searched terms

Cancer Tumeur maligne

Embolism I260, I269

Cardiovascular Hypertension, I255

Cirrhosis Cirrhose

Sickle Cell D57

IBD (Inflammatory bowel disease) K55, K51, Crohn, Rectocolite

Mental Retardation Retard mental

Cognitive Impairment Demence, Alzheimer

Diabetes E10, E11

Overweight or Obesity Surpoids, E6603, Obesite, E6604, E6605, E6606, E6609

Pregnancy Z35, Z37

Trisomy Q9

Heart Failure I5

Dementia F03

Psychiatric Disorders Troubles psychiatriques

Pulmonary problems J4, J84

Organ Transplant Z94

Stroke Sequelae G81, R470

Searched terms corresponded to ICD-10 diagnosis id and French expression found in diagnosis description.

https://doi.org/10.1371/journal.pone.0263266.t001
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validation on the training set (technique also known as inner cross-validation) was done to

optimize model performances, thus enhancing the quality of the final results.

The Machine Learning model used in our study was an ensemble of boosted trees that com-

bines decision trees with boosting. Decision trees easily capture non-linearities and interaction

effects while boosting is a technique that aggregates several submodels (here decision trees) in

order to improve performances [26]. The implementation used is the eXtreme Gradient Boost-
ing one, abbreviated as XGBoost [27].

An explicability based method was applied to have a clear view of which features contribute

the most to a prediction for a particular patient. Indeed, for each patient we can have the effect,

also called influence, of every feature, compared to the average prediction of the dataset. The

prediction in our case was the probability of being a severe case, so the influence unit was also

a probability. An influence could be negative, meaning that it decreased the probability of

being a severe case thus indicating that the feature value was a protecting factor for the patient,

or positive, so increasing the probability of being a severe case thus indicating that the feature

value was a risk factor for the patient. For a particular patient, the sum of all its influences was

equal to the difference between its prediction and the average prediction. Influences varied

between each individual. For example two patients could have the exact same prediction (80%

of being a severe case), but for different reasons (the first because of an old age, while the sec-

ond is young but has a lot of comorbidities).

Influences were computed using the SHapley Additive exPlanations (SHAP) method [15],

and particularly the TreeSHAP method [28] applicable to decision tree based models. In order

to have the strongest possible results, influences were computed in the cross- validation pro-

cess, making it a three step process: learning, prediction and influence computation.

Several visualizations were then presented to get a view of the results at different scales.

First a global view was presented through a Global Importance graph which indicated the most

important features in the model decision making. Though Global Importance graph gave a

useful first glance at the feature effect, it did not link the feature initial value (for example a

young age, or the presence of pulmonary problems) with its influence (which can be negative

or positive). Thus it did not give any indication about the effect direction. Distribution graph
was presented so as to get first insights about the effect direction of every feature. Univariate
graph offered a more detailed view of a single feature effect. It is particularly useful when the

feature is quantitative, as it was the case with patient age in this study. Finally, Bivariate graph
helped visualize interaction effects of two variables.

Ethics

This study was conducted according to the guidelines of the Declaration of Helsinki and is

compliant with the GDPR (General Data Protection Regulation) rules and CNIL (Commission
Nationale de l’Informatique et des Libertés) reference methodology. Analysis were performed

using anonymized data.

It was approved by the Institutional Ethics Committee of Créteil hospital (Comité d’Ethique
Local du Centre Hospitalier Intercommunal de Créteil) at the date of 24/08/2021 (approval

number 2021-08-01). The use of PMSI data for research purposes does not require an individ-

ual consent. However, patients are informed on this kind of research on the hospital’s website.

Results

Population

During the study periods, 1076 patients were hospitalized in the CHIC for COVID-19. The

number of patients, number of deceases and the number and proportion of non-severe and
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severe cases per wave is given by Table 2. The first two waves had similar rates of severe cases

and deceases, while the third wave had the lowest proportion of severe cases and deceases.

Patient age was significantly different between non-severe and severe cases for all waves,

even if this was less significant for the third wave than the previous ones (Table 2). Also Gender
is only significant for the first wave, as for Diabetes and Pregnancy. On the contrary, Cardiovas-
cular problems and Overweight or Obesity are significantly different only for the third wave.

Cancer is the only significant comorbidity in the second wave.

Table 2. Numbers of patients and results of statistical differences between non-severe and severe cases per waves.

Wave 1 Wave 2 Wave 3 Total

Non severe Severe p-value Non severe Severe p-value Non severe Severe p-value Non

severe

Severe p-value

Nb patients 306 (71.33) 123

(28.67)

148

(69.16)

66 (30.84) 354 (81.76) 79 (18.24) 808

(75.09)

268 (24.91)

Nb deceases 0 (0.0) 70 (16.32) 0 (0.0) 42 (19.63) 0 (0.0) 28 (6.47) 0 (0.0) 140 (13.01)

Age 59.29

(±24.44)

71.12

(±17.2)

<0.01 �� 60.9

(±23.58)

74.47

(±17.55)

<0.01 �� 56.46

(±21.57)

62.08

(±18.73)

<0.05 � 58.34

(±23.1)

69.28

(±18.33)

<0.01 ��

Gender (women) 151 (49.35) 47 (38.21) <0.05 � 69 (46.62) 24 (36.36) 0.212 182 (51.41) 35 (44.3) 0.309 402

(49.75)

106 (39.55) <0.01 ��

Cancer 19 (6.21) 12 (9.76) 0.281 7 (4.73) 10 (15.15) <0.05 � 12 (3.39) 5 (6.33) 0.37 38 (4.7) 27 (10.07) <0.01 ��

Diabetes 46 (15.03) 38 (30.89) <0.01 �� 21 (14.19) 17 (25.76) 0.064 42 (11.86) 13 (16.46) 0.357 109

(13.49)

68 (25.37) <0.01 ��

Embolism 7 (2.29) 3 (2.44) 0.795 1 (0.68) 0 (0.0) 0.678 11 (3.11) 3 (3.8) 0.97 19 (2.35) 6 (2.24) 0.898

Overweight or

Obesity

50 (16.34) 28 (22.76) 0.155 21 (14.19) 8 (12.12) 0.848 43 (12.15) 25 (31.65) <0.01 �� 114

(14.11)

61 (22.76) <0.01 ��

Cardiovascular 102 (33.33) 41 (33.33) 1.0 35 (23.65) 21 (31.82) 0.277 59 (16.67) 31 (39.24) <0.01 �� 196

(24.26)

93 (34.7) <0.01 ��

Cirrhosis 0 (0.0) 1 (0.81) 0.637 0 (0.0) 0 (0.0) 1 (0.28) 0 (0.0) 0.41 1 (0.12) 1 (0.37) 0.998

Sickle Cell 1 (0.33) 0 (0.0) 0.637 1 (0.68) 0 (0.0) 0.678 1 (0.28) 0 (0.0) 0.41 3 (0.37) 0 (0.0) 0.741

IBD 2 (0.65) 0 (0.0) 0.908 0 (0.0) 0 (0.0) 1 (0.28) 0 (0.0) 0.41 3 (0.37) 0 (0.0) 0.741

Mental

Retardation

3 (0.98) 4 (3.25) 0.208 0 (0.0) 0 (0.0) 2 (0.56) 0 (0.0) 0.804 5 (0.62) 4 (1.49) 0.33

Cognitive

Impairment

16 (5.23) 8 (6.5) 0.774 3 (2.03) 3 (4.55) 0.56 5 (1.41) 3 (3.8) 0.336 24 (2.97) 14 (5.22) 0.123

Pregnancy 23 (7.52) 1 (0.81) <0.05 � 10 (6.76) 3 (4.55) 0.752 26 (7.34) 11 (13.92) 0.095 59 (7.3) 15 (5.6) 0.414

Trisomy 0 (0.0) 1 (0.81) 0.637 0 (0.0) 0 (0.0) 1 (0.28) 0 (0.0) 0.41 1 (0.12) 1 (0.37) 0.998

Heart Failure 11 (3.59) 6 (4.88) 0.732 1 (0.68) 4 (6.06) 0.055 10 (2.82) 4 (5.06) 0.506 22 (2.72) 14 (5.22) 0.076

Dementia 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Psychiatric

Disorders

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Pulmonary

problems

33 (10.78) 14 (11.38) 0.993 9 (6.08) 6 (9.09) 0.612 25 (7.06) 11 (13.92) 0.076 67 (8.29) 31 (11.57) 0.136

Organ Transplant 0 (0.0) 1 (0.81) 0.637 0 (0.0) 1 (1.52) 0.678 2 (0.56) 0 (0.0) 0.804 2 (0.25) 2 (0.75) 0.56

Stroke Sequelae 5 (1.63) 0 (0.0) 0.353 2 (1.35) 0 (0.0) 0.857 3 (0.85) 0 (0.0) 0.943 10 (1.24) 0 (0.0) 0.144

Results are presented with mean and standard deviation for age which is a quantitative feature, and numbers and proportion for the rest since they all are binary

qualitative features. A blank space for p-value means that there was no patient with the particular comorbidity in the wave, so that the Chi-square test could not be

performed.

For visual help for p-value, a single star (�) denotes a p-value strictly inferior than 0.05 and two stars (��) denotes a p-value strictly inferior than 0.01.

https://doi.org/10.1371/journal.pone.0263266.t002
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Multivariate logistic regression analysis

A feature was included in this analysis if it came out as significant in at least one wave in the

previous analysis or if at least 10 patients from the same wave had the comorbidity (Table 2).

Therefore, Multivariate Logistic Regression was performed using the following explanatory

variables: Age, Gender, Cancer, Diabetes, Pulmonary problems, Embolism, Overweight or Obe-
sity, Cardiovascular, Cognitive Impairment, Pregnancy, Heart Failure.

First of all, in order to fully capture the non-linearity effect of age, which was the single

quantitative variable in this study, a transformation using cubic splines was applied for each

wave. The resulted transformations are given by Fig 1. The probability of being a severe case

increased with age for all waves. The only exception was the first wave which was not strictly

monotonic since the risk effect of age peaked at about 80 years, while older patients had a little

smaller probability of being severe cases than 80 year old patients. It is worth noticing that the

third wave had the lowest gap between younger and older ages in terms of risk effect.

Table 3 indicates the results in terms of odds-ratio and p-values for each wave, with a single

logistic regression having been run for each of them. The Age feature is taken after the spline

transformation. Age always came out as significant at an α-level of 5%, it even came out for the

two first waves at a lower 1% α-level. Gender was significant for the two last waves, whereas

Overweight or Obesity and Cardiovascular were significant for both the first and third waves

and Pregnancy came out to be significant for the last two waves.

Machine learning analysis

Table 4 displays performance metrics for XGBoost model for each wave, including accuracy

and area under the curve of receiver operating characteristic (AUC ROC Score).

After learning models on each wave separately and computing influences for each patient

with the TreeSHAP method, a first way to apprehend what models had learnt from the data is

to look at the most important features in their decision making. Fig 2 shows the Global Impor-
tance graph for each feature and wave. This gives an interesting first glance to easily capture

feature importance through the waves.

Age was the predominant variable for every wave, especially the second one. Gender was

also an important feature for all three waves. Overweight or Obesity and Cardiovascular were

influential only for the first and third waves. Diabetes was important only for the first wave,

but also in a weaker manner for the last one. On the contrary, Pulmonary problems and Preg-
nancy were important for the third wave only. This is mainly coherent with the multivariate

analysis through logistic regression.

Though Global Importance values gave a useful first glance at the feature effect, it did not

link the feature initial value (for example a young age, or the presence of pulmonary problems)

with its influence (which can be either negative, null or positive). Hence it did not give any

indication about the direction of the effects. Distribution graph for each wave are given in Fig

3, which is a first way to get first insights about the effect direction of each feature per wave.

The risk of being a severe case increased with Age, since for all waves there were more

young patients (represented by blue points) that were associated with negative influences,

while older patients (indicated by redder points) were mostly associated with positive influ-

ences. Nevertheless, this distinction between young and old ages was particularly true for the

first and second waves, while it was more noisy and heterogeneous for the third wave. As for

the Gender feature it came out that men were at higher risk of being severe cases in all waves

and especially the first one. For almost all comorbidities the presence was a risk factor. It was

the case for Diabetes and Overweight or Obesity for the first wave, and Overweight or Obesity,
Cardiovascular, Pulmonary problems and Pregnancy for the third wave. The two exceptions
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were Cardiovascular and Diabetes that were considered as protective factor especially for the

Cardiovascular feature, respectively for the first and last wave. No comorbidity came out as sig-

nificant in the second wave.

An Univariate visualization was also made to get a more detailed view of feature effect. It is

particularly useful when the feature is quantitative, as it is the case with patient age in this

Fig 1. Spline transformation of Age for each wave. Shaded areas represent confidence intervals.

https://doi.org/10.1371/journal.pone.0263266.g001

Table 3. Results of multivariate logistic regression analysis.

Wave 1 Wave 2 Wave 3

Odds Ratio (95% CI) p-value Odds Ratio (95% CI) p-value Odds Ratio (95% CI) p-value

constant 0.2 (0.11-0.35) <0.01 �� 0.2 (0.1-0.39) <0.01 �� 0.08 (0.04-0.15) <0.01 ��

Age 3.37 (1.83-6.21) <0.01 �� 3.62 (1.91-6.85) <0.01 �� 9.95 (1.64-60.45) <0.05 �

Gender 0.66 (0.41-1.05) 0.077 0.47 (0.23-0.94) <0.05 � 0.5 (0.28-0.92) <0.05 �

Cancer 1.39 (0.62-3.14) 0.424 4.67 (1.56-13.96) <0.01 �� 1.49 (0.43-5.11) 0.529

Diabetes 2.12 (1.24-3.62) <0.01 �� 2.22 (0.96-5.1) 0.061 0.76 (0.35-1.67) 0.492

Pulmonary problems 0.93 (0.46-1.91) 0.852 1.46 (0.43-4.9) 0.541 2.42 (1.04-5.62) <0.05 �

Embolism 1.08 (0.23-4.97) 0.922 0.0 (0.0-76.1) 0.969 1.57 (0.39-6.35) 0.531

Overweight or Obesity 1.86 (1.03-3.33) <0.05 � 1.31 (0.49-3.51) 0.594 4.38 (2.24-8.56) <0.01 ��

Cardiovascular 0.55 (0.33-0.91) <0.05 � 0.8 (0.37-1.7) 0.559 2.61 (1.36-5.01) <0.01 ��

Cognitive Impairment 0.82 (0.33-2.08) 0.683 1.8 (0.29-10.93) 0.525 1.84 (0.34-10.01) 0.482

Pregnancy 0.5 (0.06-4.24) 0.522 5.43 (1.05-28.03) <0.05 � 9.61 (3.23-28.61) <0.01 ��

Heart Failure 1.21 (0.41-3.57) 0.73 5.29 (0.51-54.76) 0.163 0.89 (0.23-3.4) 0.866

For visual help for p-value, a single star (�) denotes a p-value strictly inferior than 0.05 and two stars (��) denotes a p-value strictly inferior than 0.01.

https://doi.org/10.1371/journal.pone.0263266.t003
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study, as shown by Fig 4 which clearly shows that Age effect greatly varies between waves. The

first wave had a slight increase of the risk until about the age of 65, then the risk rose suddenly

to the age of 80, which was the risk peak for this wave. Then there was a little decrease of the

risk for patients older than 80 years. On the contrary the second wave had a strong threshold

effect of Age. Patients younger than the age of 70 were more or less given the same risk, then

between 70 and 80 year old there was a rapid increase of the risk, and finally patients aged 80

years or more were also given a similar risk. The third wave was significantly different from

the first two, since influences were more heterogeneous. Indeed, some young patients were

given a positive influence (indicating an high risk of being severe cases) while some older

patients on the contrary were given negative influences (low risk). Nevertheless, on average

young patients were still less at risk than older ones, but in a less neat way than previous waves.

Bivariate plots indicating interaction between Age and four binary features are shown in Fig

5. Age was selected as it was the most important feature for all waves (Fig 2), and the four

binary features (Gender, Diabetes, Overweight or Obesity and Cardiovascular) were chosen

since they all were the second most important feature for at least one wave (Fig 2). There was a

Table 4. XGBoost performance metrics for each wave.

Metrics Wave 1 Wave 2 Wave 3

Accuracy (%) 70.63 66.82 70.67

AUC ROC Score (%) 65.52 65.77 62.35

Results were obtained after a 5-fold cross-validation process, including an inner cross-validation for hyperparameter

optimization.

https://doi.org/10.1371/journal.pone.0263266.t004

Fig 2. Global variable importance for each wave. Global Importance value indicates how important a feature in a

particular wave is. As influences can be either positive or negative depending on the patient, Global Importance value

for a feature and a wave is computed by averaging the absolute influence for that feature over all patients from the

wave, then normalizing by the sum of all Global Importance feature values from the wave. Thus the sum of Global

Importance values over a single wave is equal to 1.

https://doi.org/10.1371/journal.pone.0263266.g002
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Fig 3. Distribution graph of influence with respect to feature value for each feature per wave (best viewed in color). Each dot represents a particular

patient from the dataset, with feature names on the y-axis and influence values on the x-axis. A negative influence can thus be considered as a protective

factor since it decreased the probability of being in a severe state, whereas a positive influence can be considered as a risk factor. The initial value is

represented by the color of the point, through the colormap indicated on the far right of the figure. A low initial value (for example a young age) is

indicated by a blue point, while a high initial value (an old age) would be a red one. Gender value is 0 for men (blue dots) and 1 for women (red dots)

while Comorbidity value is 0 for the absence (blue) and 1 for the presence (red).

https://doi.org/10.1371/journal.pone.0263266.g003

Fig 4. Univariate graph of patient Age effects for each wave. Each dot represents a patient, with age value on the x-

axis and the associated influence on the y-axis.

https://doi.org/10.1371/journal.pone.0263266.g004
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clear interaction effect between Age and Gender for the first wave. Indeed, all men were given a

higher risk than women, and the difference got larger as age increased. It does indicate that

Gender had a stronger effect when patients were older. Nevertheless, this fact was not as clear

for the second and third waves, especially the latter.

Fig 5. Bivariate graph for Age and its interaction with Gender, Diabetes, Overweight or Obesity and

Cardiovascular for each wave (best viewed in color). For each row, Age influence is on the x-axis while Gender,
Diabetes, Overweight or Obesity and Cardiovascular are on the y-axis respectively for the first, second, third and fourth

row. Each dot represents a particular patient. Color and size of the dot give information about the two feature initial

values, respectively color for the feature located on the x-axis (here age) and size for the feature on the y-axis. The

colormap for the x-axis feature is the same used in Fig 3 with blue indicating a young age and red an old age. Since the

y-axis features are all binary indicators, a small point indicates a 0 (men or absence of comorbidity) and a bigger dot a

1 (women or comorbidity presence).

https://doi.org/10.1371/journal.pone.0263266.g005
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In a similar fashion, Diabetes effect got stronger with Age for the first wave. It is also notice-

able that Diabetes had no effect for the second wave, and that it was a protective factor for the

third wave even if this was only a slight effect for most patients. As for the interaction effects

between Age and Overweight or Obesity, only the first and third waves saw an non-null effect

of Overweight or Obesity, but seemingly without interaction with Age.
Finally concerning the interaction of Age and Cardiovascular problems the second wave

once again had no comorbidity effect. But the first and third waves showed inverse effects.

While the presence of Cardiovascular problems was a risk factor in the third wave, it was on

the contrary a protective factor for the first wave. Moreover, for both waves this effect was

related to Age, but again in an inverse fashion. While for the third wave the Cardiovascular
effect decreased with Age since older patients with cardiovascular problems (indicated by red

big points) were given lower influences than younger patients with cardiovascular problems

(yellow and orange big points), for the first wave it got stronger with Age.

Discussion

This study of over 1000 COVID-19 cases highlighted changes in the influence of clinical risk

factors over the first 3 waves of the epidemic in an University hospital in Paris area thus offered

a deeper understanding of the pandemic through a long term analysis of its evolution, which

very few studies or research notes have done until now [10, 11].

While a higher age (� 70 years) was a risk factor to develop a severe form for all of the 3

waves, the ML analyses underlined a more heterogeneous impact of this feature during the

third wave, indicating that an older age was no longer a clear risk factor as it was for the first

two waves. Moreover, some risk factors appeared with time, such as pregnancy or having an

underlying chronic lung disease. In a similar manner, interactions between features evolved

rapidly. In the first wave age highly interacted with other variables such as gender or cardio-

vascular problems, while this was not the case for the following waves, with the second wave

not even having any impactful comorbidity. These results are coherent with the existing lit-

erature that mainly focused on the first waves of the pandemic [7, 8, 29]. Thus, Williamson

et al [30] analyzed the data from the British electronic health database on more than 17 mil-

lion of individuals during the first wave of COVID-19 using multivariate Cox model. Age,

gender, obesity, diabetes, cancer and immunosuppression were identified as risk factors, in

accordance with the results found in this study during the first wave. The only exception

concerned cardiovascular problems for the first wave that came out as a slight protective fac-

tor in this study, both in the logistic regression and ML analysis, which is in contradiction

with other researches [31]. It could come from the fact that the CHIC hospital has not a

large cardiology department. Thus some patients with heavy cardiovascular problems could

have been redirected from the CHIC to another hospital in the first wave since it was the

peak of the pandemic. Additionally, some prognosis scores for mortality in SARS-Cov-2

pneumonia have been developed [5, 6]. These scores integrated age and comorbidities risk

factors but also biological, radiological or genetic factors that are not immediately or rou-

tinely available.

The changes in these clinical risk factors can be explained by a change in the exposed popu-

lation as the virus spread in the population between waves 1 and 2 and by the vaccination cam-

paign for the elderly (� 75 years) and people “at risk” for the third wave [32]. Thus, it is

expected that the generalization of vaccination in a context where the virus and its recent vari-

ant forms continues to be very present in the general population will modify the profile of peo-

ple severely affected by the disease. In particular, as vaccination is seemingly efficient on severe

forms [33] and that most people with high risk factors (elderly, comorbidity) are vaccinated
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[32], it is therefore expected that severe forms of COVID-19 will mainly affect unvaccinated

people who have fewer risk factors and comorbidities.

Even though this study was monocentric, it did include data for more than a year from an

important University Hospital located in a dense population area. This study included rather

classical clinical information (Age, Gender and numerous comorbidities) but no biological

parameters. Nevertheless, informations were extracted from a well formatted database that is

mandatory for every hospital center in France (PMSI), and all these data were verified by the

physician in charge of coding, in order to guarantee the reliability of the data. All features were

therefore easily constructed and can be considered as reliable and also time stable, in contrast

to biological variables that can heavily fluctuate since they depend on the moment the mea-

surement is done.

Performances of the XGBoost model were rather low for all waves. This probably came

from the fact that this study only included easily available features (age, gender and comorbidi-

ties) but no more complex radiological and biological variables, therefore limiting the discrim-

inative power of models applied on these data. Despite these modest performances, the solid

model building and validation process, using nested cross-validation, allowed the Machine

Learning based analysis to give complementary insights and understanding about the patient

typology and its evolution through the pandemic. It was particularly useful to identify sub-

groups with similar effects, as well as the visualization of the diffusion level of the effects. Thus,

it offers an almost real-time monitoring of the evolution of risk factors, enabling a rapid adap-

tation and improvement of the healthcare services.

Future works could involve a study with a population from a larger area in order to evaluate

the stability of the findings and measure the differences between regions. Additional features

such as biological variables, including C-Reactive Protein [34] or Eosinophils [35], could also

be included to get a finer comprehension but such information are not the most reliable and

are more difficult to gather.

Moreover, while Machine Learning based analysis brings relevant information about

individual patient protective and risk factors, as well as their degree of homogeneity or het-

erogeneity among the general population, it is essentially visual for now. Hence to some

extent it lacks statistical and global quantitative information about each feature, as it can be

done with more classical analysis methods such as logistic regression but at the cost of a

rather fastidious model construction and higher complexity since it is difficult to individually

compute actual effect of each feature if the logistic regression model has interaction terms

and non-linear transformations. Therefore, the establishment of techniques that would pro-

vide a more quantitative view of the general behavior of the features along with statistical

testing of differences based on influence values are interesting future axis of work in order to

provide healthcare practitioners and decision-makers an even quicker and better under-

standing of the epidemic situation so they can efficiently choose the most appropriate

responses and necessary adjustments.

Conclusions

This study highlighted significant changes of COVID-19 characteristics for severe state hospi-

talized patients over the first 3 waves of the pandemic in France. In complement to classical

analysis methods, Machine Learning-based techniques emphasized on the heterogeneity level

of effects and feature interactions. This rapid evolution can be explained by changes in hospital

practices as well as vaccination campaign that targeted first and foremost people most at risk.

It is thus expected that severe COVID-19 forms will affect unvaccinated people with fewer risk

factors and comorbidities.
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