
HAL Id: hal-04247620
https://hal.u-pec.fr/hal-04247620v1

Submitted on 18 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observational Preorders for Alternating Transition
Systems

Romain Demangeon, Catalin Dima, Daniele Varacca

To cite this version:
Romain Demangeon, Catalin Dima, Daniele Varacca. Observational Preorders for Alternating Tran-
sition Systems. 20th European Conference on Multi-Agent Systems - EUMAS 2023, Sep 2023, Naples,
Italy. pp.312-327, �10.1007/978-3-031-43264-4_20�. �hal-04247620�

https://hal.u-pec.fr/hal-04247620v1
https://hal.archives-ouvertes.fr

Observational Preorders for Alternating
Transition Systems

Romain Demangeon1, Catalin Dima2, and Daniele Varacca2

1 LIP6, Sorbonne University Paris, France,
romain.demangeon@sorbonne-universite.fr
2 LACL, Université Paris-Est Créteil, France,

{dima,daniele.varacca}@u-pec.fr

Abstract. We define two notions of observational preorders on Alter-
nating transition systems. The first is based on the notion of being able to
enforce a property. The second is based on the idea of viewing strategies
as a generalised notion of context. We show that alternating simulation
as defined by Alur et al. [3] is a sound proof technique for the enforcing
preorder and a complete proof technique for the “contextual” preorder.
We conclude by comparing alternating simulation with the classic notion
of simulation on labelled transition systems.

1 Introduction

Several process calculi have been defined to model concurrent systems, such as
the Calculus of Communicating Systems (CCS) [11], or the π-calculus [12]. In
these syntactic frameworks, there is a canonical way to define a preorder between
terms. It consists in giving an unlabelled “reduction” semantics of the terms,
some notions of basic observation, and then define the preorders contextually :
one term P is less than a term Q if for every context C, if C[P] produces some
basic observation, so does C[Q]. This definition is often easy to give, and it’s
also rather convincing. The usual narrative then says that proving that two
terms are in the relation is hard, due to the quantification over all contexts.
Labelled semantics comes to the rescue by means of theorems that say that
labelled similarity is included in (or coincide with) contextual preorder. This is
the case for CCS and the π-calculus for instance.

In this paper we address the following question:

Can we generalise a notion of contextual preorder
to a setting where there is no syntax around?

In particular, how can we generalise the notion of context?
We will consider the model of Alternating Transition Systems (ATS) pro-

posed by Alur, Henzinger and Kupferman [2]. In this setting, states can be
described by boolean properties and a notion of alternation between an Agent
and an Opponent is present. ATSs come with a notion of strategy. The Agent
and the Opponent follow strategies according to some rules, and the interaction

between the strategies produces a run of the system. We then can make several
observations on the run, we can for instance observe the sequence of boolean
properties encountered during this run.

The first preorder we define is based on the notion of enforcing a specifica-
tion (which slightly generalizes [14, 15]). The Agent can enforce a specification
if it has a winning strategy for it, that is a strategy such that, whatever the
Opponent does, the resulting execution satisfies the specification. After formal-
ising a suitable general notion of specification, we propose to define a preorder
as follows: an ATS P is less than an ATS Q if for every specification ϕ, if Agent
can enforce ϕ on P then she can enforce it on Q.

To define a second preorder, we generalise the definition of contextual pre-
order to ATS using the intuition that strategies generalise the notion of context.
With this intuition in mind, we say that an ATS P is less than an ATS Q if for
every pair of strategies σA, σO (of Agent and Opponent), if the run produced
by these strategies on P exhibits some properties, so does the run produced by
the same strategies on Q. One problem with this intuition is that the notion
of strategy, as defined by Alur et al., is very much bound to the system. We
cannot directly apply a strategy for P to a different system Q. We overcome this
difficulty by defining a way of “transfering” a strategy from a system to another.

ATS come also equipped with a notion of alternating simulation [3], which
is used to define another preorder, called Alternating Similarity. The natural
question to ask is: what is the relation between these preorders? We show that
alternating similarity and the generalised contextual preorders coincide, and they
are both stronger than the enforcing preorder.

In order to carry out our proofs, we propose a simplified presentation of
ATS, using a formalism close to labelled transition systems. In the syntactic
models, labels are useful when the system interacts with a context, but they are
not necessary to the more powerful notion of strategy. We still like to rephrase
the notion of ATS in a labelled setting. In this way we are able to stress the
connections between the notion of alternating simulation, and Milner and Park’s
notion of simulation on LTS. We also argue that the labelled presentation may
play some role in future extensions of our work.

Plan The main contributions of our work are :

1. the introduction of the enforcing preorder on ATS;
2. the introduction of a contextual preorder which compares ATS by matching

their strategies; using a choice correspondence operation;
3. the translation of the alternating simulation preorder to our labelled presen-

tation of ATS;
4. the proof that two preorders coincide and they are stronger than the third.

Section 2 presents our new definition for Alternating Transition Systems,
considering them as agent/opponent games on LTS, and defines the enforcing
preorder. Section 3 introduces our version of alternating simulation(AS) as a way
to compare ATS taking into account just how labels group together outcoming
transitions. Section 4 defines a pre-order relation on ATS which compares how

strategies for the two ATS can interact. A pair of mapping on states and labels,
called choice correspondence, allows one to compare two systems using actions
with different labels. We call this the Morris preorder. Section 5 shows that the
largest alternating simulation and the Morris preorder coincide. We also show
that they are both stronger (we conjecture strictly) than the enforcing preorder.
We conclude by discussing the symmetric versions of our relations. We also define
a name-aware version of the alternating simulation and compare it with Park
and Milner’s simulation.

2 An alternating view of transition systems

Alternating Transition Systems (ATS) were introduced by Alur, Henzinger and
Kupferman [2] to model open systems. In this model, the execution of a system
is produced by the action of different agents. They are a very useful model, that
has been used extensively in research related with synthesis and verification [1,
4, 16, 9] (to cite only a few). However it lacks the simplicity of the notion of
Labelled Transition Systems (LTS) [13] that is at the basis of the semantics of
process algebras. In this section we propose to see traditional LTS as a simplified
version of ATS.

2.1 Definition

Alur, Henzinger and Kupferman define ATS by having several players that can
form coalitions. In this paper, to make things simple, we will only consider two
players: the Agent and the Opponent. As in the definition by Alur, Henzinger
and Kupferman, these players make choices that produce an eventual execution
of the system. However the choices are made on a standard LTS. The intuition
is that at each state of the system, the Agent chooses a label l (among all the
labels that are allowed in that state), while the Opponent chooses one of the
transitions that are labelled by l. A Labelled Transition System (LTS) is a tuple
L = (S, s0, L, T , P,≤, O) where

1. S is the set of states and L a the set of labels, with s0 ∈ S the initial state.
2. T ⊆ S × L× S is the transition relation.
3. P is the set of atomic observations and (P,≤) forms a discrete partial order.
4. O : S → P is the observation function.

We write s
l−→ if there exists s′ such that s

l−→ s′.
In Figure 1, transitions with the same labels are grouped in bunch of transi-

tions, making explicit how the game proceed. From state s0, Agent chooses one
bunch of transitions labelled by either l or k; then Opponent chooses a state
reachable by a transition taken from the chosen bunch. For instance, if Agent
chooses l, Opponent can choose s2 but not s4.

A finite or infinite run of an LTS is an alternating sequence of states and
labels, starting in the inital state, respecting the transition relation. The set of
finite runs of an LTS L is denoted by runs(L). The set of infinite runs of an LTS

s0

s3

s2

s1

s4
s5

l

k

Fig. 1. Bunches of transitions in ATS.

L is denoted by runs∞(L) , the set of finite runs ending with a state runs•(L)
and the set of finite runs ending with a label runs→(L). The length of a run ρ
is denoted `(ρ) (and equals ∞ for infinite runs). Furthermore, for any k ≤ `(ρ),
the (k + 1)-th item (state or action) in the run ρ is denoted ρ[k], with the first
item being denoted ρ[0], while the prefix of length k + 1 is denoted ρ[≤ k].

The observation function can be extended homomorphycally to a map O :
runs∞(L) → Pω which we call the infinite observation of the run. Given two
infinite observations Q1 = (p0 . . . pn . . .), Q2 = (r0 . . . rn . . .) where for each i ≥ 0
we have pi, ri ∈ P , we say that Q1 ≤ Q2 if for each i ≥ 0, pi ≤ ri. If (s, l, s′) ∈ T
we will write s

l−→ s′.

As we discuss in details later, the identity of labels is not important. In
the presence of the syntax of a process algebras, the identity of a label allows
synchronisations of different subsystems. But in the framework we discuss here,
labels are just a means of grouping together different transitions. We will allow
relabelling as long as they produce the same groups (or bunches) of transitions.

As the intuition suggests, the successive moves of the Agent and the Oppo-
nent produce an infinite execution of the system, as we formalise now.

2.2 Strategies and Observations

Given an LTS L = (S, s0, L, T , P,≤, O), a strategy for the Agent is a function

σA : runs•(L) → L such that if σA(s0l0 . . . sn) = ln then sn
ln−→. A strategy for

the Opponent is a function σO : runs→(L)→ S such that if σO(s0l0 . . . snln) = s′

then sn
ln−→ s′. For simplicity, we can suppose that each state of an LTS has at

least one outgoing transition (towards a sink state if necessary). This allows us
to define strategies as total functions.

The combination of two strategies produces an infinite run. Given an LTS
L = (S, s0, L, T), a strategy for the Agent σA, a strategy for the Opponent σO,
we define an infinite run r = s0l0 . . . snln . . . ∈ runs∞(L), denoted ρ[L, σA, σO],
as follows:

– l0 = σA(s0); ln = σA(s0 . . . sn);

– sn+1 = σO(s0 . . . snln);

For the purpose of this paper we will define a specification to be an upward
closed set of infinite observations, so that if an infinite observation satisfies a
given specification ϕ, a larger observation satisfies ϕ also.

Definition 1. We say that a run r satisfies the specification ϕ (denoted r � ϕ)
if O(r) ∈ ϕ.

2.3 Enforcing preorder

We want to define a preorder between systems based on the above notion of
observation. Given two LTS L,L′, when can we say that L′ is “better” than L?
We propose the following intuition: if Agent can enforce some specification on
L, then she must be able to enforce it on L′.

Definition 2. We say that Agent can enforce a specification ϕ on L if

∃σA∀σOρ[L, σA, σO] � ϕ.

We can now formalise the notion of enforcing preorder:

Definition 3. Let L = (S, s0, L, T , P,≤, O) and L′ = (S′, s′0, L
′, T ′, P,≤, O′) be

two LTSs sharing the same observation order (P,≤). We say that L ≤ L′ if for
any specification ϕ, if Agent can enforce ϕ on L then Agent can enforce ϕ on
L′.

3 Alternating simulations

Alur et al. [3] introduce a notion of bisimulation for ATS, called alternating
bisimulation. This notion has some resemblance to the notion introduced by
Park and Milner [11] for LTS, but there are also major differences, not least
because the model they apply to are different.

In this section we propose to define a notion of Alternating (bi)simulation
for LTS that follows the intuition explained in the previous section. At first, we
will only study the notion of simulation - we will discuss the symmetric relations
at the end of the paper.

The notion of simulation by Park and Milner takes the identity of labels very
seriously. There are two main reasons for this. First, we argue that this is due
to the fact that LTS usually model syntactic process algebras where labels are
important for synchronisation. In our setting, however, labels are only needed
to group transitions together. Secondly, in the world of process algebras, labels
also play the role of observations. In this paper, we use a more general notion of
observation.

Therefore our definition of simulation will allow “relabelling”. This brings us
to the following definition.

Definition 4. Let L = (S, s0, L, T , P,≤, O) and L′ = (S′, s′0, L
′, T ′, P,≤, O′) be

two LTSs sharing the same observation order (P,≤). An Alternating simulation
(AS) between them is, is a binary relation R ⊆ S×S′ such that whenever s R s′,
then O(s) ≤ O(s′) and:

for all labels l s.t. s
l−→, there exists h s.t. s′

h−→ and for all t′ s.t. s′
h−→ t′,

there exists t s.t. s
l−→ t and t R t′.

The largest AS, ⊂AS, is called alternating similarity. If there is a AS R s.t.
s0 R s′0, we say L ⊂AS L′.

Remark 1. Note that, contrary to the notion in [3], we do not require O(s) =
O(s′) in the first item above. The reason will come up later, when defining the
“Morris preorder” in Definition 6.

Example 1. s1
l

l

~~
s2

h

��

s3

s4

t1

k

��
t2

j

��
t3

Consider the two LTL depicted above, where all the states have the same
observation. (We could also imagine that states with no outgoing transitions
have one transition towards a sink state with a special observation). In this
case the relation {(s1, t1), (s2, t2), (s4, t3)} is an AS. However, there is no AS

containing (t1, s1). Indeed the only choice to match t1
k−→ is s1

l−→. But if now we

choose s1
l−→ s3, we need to have (t2, s3), in which case there is no transition in

the first system to match the action of the second system.

As one of the main results of this paper, we will show that, alternating
simulation is a sound proof technique for the enforcing preorder.

Theorem 1. Let L = (S, s0, L, T , P,≤, O) and L′ = (S′, s′0, L
′, T ′, P,≤, O′) be

two LTSs sharing the same observation order. If L ⊂AS L′ then L ≤ L′.

This theorem implies Lemma 1 of [3]. Its proof is based on the simulation
game, briefly suggested [3], that we formalize here for our variant of the alter-
nating simulation.

3.1 The simulation game

In this section we adapt the classical two-player simulation game between Spoiler
and Duplicator to the case of the alternating simulation. We then show that any
memoryless winning strategy for Duplicator in this game defines an AS, and
vice-versa, any AS gives a memoryless winning strategy for Duplicator.

The simulation game is built from any two LTS L = (S, s0, L, T , P,≤, O) and
L′ = (S′, s′0, L

′, T ′, P,≤, O′). Intuitively, from game positions labelled with pairs
of states (s, s′) ∈ S × S′, Spoiler chooses a label l ∈ L and the game advances
to a position labelled (s, s′, l) which belongs to Duplicator. Here, Duplicator
must reply with a label l′ ∈ L′ and then the game proceeds to a position labeled

(s, s′, l, l′) belonging again to Spoiler. In this new position, Spoiler chooses t′ ∈ S′
such that (s′, l′, t′) ∈ T ′, the game advancing further to a position (s, s′, l, l′, t′)
belonging to Duplicator. Finally, Duplicator must reply in this position with a
state t ∈ S such that (s, l, t) ∈ T , after which the game advances to position
(t, t′), and the above sequence of moves can be played again. All positions (s, s′)
with O(s) 6≤ O(s′) are winning for Spoiler, hence Duplicator’s objective is to
avoid these positions – that is, a safety objective.

Formally, the two-player turn-based simulation game is built as follows: G =
(QD,QS , q0, δ) where QD = S × S′ × L ∪ S × S′ × L× L′ × S′, QS = S × S′ ∪
S × S′ × L × L′, q0 = (s0, s

′
0) ∈ QS ActD = L′ ∪ S, ActS = L ∪ S′, and the

transition function is:

δ =
{

(s, s′)
l−→ (s, s′, l) | s ∈ S, s′ ∈ S′, l ∈ L, s l−→

}
∪
{

(s, s′, l)
l′−→ (s, s′, l, l′) | s ∈ S, s′ ∈ S′, l ∈ L, l′ ∈ L′

}
∪
{

(s, s′, l, l′)
t′−→ (s, s′, l, l′, t′) | s ∈ S, s′∈ S′, l ∈ L, l′∈ L′, t′∈ S′

with (s′, l′, t′) ∈ T ′
}

∪
{

(s, s′, l, l′, t′)
t−→ (t, t′) | s ∈ S, s′ ∈ S′, l ∈ L, l′ ∈ L′, t ∈ S, t′ ∈ S′

with (s, l, t) ∈ T and (s′, l′, t′) ∈ T ′
}

Finally, Duplicator’s objective is defined by the set of states Obj = {(s, s′, α) ∈
QD ∪QS | O(s) ≤ O(s′)} ⊆ Q.

A strategy for Duplicator is a mapping σD : (QS · QD)∗ −→ ActD and a
strategy for Spoiler is a mapping σS : (QS ·QD)∗×QS −→ ActS . Furthermore,
a memoryless strategy for Duplicator is a mapping σ : QD −→ ActD. Due to the
particular way in which the states, actions and transitions are constructed, we
will identify a memoryless strategy with a pair (σL′ , σS) with σL′ : S×S′×L −→
L′ and σS : S × S′ × L × L′ × S′ −→ S. A run ρ is compatible with a strategy

for Duplicator σ if, whenever ρ[i] ∈ QD, then ρ[i]
σ(ρ[≤i+1])−−−−−−−→ ρ[i+ 2].

Note that the AS game G is a safety game, defined by the set of runs
RunsObj =

{
ρ ∈ runs(G) | ∀i ∈ N.ρ[i] ∈ Obj

}
.

Theorem 2. L ⊂AS L′ if and only if Duplicator has a memoryless winning
strategy in the simulation game.

Proof. The proof proceeds by showing that any memoryless winning strategy for
Duplicator gives rise to an alternating simulation, and vice-versa. Technically,
this requires restating the notion of AS by skolemizing the existential quan-
tifiers in Definition 4. The skolemized version of AS is given by the following
proposition:

Proposition 1. A relation R is an AS if and only if, for any sRs′, O(s) ≤
O(s′) and there exist partial functions η : S×S′×L −→ L′ and θ : S×S′×L×S′
(called an AS pair) such that whenever sRs′:

1. For each l ∈ L with s
l−→ we have that η(s, s′, l) is defined and s′

η(s,s′,l)−−−−−→.

2. For each t′ ∈ S′ with s′
η(s,s′,l)−−−−−→ t′, we have that θ(s, s′, l, t′) is defined.

3. s
l−→ θ(s, s′, l, t′) ∈ T .

4. θ(s, s′, l, t′)Rt′.

With this preparation, given σ = (σL′ , σS) a memoryless winning strategy
for Duplicator, we build the following relation R ⊆ S × S′:

sRσs′ iff there exists a run ρ ∈ Runs(G) which is compatible with
(σL′ , σS) such that (s, s′) = ρ[i] for some i ∈ N.

We will show that Rσ is an AS between L and L′.
Note first that, if sRσs′ then O(s) ≤ O(s′) since any run ρ which is com-

patible with (σL′ , σS) must be winning for Duplicator and therefore visit only
positions (s, s′) ∈ Obj. We then build, using σ, an AS pair (ησ, θσ) as required
by Proposition 1, as follows: for each s ∈ S, s′, t′ ∈ S′, l ∈ L,

ησ(s, s′, l) = σL′(s, s′, l) and θσ(s, s′, l, t′) = σS(s, s′, l, σL′(s, s′, l), t′)

Then the pair (ησ, θσ) satisfies the hypotheses of Proposition 1 for Rσ:

1. For any (s, s′, l), ησ(s, s′, l) = σL′(s, s′, l) is defined and s′
σL′ (s,s′,l)−−−−−−→.

2. For any (s, s′, l, t′), θσ(s, s′, l, t′) = σS(s, s′, l, σL′(s, s′, l), t′) is defined.

3. (s, s′, l, σL′(s, s′, l), t′)
σS(s,s′,l,σ(s,s′,l),t′)−−−−−−−−−−−−−→ (σS(s, s′, l, σ(s, s′, l), t′), t′) ∈ δ,

which implies that s
l−→ σS(s, s′, l, σL′(s, s′, l), t′) ∈ T by definition of G.

4. Any run which reaches (s, s′) and is compatible with (σL′ , σS) can be ex-
tended to a run which reaches σS(s, s′, l, σL′(s, s′, l), t′), t′), and therefore
σS(s, s′, l, σL′(s, s′, l), t′), t′)Rσt′.

For the other direction of Theorem 2, the skolemized version of AS will
be again of help, by providing us with the Duplicator choices in each state of
the simulation game. Namely, given AS R defined by the AS pair (η, θ) as in
Proposition 1, we show that any extension of (η, θ) to a pair of total functions
(σL′ , σS) represents a memoryless winning strategy for Duplicator in G. Or, in
other words, the tuples where η and θ are undefined cannot be reached by runs
which are compatible with these choices.

Formally, take any strategy for Duplicator (σL′ , σS) with σL′ : S×S′×L −→
L′ and σS : S × S′ × L× L′ × S′ −→ S which is defined as follows:

– For each s, s′, l, σL′(s, s′, l) = η(s, s′, l) if η(s, s′, l) is defined, and is arbitrary
otherwise.

– For each s, s′, l, l′, t′, σS(s, s′, l, σ(s, s′, l), t′) = θ(s, s′, l, t′) if η(s, s′, l) and
θ(s, s′, l, t′) are defined, and is arbitrary otherwise.

Then any finite run ρ which is compatible with (σL′ , σS) visits only states
(s, s′, α) with sRs′ – and, as a consequence, (s, s′, α) ∈ Obj. The proof goes
by induction on the length of the run.

The base case is trivial since s0Rs′0 and the initial position in G is compatible
with any strategy. So assume ρ is a run of length ≥ 1. If the length of the run is

4k+ 1, then ρ = ρ′ · (s, s′, l) for some ρ′ with `(ρ′) = 4k and ρ′[4k] = (s, s′), and
therefore sRs′ by the induction hypothesis. Furthermore, for `(ρ) = 4k + 2
we must have ρ = ρ′ · (s, s′, l, l′) and, by the induction hypothesis, ρ′[4k +
1] = (s, s′, l) is such that sRs′. But then, by construction of σL′ , we must
have l′ = σL′(s, s′, l) = η(s, s′, l). Going one step further, for `(ρ) = 4k + 3 we
must have ρ = ρ′ · (s, s′, l, l′, t′) and again sRs′ by the induction hypothesis and
l′ = σL′(s, s′, l). Finally, for `(ρ) = 4k + 4 and ρ = ρ′ · (t, t′) compatible with
(σL′ , σS), we must have ρ[4k + 3] = (s, s′, l, l′, t′), sRs′, l′ = σL′(s, s′, l), and
t = σS(s, s′, l, l′, t′) = θ(s, s′, l, t′) and hence tRt′.

4 Strategies as contexts

The previous section does not tell the whole story of alternating simulation, and
we explore here the connections with observational preorders from [8].

4.1 Observational preorders

In a syntactic calculus, there is a standard way to define observational preorder
on syntactic terms, which we call here the Morris-style definition: t ≤ s if for
every context C, the observations that can be made on C[t] are (in some sense)
included in the observations that can be made on C[s] [8]. In the case of the
functional language PCF, for instance, the Morris preorder is defined taking
termination as the only observation.

While the relation is very easy to define, and very convincing, the quantifi-
cation over all possible contexts makes it hard to directly prove that two terms
are in the relation. Some other, easier to handle, notion is then introduced for
this purpose. For instance, in the ’70 people tried to capture the observation
pre-congruence for PCF using domains, and subsequently using game seman-
tics. The holy Grail of this line of research was “full abstraction”, a precise
characterisation of the Morris preorder.

In the study of CCS, (bi)-simulation and its large weaponry of up-to tech-
niques, was proven to precise characterise barbed pre-congruence, which can be
argued to be a generalisation of the Morris preorder to nondeterministic systems.

In the exemples mentioned above, contexts can be seen as way of testing a
term: you submit a term to different experiments, and observe the results. In
the setting studied here, there are no terms, only transition systems. The only
way to interact with a transition system is by playing on it. Therefore we argue
that the right transposition of contexts, here, are the strategies.

Let’s try to formulate the Morris-style preorder using this intuition. Given
two LTS L,L′ we say that L ≤ L′ if for any strategies σA, σO the observations
of ρ[L, σA, σO] are included in the observations of ρ[L′, σA, σO].

There is a problem with this naive formulation: the definition of strategy
does not allow the same strategies to interact with different transition systems.
We need to have a way to generalise the notion of “same” strategy. Strategies
make choices based on the previous history. We need to put in correspondence

different choices, on different histories. We argue then that two strategies are
“the same” if they make corresponding choices.

4.2 Choice correspondence and the Morris preorder

We have therefore to propose a suitable definition of “choice correspondence”
for states and labels:

Definition 5. Let L = (S, s0, L, T , P,≤, O) and L′ = (S′, s′0, L
′, T ′, P,≤, O′)

be two LTSs sharing the same observation order. A choice correspondence is
consituted by two mappings:{

f : runs•(L)× runs•(L′)→ L→ L′

g : runs→(L)× runs→(L′)→ S′ → S
with the following properties:

– if hl ∈ runs→(L) and f(h, h′)(l) = l′ then h′l′ ∈ runs→(L′);
– if h′s′ ∈ runs•(L′) and g(h, h′)(s′) = s then hs ∈ runs•(L).

In one direction, the f component builds a correspondence between choices
of labels, while in the other direction, the g component builds a correspondence
between states. Both mappings take into account the history of the computation.

A choice correspondence allows us to build a run on two LTSs, with just one
pair of strategies. Since the corresponding functions act in different directions, we
will need one strategy to be defined on each LTS. Then the two other strategies
are induced by the correspondence.

Let L = (S, s0, L, T) and L′ = (S′, s′0, L
′, T) be two LTSs. Consider (f, g)

be a choice correspondence, σA a strategy for agent in L and σ′O a strategy for
opponent in L′.

We define the following:

– a map ξ′ : runs→(L)→ runs→(L′),
– a strategy σO for opponent in L,
– a map ξ : runs•(L′)→ runs•(L),
– and a strategy σ′A for agent in L′.

We do that by induction on the length of the argument. For the base case
we put ξ(s′0) = s0 and σ′A(s′0) = σA(s0).

For the induction step, let h′l′s′ ∈ runs•(L′), define h = ξ(h′), l = σA(h)
and s = g(hl, h′l′)(s′), then

ξ(h′l′s′) = hls and σ′A(h′l′s′) = f(hls, h′l′s′)(σA(hls)).

The function ξ′ and the strategy σO are defined analogously.
Note that the definition of σ′A does not depend on σ′O and that the definition

σO does not depend on σA. When f, g is clear from the context, we will denote
σ′A = ξ′(σA) and σO = ξ(σ′O). We obtain thus two runs: ρ[L, σA, ξ(σ′O)] and
ρ[L′, ξ′(σA), σ′O].

We can now say that σA and ξ′(σA) are “the same” strategy up to the choice
correspondence (f, g) (and similarly for ξ(σ′O) and σ′O).

The definitions proposed above allow us to give a generalised definition of
contextual preorder. Recall that in the in the original definition, S ≤ S′ if,
whatever observations we can make with C[S], it is possible with C[S′]. Here
we don’t really care for which term we choose the context as it must be the the
same for both. The way we defined the choice correspondence forces us to define
the strategies on specific systems, and then “transfer it” to the other one. This
informal discussion leads us to this formal definition of Morris preorder up to
choice correspondence:

Definition 6. Let L = (S, s0, L, T) and L′ = (S′, s′0, L
′, T) be two LTSs. Con-

sider a choice correspondence (f, g) for L and L′. We say that L ≤f,g L′ if for
all strategy σA for agent in L and all strategy σ′O for opponent in L′ :

O(ρ[L, σA, ξ(σ′O)]) ≤ O(ρ[L′, ξ′(σA), σ′O]).

5 The adequacy theorems

We can now state the main theorem of the paper.

Theorem 3. . Let L = (S, s0, L, T) and L′ = (S′, s′0, L
′, T) be two LTSs. The

following are equivalent:

1. L ⊂AS L′;
2. there exists a choice correspondence (f, g) such that L ≤f,g L′.

To prove this theorem we utilize the AS game defined in Subsection 3.1.

Lemma 1. Duplicator has a winning strategy in G if and only if there is a choice
correspondence (f, g) for which L ≤f,g L′.

For the one direction, we build a choice correspondence (f, g) directly from
the definition of a strategy σD for Duplicator. We then show that if σD is winning,
L ≤f,g L′. For the other direction, from a choice correspondence (f, g) we build
a strategy σD for Duplicator, which is winning if L ≤f,g L′. See the appendix
for the details.

In general, the strategy we build for Duplicator is aware of all the history,
but Theorem 2 requires a memoryless strategy. Therefore, to conclude the Proof
of Theorem 3, we need to observe that, G being a safety game and hence a
particular type of parity game, it is memoryless determined [6, 10], that is, if
Duplicator has a winning strategy, then she has a memoryless winning strategy.

We are finally able to prove Theorem 1. It is a corollary of the following
proposition and of Theorem 3.

Proposition 2. Let L = (S, s0, L, T) and L′ = (S′, s′0, L
′, T). If there exists a

choice correspondence (f, g) for which L ≤f,g L′, then L ≤ L′.

Proof. Consider a choice correspondence (f, g). Given two strategies σA for L
and σ′O for L′, we are able to build two strategies σ′A for L′ and σO for L. If
L ≤f,g L′ then

O(ρ[L, σA, σ′O]) ≤ O(ρ[L′, σA, σ′O]).

Summarizing, the following formula is true:

∀σA∀σ′O∃σ′A∃σO.O(ρ[L, σA, σO]) ≤ O(ρ[L′, σ′A, σ′O]).

Note, however, that the way we constructed σ′A depends only on the choice
correspondence (f, g) and on the definition of σA. We can therefore swap the
quantifiers:

∀σA∃σ′A∀σ′O∃σO.O(ρ[L, σA, σO]) ≤ O(ρ[L′, σ′A, σ′O]).

In a sense, the choice correspondence acts as a form of local skolemization of
the existential quantifiers.

Fix now an upward-closed specification ϕ and assume that O(ρ[L, σA, σO]) ≤
O(ρ[L′, σ′A, σ′O]). Then ρ[L, σA, σO] � ϕ =⇒ ρ[L′, σ′A, σ′O] � ϕ.

Therefore if there exists a choice correspondence (f, g) for which L ≤f,g L′,
we can conclude that for all upward-closed specification ϕ:

∀σA∃σ′A∀σ′O∃σO. (ρ[L, σA, σO] � ϕ =⇒ ρ[L′, σ′A, σ′O] � ϕ) .

By pushing the quantifiers inward in a suitable way, we obtain that for all
upward-closed specification ϕ:

(∃σA∀σO.ρ[L, σA, σO] � ϕ) =⇒ (∃σ′A∀σ′O.ρ[L′, σ′A, σ′O] � ϕ)

which is the definition of enforcing preorder.

Proposition 3. The inverse of Theorem 1 does not hold.

Figure 2, inspired from [14], provides the counterexample for the inverse of
Theorem 1. The partial order of observations is P = {⊥, p, q, r} where ≤ is
the identity relation. In both LTS, the Agent has two strategies, one enforcing
ϕ1 = {⊥pω,⊥qω} and the other enforcing ϕ2 = {⊥pω,⊥rω}. Hence L1 ≤ L2

and L2 ≤ L1. On the other hand, clearly L1 6⊂AS L2 and L2 6⊂AS L1.

6 Complements

6.1 The quest for symmetric relations

We have studied in detail three preorders. What can we say about the symmetric
version of them? The symmetric version of the enforcing preorder, that we call
enforcing equivalence, is easily defined: We say that L is enforcing equivalent to
L′ if for any specification ϕ, Agent can enforce ϕ on L if and only if Agent can
enforce ϕ on L′.

⊥

s1

⊥s2 ⊥ s3

pi

s4

qi

s5

r i

s6

L1

a a

b c d

⊥
t1

⊥t2 ⊥ t3

pi

t4

q i

t5

pi

t6

r i

t7

L2

a b

c c d d

Fig. 2. Two LTS which are enforcing equivalent but for which there exists no alternat-
ing simulation in either direction.

The notion of alternating bisimulation is also easily defined as a symmetric
alternating simulation. The largest alternating bisimulation is called alternat-
ing bisimilarity. As for Park and Milner bisimulation, alternating bisimilarity is
stronger than the the equivalence generated by alternating similarity, as we show
in the following example.

Example 2. s1

l~~ l !!
s2

h
~~

k

s3

h
��

sx sy s′x

t1

l

��
t2

h��

k

��
tx ty

In this model, the observation in states sx, s
′
x, tx is x, and the observa-

tion in sy, ty is y. The reader can verify that {(s1, t1), (s2, t2), (sx, tx), (sy, ty)}
and {(t1, s1), (t2, s2), (t2, s3), (tx, sx), (ty, sy), (tx, s

′
x)} are both alternating sim-

ulations, but there is no alternating bisimulation containing (s1, t1).

It remains open to find a proper definition of Morris equivalence, as we have
not yet pinned down the right symmetric generalisation of the notion of choice
correspondence. Asking the functions (f, g) to be bijective seems to us too strong
a requirement. However just asking the existence of two unrelated choice corre-
spondences would correspond to having two simulations in both direction, and
we have just shown that this is weaker than bisimilarity.

This quest for Morris equivalence should also be guided by the bisimulation
game, which is the symmetric version of the simulation game in Section 3.2,
and then stating an appropriate adaptation of Theorem 2 and, consequently,
Theorem 3. More specifically, in the bisimulation game, in each position (s, s′) ∈

S × S′, Spoiler first chooses the side where she challenges the simulation (that
is, challenges Duplicator with either proving that s ⊂AS s

′ or s′ ⊂AS s), and then
proceeds by proposing Duplicator with a label in the chosen transition system.
We call this extra intermediary step a side-challenging step. The symmetry in
the definition of the alternating bisimulation could be solved in the bisimulation
game by requiring that Duplicator have imperfect information, in the sense that
she “forgets” each Spoiler’s side-challenging step. But two-player games with
imperfect information are not determined in general, hence more study is needed
to properly adapt Theorem 2.

6.2 Taking labels seriously

To get closer to the world of Park and Milner we propose a definition of simula-
tion that takes into account the identity of the labels.

Definition 7. A Name-aware alternating simulation (NAAS) on a labelled tran-
sition system, is a binary relation R such that whenever s R t, O(s) ≤ O(t) and:

for all labels l, if s
l−→, then t

l−→, and for all t′ s.t. t
l−→ t′, there exists s′

s.t. s
l−→ s′ and s′ R t′.

The largest NAAS, ⊂NA, is called name-aware similarity. If there is a NAAS
s R t, we say s ⊂NA t.

In the following examples we suppose all the states have the same observation.

Example 3. s1
l

l

~~
s2

h

��

s3

s4

t1
l

��

l

��
t2

h

��

t4

h��
t5

{(s1, t1), (s2, t4), (s4, t5)} is a NAAS

Example 4. s1

l

l

~~

k

((
s2

h

��

s3 s5

s4

t1
l

��l��
t2

h

��

t4

h��
t5

There is no NAAS in either direction.

The example above shows that the NAAS is different from the standard
notion of similarity by Park and Milner. Indeed there is a standard simulation
between t1 and s1: the fact that there is a label more from s1 is irrelevant.

While the two notions of simulation differ, it can be shown that the symmetric
notions coincide.

Definition 8. A Name-aware alternating bisimulation (NAAB) on a labelled
transition system, is a binary relation R such that both R and R−1 are NAAS.
The largest NAAB is called name-aware bisimilarity.

A Park and Milner simulation (PMS) on a labelled transition system, is a
binary relation R such that whenever s R t,

– O(s) ≤ O(t)

– for all labels l, and for all states s′ if s
l−→ s′, then there exists t′ such that

t
l−→ t′., there exists s′ s.t. s′ R t′.

A Park and Milner bisimulation (PMB) on a labelled transition system, is a
binary relation R such that both R and R−1 are PMS.

Theorem 4. A binary relation R ⊆ S × T is a Name-aware alternating bisim-
ulation if and only if it is a Park and Milner bisimulation.

Proof. The proof is done in both directions by checking that a NAAB satisfies
the conditions for being a PMB, and that a PMB satisfies the conditions for
being a NAAB.

7 Conclusions and future work

We have generalised the syntactic notion of observational preorder to a setting
without syntax, and we also have presented some notions originally defined on
alternating transition systems, using standard labelled transition systems. This
leads us to a new definition of a coinductive relation, that happens to characterise
the Morris preorder.

Alternating bisimulations were used to prove (manually) bisimulation reduc-
tions for multi-agent systems [5], which were specified using the ISPL multi-agent
modelling language used in the MCMAS tool for model-checking. We plan to
provide LTS semantics to such multi-agent modelling languages together with
algorithmic tools for deciding or building alternating bisimulation reductions.
This will lead us to an extension of this work to the case of alternating transi-
tion systems (or concurrent game structures) with imperfect information, which
requires a notion of observation-based strategy.

A notion of choice correspondence that takes into account the identity of the
labels can be easily defined. We think that the corresponding notion of Morris
preorder coincides with name-aware similarity.

Acknowledgments

We thank the anonymous reviewers for their remarks, suggestions and refer-
ences, among which the papers [14, 15] provided us with the inspiration for the
counterexample in Proposition 3.

References

1. Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods Syst.
Des., 15(1):7–48, 1999.

2. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-
poral logic. J. ACM, 49(5):672–713, 2002.

3. Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alter-
nating refinement relations. In Davide Sangiorgi and Robert de Simone, editors,
CONCUR ’98: Concurrency Theory, 9th International Conference, Nice, France,
September 8-11, 1998, Proceedings, volume 1466 of Lecture Notes in Computer
Science, pages 163–178. Springer, 1998.

4. Katie Atkinson and Trevor J. M. Bench-Capon. Practical reasoning as presumptive
argumentation using action based alternating transition systems. Artif. Intell.,
171(10-15):855–874, 2007.

5. Francesco Belardinelli, Rodica Condurache, Catalin Dima, Wojciech Jamroga, and
Andrew V. Jones. Bisimulations for verifying strategic abilities with an application
to threeballot. In Kate Larson, Michael Winikoff, Sanmay Das, and Edmund H.
Durfee, editors, Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pages
1286–1295. ACM, 2017.

6. E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determi-
nacy (extended abstract). In 32nd Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer
Society, 1991.

7. Julian Gutierrez, Paul Harrenstein, Giuseppe Perelli, and Michael J. Wooldridge.
Nash equilibrium and bisimulation invariance. Log. Methods Comput. Sci., 15(3),
2019.

8. Jr. James Hiram Morris. Lambda-Calculus Models of Programming Languages.
PhD thesis, M.I.T., 1968.

9. Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: an open-source
model checker for the verification of multi-agent systems. Int. J. Softw. Tools
Technol. Transf., 19(1):9–30, 2017.

10. René Mazala. Infinite games. In Erich Grädel, Wolfgang Thomas, and Thomas
Wilke, editors, Automata, Logics, and Infinite Games: A Guide to Current Re-
search [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture
Notes in Computer Science, pages 23–42. Springer, 2001.

11. Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980.

12. Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge
University Press, 1999.

13. Mogens Nielsen and Glynn Winskel. Models for Concurrency, pages 1–148. Oxford
University Press, 1995. Also published in BRICS Research Series as RS-94-12.

14. Johan van Benthem. Extensive games as process models. J. Log. Lang. Inf.,
11(3):289–313, 2002.

15. Johan van Benthem, Nick Bezhanishvili, and Sebastian Enqvist. A new game
equivalence, its logic and algebra. J. Philos. Log., 48(4):649–684, 2019.

16. Wiebe van der Hoek, Mark Roberts, and Michael J. Wooldridge. Social laws in
alternating time: effectiveness, feasibility, and synthesis. Synth., 156(1):1–19, 2007.

