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SMALL TWO SPHERES IN POSITIVE SCALAR CURVATURE, USING MINIMAL HYPERSURFACES

In this survey, we review some results on the area of topologically non trivial two spheres in manifolds with positive scalar curvature of dimension at most 7. The main tool to get those results is the use of stable minimal hypersurfaces, and we give a short exposition of the usual ways to take advantage of these in the presence of positive scalar: second variation, conformal method, Fischer-Colbrie-Schoen symmetrization and µ-bubbles. The last sections lists some open problems in the area.

Introduction

The study of positively curved Riemannian manifolds saw great developments in the second half of the 20th century. In the case of positive sectional and Ricci curvature, the quantitative theorems of comparison geometry such as Toponogov's theorem, Myers theorem or the Bishop-Gromov inequality, were pivotal tools in this development, see for instance the classic ( [START_REF] Cheeger | Comparison theorems in Riemannian geometry[END_REF]).

At the same time, the study of manifolds with positive scalar curvature took a more qualitative approach based on one side on the properties of the Dirac operator on spin manifolds ( [START_REF] Lichnerowicz | Spineurs harmoniques[END_REF], [START_REF] Gromov | Positive scalar curvature and the Dirac operator on complete Riemannian manifolds[END_REF]) and on the other side on the study of stable minimal hypersurfaces ( [START_REF] Schoen | On the structure of manifolds with positive scalar curvature[END_REF]).

Most of the results were topological in nature, the most celebrated one being the impossibility to endow the torus T n with a positive scalar curvature metric. This theorem was proved in dimension at most seven by Schoen and Yau in the late 80's using minimal hypersurfaces and by Gromov and Lawson in any dimension soon afterwards using Dirac operators methods.

In these same papers, it was noted that one can build new positive scalar curvature manifolds by taking connected sums (or higher codimension surgeries). This explains a bit why finding metric invariants which can be controlled by scalar curvature is difficult: the sought for invariants should be insensitive to connected sums with long or big manifolds.

The goal of this survey is to show how in certain contexts positive scalar curvature can be used to control the area of the smallest topologically non-trivial 2-spheres in a positive scalar curvature manifold. We illustrate in particular how hypersurfaces, which are codimension 1, can be used to get information about higher codimension submanifolds.

Let g be a smooth metric on S 2 . The classical Gauss-Bonnet formula yields ˆS2 R g dσ g = 8π,

where R g and dσ g are scalar curvature and area element of (S 2 , g) respectively. As a corollary, (S 2 , g) has area no greater than 4π if the scalar curvature R g is no less than 2. Despite its simplicity, this fact suggests the following principle: Large positive scalar curvature favors the existence of 2-spheres with small area, as we will see here in more general situations. When looking for small 2-spheres in a given manifold, it is a good idea to focus on a particular class of 2-spheres and look for the infimum of the area functional restricted to this class. For a Riemannian manifold (M, g) with non-trivial second homotopy group, we take the following homotopical 2-systole sys 2 (M, g) = inf area(S 2 , i * g) i : S 2 → M smooth such that [i] homotopically nontrivial raised up by Bray, Brendle and Neves in their work [START_REF] Bray | Rigidity of area-minimizing two-spheres in three-manifolds[END_REF], where they proved Theorem 1.1. If (M, g) is a closed Riemannian 3-manifold with non-trivial second homotopy group whose scalar curvature is no less than 2, then it holds sys 2 (M, g) ≤ 4π. Moreover, the equality holds if and only if the universal covering of (M, g) is isometric to the product manifold (S 2 × R, g round + dt 2 ), where g round denotes the standard round metric on 2-sphere.

In general, no similar result can be expected for closed Riemannian manifolds with dimension greater than 3. For n ≥ 5, one can simply take S n-2 (r 1 ) × S 2 (r 2 ) with suitably chosen radius r 1 and r 2 as counterexamples. As a consequence, more requirements are necessary to guarantee the existence of small two spheres from large positive scalar curvature in dimensions greater than 3. In this direction, the second named author investigated the class of closed n-manifolds that admits a smooth map to S 2 × T n-2 with non-zero degree. In dimension n no greater than 7, he showed the following result in [START_REF] Zhu | Rigidity of area-minimizing 2-spheres in n-manifolds with positive scalar curvature[END_REF].

Theorem 1.2. Let (M, g) be a closed oriented Riemannian n-manifold with scalar curvature R g no less than 2, which also admits a smooth map f : M → S 2 × T n-2 with non-zero degree. Then M has non-trivial second homotopy group and it holds sys 2 (M, g) ≤ 4π. Furthermore, the equality holds if and only if the universal covering of (M, g) is isometric to the product manifold (S 2 × R n-2 , g round + g euc ), where g round is the standard round metric on S 2 and g euc denotes the standard Euclidean metric on R n-2 .

For compact manifolds with positive scalar curvature, the only other 2-systole estimate has been proved by the second author in [START_REF] Richard | On the 2-systole of stretched enough positive scalar curvature metrics on S 2 × S 2 . SIGMA[END_REF] in the case of positive scalar curvature metrics on S 2 × S 2 wtih an additional "stretching" assumption. Namely Theorem 1.3. Let g be a smooth metric on S 2 × S 2 with R g no less than 4 such that the left stretch

s = sup S1,S2∈S l dist g (S 1 , S 2 ) > √ 3π 2 ,
where S l denotes the set of all embedded surfaces representing the homology class

[S 2 × { * }]. Then it holds sys 2 (S 2 × S 2 , g) ≤ 8πs 2 4s 2 -3π 2 .
As for complete open Riemannian manifolds with positive scalar curvature, the second named author also showed some optimal 2-systole estimates in [START_REF] Zhu | Rigidity results for complete manifolds with nonnegative scalar curvature[END_REF]. First he made a generalization to Theorem 1.1 as following Theorem 1.4. Let (M, g) be a complete open Riemannian manifold with nontrivial second homotopy group. If the scalar curvature of (M, g) is no less than 2, then it holds sys 2 (M, g) ≤ 4π, where the equality holds if and only if the universal covering of (M, g) is isometric to the product manifold (S 2 × R, g round + dt 2 ).

In the case where the dimension n is no greater than 7, he proved Theorem 1.5. Let (M, g) be a complete, oriented, open Riemannian n-manifold with scalar curvature R g no less than 2 for n ≤ 7, which admits a smooth proper map f : M → S 2 × T n-3 × R. Then M has non-trivial second homotopy group and it holds sys 2 (M, g) ≤ 4π, where the equality holds if and only if the universal covering of (M,g) is isometric to the product manifold (S 2 × R n-2 , g round + g euc ).

The rest of this survey is organised as follows: in section 2 we give a brief overview of how stable minimal surfaces in 3-manifolds have been used to get topological and quantitative information from a positive scalar curvature assumption. In section 3 we sketch how the conformal method was used to get topological information on positive scalar curvature manifolds in dimension 4 to 7 and why it failed to prove quantitative statements. In section 4 we introduce the Fischer-Colbrie-Schoen symmetrization process and show how it implies Theorem 1.2. Section 5 deals with applications of Gromov's µ-bubble to these kinds of questions. Theorems 1.3, 1.4 and 1.5 are presented there in more details. The final section gathers open questions in this subject.

2. Stable hypersurfaces and stable 2-spheres in 3-manifolds 2.1. Variation formulas, and the Schoen-Yau trick. Let (M n , g) be a complete Riemannian manifold of dimension at most seven, Σ n-1 ⊂ M n be a two-sided minimal hypersurface, and let ν be a unit normal field along Σ. Consider a smooth family of hypersurfaces t → Σ t such that:

• Σ 0 = Σ. • d dt | t=0 Σ t = f ν for some smooth function f : Σ → R.
In this setting, the second variation of the t → area g Σ t is given by :

d 2 dt 2 |t=0 area(Σ t ) = ˆΣ |∇f | 2 -| A | 2 + Ric M (ν, ν) f 2 dσ
where A is the second fundamental form of Σ.

Definition 2.1. Σ is said to be stable if for all f ∈ C ∞ (Σ) : ˆΣ |∇f | 2 -| A | 2 + Ric M (ν, ν) f 2 dσ ≥ 0
One way to get a stable hypersurface is when Σ is built by looking for a minimizer of the area functional in some non trivial homology class. Federer's geometric measure theory ensures the existence of a minimizing rectifiable current if M is compact, while Almgren's regularity theory gives that this currents comes from a smooth hypersurface if M has dimension at most 7. (See for instance [START_REF] Morgan | Geometric measure theory. A beginner's guide[END_REF] and the references therein.)

At first glance, it is unclear how stable minimal hypersurfaces can be of any use in the study of Riemannian manifolds with positive scalar curvature. The crucial observation was made by Schoen and Yau in the late seventies ([SY79]):

Lemma 2.2. If Σ ⊂ M is minimal,then : 2 Ric M (ν, ν) = R M -R Σ -| A | 2
Proof. The proof is obtained by tracing the Gauss equations Rm Σ = Rm M + A ∧ A twice.

□

Hence the stability condition can be restated as follows: if Σ is a two-sided stable minimal hypersurface then for any function f : Σ → R we have :

ˆΣ |∇f | 2 -1 2 R M -R Σ + | A | 2 f 2 dσ ≥ 0.

2.2.

No positive scalar curvature metric on T 3 . In dimension 3, the second variation formula shows that stable minimal surfaces must be spheres:

Proposition 2.3. Let (M 3 , g) be an orientable 3-manifold with R g > 0 and let Σ 2 ⊂ M 3 be a stable two-sided minimal surface, then Σ 2 is diffeomorphic to S 2 .

Proof. We know that if Σ is stable and 2-sided then

ˆΣ |∇f | 2 -1 2 R M -R Σ + | A | 2 f 2 dσ ≥ 0 for any function f : Σ → R.
Plugging the constant function equal to 1 in this inequality, we get :

ˆΣ R Σ dσ ≥ ˆΣ R M + | A | 2 dσ > 0.
Since the scalar curvature in dimension 2 is twice the Gauss curvature, this shows using Gauss-Bonnet that χ(Σ 2 ) > 0. Hence, since Σ 2 is orientable it is diffeomorphic to S 2 . □ Using this simple observation, Schoen and Yau showed the Geroch conjecture in dimension 3 [SY78]:

Theorem 2.4. T 3 has no metric with positive scalar curvature.

Proof. Using the proposition above, it is enough to build a stable orientable minimal surface in T 3 which is not a sphere.

One way to do it is to consider X the homology class of T 2 × { * } ⊂ T 3 . Using geometric measure theory there is a stable minimal surface Σ 2 in X .

To see that Σ 2 is not a sphere, consider the projection π : T 3 → T 2 × { * }, and let α 1 and α 2 be the two standard generators of the de Rahm cohomology group H 1 (T 2 ). Since Σ and T 2 ×{ * } are homologous: ´Σ2 π * (α 1 ∧α 2 ) = ´T2 ×{ * } α 1 ∧α 2 = 1, which implies that π : Σ 2 → T 2 × { * } has non zero degree and thus Σ 2 is not a sphere. □ 2.3. Bray-Brendle-Neves result on small spheres in p.s.c 3-manifolds. Surprisingly, it took thirty years for geometers to realize that the second variation not only ruled out positive scalar curvature metrics on T 3 but also gave some quantitative information on positive scalar curvature metrics on 3-manifolds. This was proved by Bray, Brendle and Neves:

Theorem 2.5. Let (M 3 , g) be a compact 3-manifold with R g ≥ 2 and π 2 (M 3 ) ̸ = {0}. Then sys 2 (M, g) ≤ 4π, morever if equality is achieved then the universal cover of (M 3 , g) is isometric S 2 × R with the product metric of constant scalar curvature 2.

Proof. We will only prove the inequality in this section. For the rigidity part, see section 4.2. Let Σ 2 be a minimizer of the area among all non contractible 2-spheres in M 3 . Such a minimzer can be found thanks to results by Meeks and Yau [START_REF] William | Topology of three dimensional manifolds and the embedding problems in minimal surface theory[END_REF]). We now write the stability inequality :

ˆΣ R Σ dσ ≥ ˆΣ R M + | A | 2 dσ.
By the Gauss-Bonnet formula, we have that ´Σ R Σ dσ = 8π. Hence, since R M ≥ 2, we get:

2 area Σ ≤ ˆΣ R M ≤ ˆΣ R Σ dσ = 8π
and area Σ ≤ 4π. □ 3. Higher dimensions: the conformal method and its failure to prove quantitative results

In this section we will quickly review the progress made in the use of hypersurfaces in the study of positive scalar curvature manifold of dimension between 4 and 7, and expalin why it cannot be used to get quantitative informations.

Schoen and Yau proved in [SY79] :

Theorem 3.1. Let (M n , g) be a manifold such that:

• n ≤ 7.

• There exsits a non-zero degree map M n → T n . then (M n , g) admits non metric with positive scalar curvature.

This in particular implies the Geroch conjecture in dimension at most 7.

First part of the proof. The proof goes by induction on n. The cases n = 2 and n = 3 are handled by the previous section.

The proof of the induction step starts as in section 2.2. Assume M n+1 satisfies the assumptions of the theorem and has positive scalar curvature. We will show that this contradicts the theorem in dimension n.

Consider the projection π : M n+1 → T n+1 → T 1 of M n onto the last factor of T n+1 . Let X be the homology class of generic fiber of π. Then for any smooth hypersurface Σ ∈ X the projection Σ n ⊂ M n+1 → T n+1 → T n on the first n factors of T n+1 has non zero degree. Let us consider a minimizer Σ n of the area in X which will be smooth since n + 1 ≤ 7. If we can prove that Σ n admits a positive scalar curvature metric we're done.

Arguing as in dimension 3 by plugging the constant function in the second variation formula gives nothing more than ´Σ R Σ dσ > 0: the scalar curvature is positive in average. This is not enough! □

To take advantage of the full second variation (and not just variations along the unit normal), we need to make a small detour in conformal land, see for instance [START_REF] Arthur | Einstein manifolds[END_REF]. The conformal Laplacian L Σ on Σ is the operator on functions given by:

L Σ f = -4 n-1 n-2 ∆ Σ f + R Σ f.
It is tied to conformal geometry by the fact that the scalar curvature of the metric

f 4 n-2 g Σ is given by f n+2 n-2 L Σ f .
As a consequence of this formula, if L Σ is positive we can can use the first eigenfunction f 1 of L Σ (which will be positive) as a conformal factor to build a metric f

4 n-2 1 g Σ whose scalar curvature is λ 1 f 2n n-2 1
where λ 1 > 0 is the first eigenvalue of L Σ , which is positive.

End of the proof. Now if Σ is a stable minimal hypersurface in manifold with positive curvature, we have that for any f : M → R:

ˆΣ |∇f | 2 + 1 2 R Σ f 2 dσ > 0
Hence as operators we have 1 2 R Σ > ∆ Σ . Thus we can compute:

L Σ = -4 n-1 n-2 ∆ Σ + R Σ > -4 n-1 n-2 + 2 ∆ Σ = - 2n n -2 ∆ Σ
which shows that the conformal Laplaction L Σ is positive. Hence Σ admits a metric with positive scalar curvature and we have completed the induction step. □

If we want to use this method to get quantitative results, we first assume that R M ≥ σ > 0. This will give that the conformal laplacian satisfies L Σ ≥ σ and thus its first eigenvalue λ 1 satisfies λ 1 ≥ σ.

Unfortunately, this only gives that the scalar curvature of Σ with the metric

f 4 n-2 1 g Σ is bigger than σf 2n n-2 1
. Since f 1 is only defined up to a positive factor this lower bound cannot be used.

Moreover, if we would like to prove a metric inequality with this dimension descent method, we would need to relate metric invariants of the conformally deformed (Σ, f 4 n-2 1 g Σ ) to those of (Σ, g Σ ) in order to (hopefully) learn something about the metric invariants of (M, g). This seems (at best) difficult.

4. Quantitative implications of uniformly positive scalar curvature 4.1. Fischer-Colbrie-Schoen symmetrization. In the last section we saw how the conformal method pushed the use of minimal hypersurfaces beyond dimension 3 to give topological information on positive scalar curvature manifolds and how it failed to give quantitative information.

Fischer-Colbrie and Schoen found another method to deal with stable minimal hypersurfaces in [START_REF] Fischer-Colbrie | The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature[END_REF]. Their original goal was to embed a complete Riemannian plane (P, g) associated with a smooth positive function u on P such that ∆ g u -K g u = 0 inside a complete scalar-flat Riemannian 3-manifold as a stable minimal surface. Starting with such a function u, they constructed a new metric g = g + u 2 dt 2 on P × T 1 and a direct computation shows

R g = R g - 2∆ g u u = 0.
The above construction is now called Fischer-Colbrie-Schoen symmetrization.

As illustration of this method in higher dimension, one can given another proof for the Geroch conjecture using Fischer-Colbrie-Schoen symmetrization. To ensure smoothness of area minimizing hypersurfaces, we work in dimension at most 7. We start with an orientable closed Riemannian manifold (M n , g) with positive scalar curvature, which also admits a continuous map f : M → T n with non-zero degree map. From geometric measure theory we can find an area-minimizing minimal hypersurface Σ in M such that Σ also admits a continuous map f ′ : Σ → T n-1 . In particular, Σ is stable and the operator -

∆ g -1 2 R g -R Σ + | A | 2 is nonnegative.
Hence its first eigenfunction u is smooth, positive, and satisfies:

∆ Σ u + 1 2 R g -R Σ + |A| 2 u ≤ 0.
From Fischer-Colbrie-Schoen symmetrization, we are able to construct a new metric g = g + u 2 dt 2 on M = M × T 1 such that

R g = R Σ - 2∆ Σ u u ≥ R g + |A| 2 > 0.
Notice that we have constructed a new Riemannian manifold ( M , g) with positive scalar curvature admitting a continuous map f : M → T n with non-zero degree map. What's more, M becomes simpler than M since it is T 1 -symmetric. Not surprisingly, iterating this process, we will obtain a warped product metric

u 1 (t 1 ) 2 dt 2 1 + u 2 (t 1 ) 2 dt 2 2 + • • • + u n (t 1 ) 2 dt 2 n
on T n with positive scalar curvature after induction by Fischer-Colbrie symmetrization. Now the contradiction can be derived from a direct computation.

In a more intuitive way the difference between the Fischer-Colbrie symmetrization and the conformal method can be summarized in the following way:

• In the conformal method, we use the stability inequality for a minimal hypersurface Σ ⊂ M to conformally deform the induced metric on Σ to give it positive scalar curvature. • When using the Fischer-Colbrie symmetrization process, the instrinsic geometry the stable minimal hypersurface Σ ⊂ M is kept intact. Instead of using the stability inequality to build a deformation of Σ itself, we add an extra dimension T 1 and use the stability inequality to build a suitable stretching for this extra factor such that Σ × T 1 has the same lower bound on the scalar curvature as M did and enjoy an extra symmetry. The inductive use of Fischer-Colbrie-Schoen symmetrization is also called torical symmetrization by Gromov in [START_REF] Gromov | Metric inequalities with scalar curvature[END_REF], where he gave an upper bound for the distance between the two boundary components of T n-1 × [-1, 1] depending on a positive scalar curvature lower bound. In the following, we will show a homotopical 2-systole estimate for S 2 × T n with positive scalar curvature using Fischer-Colbrie-Schoen symmetrization, which can be thought of as the 2D analog of Gromov's result. 4.2. Small two spheres in p.s.c S 2 × T n . In this subsection, we are going to give a proof for Theorem 1.2 based on the Fischer-Colbrie-Schoen symmetrization mentioned in previous subsection. We choose to present the proof only in dimension 4, this improves the readability while still showing the core idea of the proof. So let us focus on the following result.

Theorem 4.1. Let (M, g) be a closed oriented Riemannian 4-manifold with scalar curvature R g no less than 2, which admits a smooth map f : M → S 2 × T 2 with non-zero degree. Then M has non-trivial second homotopy group and it holds sys 2 (M, g) ≤ 4π. Moreover, the equality holds if and only if the universal covering of (M, g) is isometric to the product manifold (S 2 × R 2 , g round + g euc ), where g round is the standard round metric on S 2 and g euc denotes the standard Euclidean metric on R 2 .

First we show the desired homotopical 2-systole inequality.

Proof of the 2-systole bound. Let (θ 1 , θ 2 ) be the standard coordinates on T 2 . Since f : M → S 2 × T 2 has non-zero degree, we see

f * ([M ] ⌢ f * (dθ 1 )) = f * ([M ]) ⌢ dθ 1 = (deg f ) • [S 2 × { * } × S 1 ].
In particular, [M ] ⌢ f * (dθ 1 ) is a non-trivial homology class in H 3 (M, Z). From geometric measure theory, there is a smooth embedded oriented minimal hypersurface Σ 1 with integer multiplicity homologous to [M ] ⌢ f * (dθ 1 ), which has the least area in its homology class. As a result, Σ 1 is a two-sided stable minimal hypersurface in M . From the second variation formula, there is a smooth positive function

u 1 on Σ 1 such that (4.1) -∆ 1 u 1 + (Ric g (ν 1 , ν 1 ) + |A 1 | 2 )u 1 = λ 1 u 1 ,
where ∆ 1 is the Laplace operator of Σ 1 with the induced metric g ′ 1 , ν 1 is a chosen unit normal vector field on Σ 1 , A 1 is the second fundamental form of Σ 1 with respect to ν 1 , and λ 1 is a non-negative constant. Following Fischer-Colbrie-Schoen symmetrization, we define M 1 = Σ 1 × T 1 and

g 1 = g ′ 1 + u 2 1 dt 2 1 .
It follows from a direct computation and the Gauss equation that

(4.2) R g1 = R g ′ 1 - 2∆ 1 u 1 u 1 = R g + |A 1 | 2 + 2λ 1 ≥ 2. Denote π 1 : S 2 × T 2 → S 2 × T 1 , (p, θ 1 , θ 2 ) → (p, θ 2
) to be the projection map and i 1 : Σ 1 → S 2 × T 2 to be the inclusion map. Naturally, the composed map f 1 = π 1 • f • i 1 gives a smooth map from Σ 1 to S 2 × S 1 with non-zero degree. As a consequence, M 1 admits a smooth map to S 2 × T 2 with non-zero degree in the form of (f 1 , id).

We are going to repeat above procedure. Notice that the homology class given by [

M 1 ] ⌢ f * 1 (dθ 2 ) is a non-trivial element in H 3 (M 1 , Z).
Again we can construct a smooth embedded oriented minimal hypersurface Σ 2 in M 1 with integer multiplicity homologous to [M 1 ] ⌢ f * 1 (dθ 2 ) such that it has the least area in its homology class. Since (M 1 , g 1 ) has T 1 -invariance, it is reasonable to expect that Σ 2 splits as Σ2 × T 1 . To see this, it suffices to show that the Killing field induced by the T 1isometry is tangent to Σ 2 . Otherwise, the Killing field will induce a non-zero Jacobi function on Σ 2 . The stability of Σ 2 then yields the positivity of the Jacobi function and the integral curve generated by the Killing field will have non-zero intersection number with Σ 2 . From our choice of the homology class [M 1 ] ⌢ f * 1 (dθ 2 ), the intersection should be zero and we obtain a contradiction. From the splitting of Σ 2 we obtain a smooth embedded surface Σ2 in Σ 1 with integer multiplicity. As a result, Σ2 is an embedded surface in M representing the homology class

[M ] ⌢ (f * dθ 1 ⌣ f * dθ 2 ). Denote π 2 : S 2 × T 2 → S 2 and i 2 : Σ2 → M.
Then the map π 2 • f • i 2 is a smooth map from Σ2 to S 2 with non-zero degree.

Now we derive more useful information from the stability of Σ 2 . As before, the stability inequality actually yields a positive function u 2 on Σ 2 such that

(4.3) -∆ 2 u 2 + (Ric g1 (ν 1 , ν 1 ) + |A 2 | 2 )u 2 = λ 1 u 2 , λ 2 ≥ 0.
Given the T 1 -invariance of M 1 and Σ 2 , the Laplace operator ∆ 2 and the curvature quantities above are all T 1 -invariant and so is the function u 2 . In the following, we also view u 2 as a function on Σ2 denoted by û2 . According to the Fischer-Colbrie symmetrization once again, we define

M 2 = Σ 2 ×T 1 = Σ2 ×T 2 and g 2 = g ′ 2 +u 2 2 dt 2 2 = ĝ2 + û2 1 dt 2 1 + û2 2 dt 2 2 , û1 := u 1 | Σ2
, where g ′ 2 is the induced metric of Σ 2 from (M 1 , g 1 ) and ĝ2 is the induced metric of Σ2 in (M, g). A straightforward calculation shows

(4.4) R g2 = R g ′ 2 - ∆ 2 u 2 u 2 = R g1 + |A 2 | 2 + 2λ 2 ≥ 2 and (4.5) R g2 = R ĝ2 -2 ∆û 1 û1 + ∆û 2 û2 -2ĝ 2 ( ∇ log û1 , ∇ log û2 ),
where ∆ and ∇ are Laplace and gradient operators of ( Σ2 , ĝ2 ). From (4.4) we know that Σ2 consists of spherical components. By integrating (4.5) on each component Σ′ 2 of ( Σ2 , ĝ2 ), we see

2 area( Σ′ 2 , ĝ2 ) ≤ ˆΣ ′ 2 R g2 dσ ĝ2 = 4πχ( Σ′ 2 ) - ˆΣ ′ 2 | ∇ log û1 | 2 + | ∇ log û1 | 2 dσ ĝ2 - ˆΣ ′ 2 | ∇(log û1 + log û2 )| 2 dσ ĝ2 ≤ 8π. (4.6) 
This yields that each component of ( Σ2 , ĝ2 ) has area no greater than 4π. Recall that the map f 2 : Σ2 → S 2 has non-zero degree, then at least one component of Σ2 is homotopical non-trivial in (M, g) and so we have sys 2 (M, g) ≤ 4π. □

The rigidity will come from a more careful analysis. Before we continue the proof, let us keep in mind the following diagram that illustrates our construction above.

( Σ2 , ĝ2 ) i / / ×T 1 (Σ 1 , g ′ 1 ) i / / ×T 1 (M, g) (Σ 2 , g ′ 2 ) i / / ×T 1 (M 1 , g 1 ) (M 2 , g 2 )
Proof of the equality case. Take a component Σ′ 2 of Σ2 that represents a non-trivial homology class. If we have sys 2 (M, g) = 4π, then area( Σ′ 2 , ĝ2 ) = 4π. From (4.6) it follows that û1 and û2 are positive constant functions on Σ′ 2 and then ( Σ′ 2 , ĝ2 ) is isometric to the standard round sphere. Combined with (4.3) and (4.4), the component Σ ′ 2 = Σ′ 2 × S 1 of Σ is totally geodesic and the normal Ricci curvature vanishes identically on Σ ′ 2 . Notice that the Jacobi operator of Σ ′ 2 reduces to the Laplace operator. Now we borrow a nice idea from [START_REF] Bray | Rigidity of area-minimizing two-spheres in three-manifolds[END_REF] raised up by Bray, Brendle and Neves. It turns out that we can construct a foliation {Σ ′ 2,t } -ϵ<t<ϵ with Σ ′ 2,0 = Σ ′ 2 consisting of hypersurfaces with constant mean curvature (abbreviated by CMC) from the implicit function theorem. If we can show that hypersurfaces {Σ ′ 2,t } is area-minimizing in its homology class, then the same analysis as above yields that each Σ ′ 2,t is totally geodesic and so (M 1 , g 1 ) locally as the product manifold Σ ′ 2 × (-ϵ, ϵ). This further implies a local isometry from Σ ′ 2 × R to (M 1 , g 1 ) after an open and closed argument.

So let us focus on the area-minimizing property of Σ ′ 2,t . In fact, the underlying philosophy is that stable non-zero CMC hypersurfaces Σ possess more scalar curvature than stable minimal hypersurfaces since the stability now yields a positive function u satisfying

-∆u + (Ric(ν, ν) + |A| 2 )u = λu,
where the term |A| 2 provides more positivity due to the non-zero mean curvature. Since sys 2 (M, g) is not smaller than 4π, it forbids the existence of a stable nonzero CMC hypersurface Σ homologous to Σ ′ 2 that splits as Σ ′ × T 1 due to our previous argument. This yields that the mean curvature of Σ ′ 2,t with respect to ∂ t is non-positive when t ≥ 0 and it is non-negative when t ≤ 0. If this is not the case, say the mean curvature of Σ ′ 2,t is a positive constant c for some positive t, then Σ ′ 2 and Σ ′ 2,t can serve as barriers and we can minimize the Brane functional B(Ω) = area(∂Ω) -c 2 vol(Ω) to obtain a stable CMC hypersurface Σ homologous to Σ ′ 2 splitting as Σ ′ × T 1 , which leads to a contradiction. When the mean curvature of Σ ′ 2,t behaves as described above, then the area of Σ ′ 2,t is always no greater than Σ ′ 2 and so it holds area(Σ ′ 2,t ) ≡ area(Σ ′ 2 ). As a result, Σ ′ 2,t is area-minimizing in its homology class as Σ ′ 2 . Now, there is a local isometry Φ 2 : Σ ′ 2 × R → M 1 . In particular, this yields that the function u 1 is a positive constant on Σ 1 and there is a local isometry ϕ 2 : Σ′ 2 × R → Σ 1 . Also, we see that the scalar curvature R g1 is identical to 2. Combined with (4.1) and (4.2), this implies that Σ 1 is totally geodesic in (M, g) and the normal Ricci curvature vanishes along Σ 1 . Repeating above analysis, we obtain a local isometry Φ 1 : Σ 1 × R → M . The composition of ϕ 2 and Φ 1 gives a local isometry from S 2 × R 2 to (M, g), which yields the universal covering of (M, g) is the standard product manifold S 2 × R 2 . □

We emphasize that the above argument is still valid for higher dimensions no greater than seven without any change.

Further quantitative implications using µ-bubbles

In previous sections, we have seen various applications of minimal hypersurface in problems involving scalar curvature. However, one should not limit his sight only to minimal hypersurfaces. In fact, there is a broader class of hypersurfaces called µ-bubbles, whose variation theory is also powerful. They were introduced by Gromov in his IHES lectures [START_REF] Gromov | Four lectures on scalar curvature[END_REF].

Let (M, g) be a Riemannian manifold and µ be a Borel measure on M . A hypersurface Σ bounding a region Ω is called a µ-bubble if Ω is a critical point of the functional B(Ω) = area(∂Ω) -µ(Ω).

Usually, we take the Borel measure µ to be the one associated with a smooth function h on M . Namely,

µ(Ω) = ˆΩ h d vol g .
In this case, a µ-bubble is just an h-boundary (i.e. a boundary with mean curvature h with respect to the unit outer normal). The extra freedom given by the choice of µ can be used to ensure the existence of stable µ-bubbles in situations where a stable minimal hypersurface would be hard to find or control.

In the following, we discuss several applications of µ-bubbles to the estimation of the homotopical 2-systole of manifolds with positive scalar curvature.

5.1. The width of p.s.c metrics on [-1, 1] × T n-1 . Assume for a minute we don't know that T n doesn't admit a metric with positive scalar curvature and try to build a metric with scalar curvature n(n -1) on T n in the most naive way: consider a warped product g = dt 2 + f (t) 2 dx 2 on (-ε, ε) × T n-1 , where dx 2 is a flat metric on T n-1 . A routine computation shows that

R g = -2(n -1) f ′ (t) f (t) ′ -n(n -1) f ′ (t) f (t) 2 .
By requiring the scalar curvature to be n(n -1) we get an ODE which can be solved, and get that f (t) = cos nt 2 2 n and thus that g is at best defined on (-π n , π n ). In particular the two boundary components cannot be further than 2π n apart. In [START_REF] Gromov | Metric inequalities with scalar curvature[END_REF], Gromov proved that this upper bound holds in a much more general setting:

Theorem 5.1. Let n ≤ 7 and g be a metric on [-1, 1] × T n-1 with R g ≥ n(n -1) then:

d g {-1} × T n-1 , {1} × T n-1 ≤ 2π n .
This is another kind of quantitative result involving scalar curvature, an interesting fact is that the comparison is not made with a constant sectionnal curvature metric but with the constant scalar curvature metric on (-π n , π n ) × T n-1 we built before.

This results also gives another proof of the impossibility to endow T n with a positive scalar curvature: such a metric would lift to a complete metric with uniformly positive scalar curvature using the covering R×T n-1 → T n , and the induced metric on [-L, L] × T n-1 would boundary components as far appart as wanted provided L is big enough. Sketch of proof using FCS symmetrization. The proof given in [START_REF] Gromov | Metric inequalities with scalar curvature[END_REF] is an application of Fischer-Colbrie-Schoen symmetrization with a twist: one needs to consider hypersurfaces with boundary. To keep this survey short, we will not address the technical issues raised by the presence of boundaries.

One starts by minimizing the area among all hypersurfaces which are homologous to [-1, 1] × T n-2 × { * } relative to the boundary of [-1, 1] × T n-1 . Let us call Σ n-1 such a minimzer. The Fischer-Colbrie-Schoen symmetrization process allows us to build a metric g n = g Σ + (u n dθ n ) 2 on Σ n-1 × T 1 with:

• u n : Σ → R a positive function.

• g Σ being the metric induced by g on Σ n-1 .

• g n = g Σ + (u n (x)dθ n ) 2 has scalar curvature at least n(n -1).

Let us notice that since Σ n-1 is isometrically embedded in M in a boundary compatible way, the distance between the boundary component of Σ n-1 is bigger than the distance between the boundary components of M . And since the metric g n on Σ n-1 × T 1 is invariant by the action of R on T 1 , the distance between the boundary components in Σ n-1 × T 1 is the same as it is Σ n-1 . Assume for a while that Σ n-1 is diffeomorphic to [-1, 1] × T n-2 × { * }. We could then minimize area among hypersurfaces of the form

S n-2 × T 1 ⊂ Σ n-1 × T 1 where S n-2 ⊂ Σ n-1 is homologous to [-1, 1] × T n-3 × { * } ⊂ [-1, 1] × T n-2
relative to the boundary, let us call Σn-2 a minimizer. An application of the Fischer-Colbrie-Schoen symmetrization then gives a metric g Σ + u 2 n-1 dθ 2 n-1 + u 2 n dθ 2 n on Σn-2 × T 2 with scalar curvature greater than n(n -1). Iterating this construction we gain more and more symmetry and in the end get a metric dt 2 + n i=2 (u i (t)dθ i ) 2 on I × T n-1 with scalar curvature bigger n(n -1) where I is an interval. This lower bound on the scalar curvature gives a differential inequality on the functions u i which in turns bounds the length of I by 2π n . The fact that Σ n-1 may be topologically more complicated than [-1, 1]×T n-2 × { * } is handled by the use of non zero degree maps to [-1, 1]×T n-1 at each step. □ 5.2. A simpler proof using µ-bubbles. Looking at the model (-π/n, π/n) × T n-1 with the metric dt 2 + cos nt 2 4 n dx 2 , the previous proof used the fact that (-π/n, π/n) × T n-2 × { * } is a stable minimal hypersurface.

If we want to find a proof that avoids dealing with hypersurfaces with boundary, we would need to find a stable closed minimal hypersurface in the model. The hypersurface Σ 0 = {0} × T n-1 is minimal but not stable. In his IHES lectures [START_REF] Gromov | Four lectures on scalar curvature[END_REF], Gromov gave a new proof of the previous theorem by using µ-bubbles with µ chosed in such a way that in the model the hypersurface Σ 0 is a stable µ-bubble.

First let us focus on the existence of µ-bubbles. For convenience, we introduce the following definition. Let (M n , g, ∂ ± ) be a Riemannian band and Σ 0 be a fixed closed hypersurface separating ∂ -and ∂ + . We denote Ω 0 to be the region associated to Σ 0 such that

∂Ω 0 = ∂ -∪ Σ 0 . Let C = {Caccippoli sets Ω in M such that Ω∆Ω 0 ⋐ M },
where M denotes the interior of M . Given a smooth function h defined over M , we consider

A h (Ω) = H n-1 (∂Ω ∩ M ) - ˆM (χ Ω -χ Ω0 )h dH n g .
The use of A h instead of the functional B defined above is necessary to handle noncompact ambient space where h may not be integrable on some Ω that we would like include. A h and B differ by a constant if they are both defined, hence the variation formulas will not be affected by this change.

An advantage of µ-bubbles is that they always exist on a given Riemannian band for a suitably imposed function h. Proof. Denote I = inf{A h (Ω) : Ω ∈ C}. First we show I > -∞. For any s > 0, we denote

Σ ± s = {x ∈ M : dist(x, ∂ ± ) = s}. Clearly, Σ ±
s is a foliation around ∂ ± when s is small. From (5.1) we can assume

H - s ≤ h • ϕ and H + s ≤ -h • ϕ for s ≤ s 0
, where s 0 is a small positive constant and H ± s is the mean curvature of Σ ± s with respect to ∂ s . Let Ω ± s be the region enclosed by Σ ± s and ∂ ± . Possibly decreasing the value of s 0 , we can construct a smooth vector field X such that

X = ∂ s on Ω ± s0 . It is clear that div g X = H - s ≤ h in Ω - s0 and div g X = H + s ≤ -h in Ω + s0 .

Notice that for any region Ω ∈ C we have the following estimate

A h (Ω ∪ Ω - s0 \Ω + s0 ) -A h (Ω) =H n-1 (∂Ω - s0 \Ω) -H n-1 (∂ * Ω ∩ Ω - s0 ) + H n-1 (∂Ω + s0 ∩ Ω) -H n-1 (∂ * Ω ∩ Ω + s0 ) - ˆΩ- s 0 \Ω h dH n g + ˆΩ∩Ω + s 0 h dH n g ≤H n-1 (∂Ω - s0 \Ω) -H n-1 (∂ * Ω ∩ Ω - s0 ) + H n-1 (∂Ω + s0 ∩ Ω) -H n-1 (∂ * Ω ∩ Ω + s0 ) - ˆΩ- s 0 \Ω div g X dH n g - ˆΩ∩Ω + s 0 div g X dH n g ≤0, since ˆΩ- s 0 \Ω div g X dH n g = ˆ∂ * (Ω - s 0 \Ω) ⟨X, ν⟩ g dH n-1 g ≥ H n-1 (∂Ω - s0 \Ω) -H n-1 (∂ * Ω ∩ Ω - s0 ) and ˆΩ∩Ω + s 0 div g X dH n g = ˆ∂ * (Ω∩Ω + s 0 ) ⟨X, ν⟩ g dH n-1 g ≥ H n-1 (∂Ω + s0 ∩ Ω) -H n-1 (∂ * Ω ∩ Ω + s0 ). It follows A h (Ω) ≥ A h (Ω ∪ Ω - s0 \Ω + s0 ) ≥ -CH n (M, g), ∀ Ω ∈ C, where C is a universal constant such that |h| ≤ C on M -Ω - s0 ∪Ω + s0 . Hence I > -∞.
Now we establish the existence of a smooth minimizer for A h in C. Let Ω k be a sequence of regions in C such that A h (Ω k ) → I as k → ∞. According to the discussion above we can assume Ω k ∆Ω 0 ⊂ M -Ω - s0 ∪ Ω + s0 . For k large enough there holds

H n-1 (∂ * Ω k ) ≤ I + 1 + CH n (M, g).
From the compactness of Caccippoli sets, after taking the limit of Ω k we can obtain Ω ∈ C with A h ( Ω) = I. The smoothness of ∂ Ω comes from the regularity theorem [ZZ20, Theorem 2.2]. □

Proof of Theorem 5.1 using µ-bubbles. Let H(t) be the mean curvature of the hypersurface {t} × T n-1 in the model (-π/n, π/n) × T n-1 , we will use this mean curvature in the model to build a suitable µ-bubble functional. Note that 2H ′ = -n(n -1) -n n-1 H 2 . The proof goes by contradiction. Assume ([-1, 1] × T n-1 , g) has scalar curvature at least n(n -1) and that

d g {-1} × T n-1 , {1} × T n-1 > 2π
n . This allows us to build a smooth surjective 1-Lipschitz function ϕ : [-1, 1] × T n-1 → (-π+ε n ; π+ε n ) whose level sets separates the two components of the boundary of ϕ : [-1, 1]×T n-1 .

Set:

h : [-1, 1] × T n-1 → [-∞, +∞] x →      +∞ if ϕ(x) ≤ -π n H(ϕ(x)) if ϕ(x) ∈ (-π/n, π/n) -∞ if ϕ(x) ≥ π n
The behavior of h close to the boundary of [-1, 1]×T n-1 ensures that a minimizer Ω of the A h functional defined on h -1 (] -∞, +∞[) with this choice of h and a suitable choice of Ω 0 exists and stays where h is finite, see Proposition 5.3 above. The positivity of the second variation of B gives that for any function f : ∂Ω → R :

ˆΣ |∇f | 2 -1 2 R M -R Σ + | A | 2 + 2⟨∇h, ν⟩ + h 2 f 2 dσ ≥ 0
where Σ = ∂Ω and A and ν are the second fundamental form and unit normal to Σ.

Using that on Σ we have

h 2 = H 2 Σ ≤ (n -2)| A | 2 ,
this implies that the operator:

-∆ Σ + 1 2 R Σ -1 2 R M -2|∇h| + n n-1 h 2 is nonnegative on C ∞ (Σ)
. Moreover, our choice of h together with the fact that R M ≥ n(n -1) will ensure that the term in between the parenthesis above is nonnegative. The will then show that -∆ Σ + 1 2 R Σ ≥ 0, which implies as in section 3 allow us to show the conformal Laplacian of Σ = ∂Ω is positive, hence Σ admits a metric with positive scalar curvature. Since the map Σ ⊂ [-1, 1] × T n-1 → T n-1 has non zero degree, this is a contradiction. □

Using the same proof without the topological assumption and using Fischer-Colbrie-Schoen symmetrization instead of the conformal method in the last step, Gromov also proved:

Theorem 5.4. Let (M n , ∂ ± , g) (n ≤ 7) be a Riemannian band. Assume that R g ≥ 4(n -1)π 2 n d g (∂ -, ∂ + ) 2 + δ
for some δ > 0. Then there exists • an hypersurface Σ which separates ∂ -and ∂ + ,

• a positive function u : Σ → R, such that the metric h = g| Σ + u 2 dt 2 on Σ × R has R h ≥ δ.
The conclusion of this theorem can be summarized in the following way: if (M, g) has two boundary components ∂ -and ∂ + which are 2π n appart and has scalar curvature uniformly bigger than n(n -1) by an amout of δ, then this excess δ of scalar curvature compared to the [-1, 1] × T n-1 situation can be used to build a warped product metric of scalar curvature greater than δ on Σ × S 1 where Σ is an hypersurface in M separating ∂ -and ∂ + . 5.3. Small two-spheres in p.s.c S 2 × S 2 . As an application of this idea, we give an upper bound for the 2-systole of some metrics with positive scalar curvature on S 2 × S 2 , proved by the first author in [START_REF] Richard | On the 2-systole of stretched enough positive scalar curvature metrics on S 2 × S 2 . SIGMA[END_REF]. Let us first recall that no universal upper bound is known for the 2-systole of (S 2 × S 2 , g) with R g ≥ 4.

In order to state the result, we need some terminology. Let S ℓ be the set of embedded surfaces S ⊂ S 2 × S 2 which are homologous to S 2 × { * }. Let sys ℓ (g) be the infimum of the area of 2-spheres in S ℓ . By definition, sys 2 (g) ≤ sys ℓ (g).

We also introduce a coarse measure of the size S ℓ , called the left stretch of g and defined by str ℓ (g) = sup S1,S2∈S ℓ d g (S 1 , S 2 ). We can now state the estimate: Theorem 5.5. Let g be a metric on S 2 × S 2 with R g ≥ 4.

If

s = str ℓ (S 2 × S 2 , g) > √ 3π 2 , then sys ℓ (S 2 × S 2 , g) ≤ 8πs 2 4s 2 -3π 2 .
Moreover there is an embedded 2-sphere whose area is at most 8πs 2 4s 2 -3π 2 . Sketch of proof. We will show here in a qualitative way why a large enough lower bound on str ℓ gives an upper bound on sys ℓ , the precise inequality is obtained by writing the precise inequality at each step.

Let us assume that s = str ℓ is big. Then we can find two surfaces S 1 and S 2 in S ℓ which are far away from each other. Thus M = M \(S 1 ∪ S 2 ) has two boundary components which are about str ℓ apart.

Since g has R g ≥ 4, we can apply Theorem 5.4 provided s > √ 3π

2 . This implies the existence of an hypersurface Σ which separates S 1 and S 2 together with a function u : Σ → R such that the metric g Σ + (udθ) 2 on Σ × S 1 has strictly positive scalar curvature. Moreover a topological argument shows that there is a non trivial map Σ → S 2 × T 1 , and thus a non trivial map Σ × T 1 → S 2 × T 2 .

Then we use Theorem 1.2 to conclude that there is a small 2-sphere in Σ × T 1 which (thanks to the R-symmetry of g Σ + (udθ) 2 ) is indeed a small 2-sphere in Σ. Since Σ is isometrically embedded in S 2 × S 2 , this gives us a small 2-sphere in S 2 × S 2 , which can be shown to belong to S ℓ . □ 5.4. Rigidity results using µ-bubbles. In this subsection, we deal with Theorem 1.4 and Theorem 1.5. As we will see later, µ-bubbles have very nice compactness property to guarantee the existence of an area-minimizing hypersurface in noncompact complete manifolds sometimes.

In our later application, we will use the following family of functions.

Lemma 5.6. For any ϵ ∈ (0, 1), there is a function

h ϵ : - 1 nϵ , 1 nϵ → (-∞, +∞) such that (1) h ϵ satisfies n n -1 h 2 ϵ + 2h ′ ϵ = n(n -1)ϵ 2 on - 1 nϵ , - 1 2n ∪ 1 2n , 1 nϵ
and there is a universal constant C = C(n) so that sup

-1 2n ≤t≤ 1 2n n n -1 h 2 ϵ + 2h ′ ϵ ≤ Cϵ.
(2) h ′ ϵ < 0 and lim

t→∓ 1 nϵ h ϵ (t) = ±∞.
(3) As ϵ → 0, h ϵ converge smoothly to 0 on any closed interval.

Proof. Let

h + ϵ : - 1 nϵ , +∞ , t → (n -1)ϵ coth nϵt + 1 2 and h - ϵ : -∞, 1 nϵ , t → -(n -1)ϵ coth -nϵt + 1 2 .
Through a straightforward calculation we see that h + ϵ and h - ϵ are solutions to the equation n n -1

h 2 + 2h ′ = n(n -1)ϵ 2 .
We now glue h + ϵ and h - ϵ to obtain the desired function h ϵ . Fix a nonnegative smooth function η with compact support contained in (-1 2n , 1 2n ) and define

η(t) = ˆ+∞ -∞ η(s) ds -1 ˆt -∞ η(s) ds.
Clearly, η is smooth with η ′ ≥ 0 and 0 ≤ η ≤ 1. Furthermore, it satisfies η ≡ 0 on (-∞, -1 2n ] and η ≡ 1 on [ 1 2n , +∞). Denote

h ϵ = (1 -η)h + ϵ + ηh - ϵ .
The proof is now completed by verifying listed properties one by one. □ Now we show how to prove Theorem 1.4 and Theorem 1.5 with µ-bubbles. The key idea is to approximate an area-minimizing hypersurface by µ-bubbles.

Theorem 5.7. Let (M, g) be a complete open Riemannian manifold with nontrivial second homotopy group. If the scalar curvature of (M, g) is no less than 2, then it holds sys 2 (M, g) ≤ 4π, where the equality holds if and only if the universal covering of (M, g) is isometric to the product manifold (S 2 × R, g round + dt 2 ).

Proof. Without loss of generality, we can assume M to be simply connected. In this case, we can find an embedded 2-sphere Σ 0 in M from the sphere theorem. Clearly Σ 0 is also homologically non-trivial due to the Hurewicz theorem. So Σ 0 divides M into two unbounded connected component and there is a proper smooth function ϕ : M → (-∞, +∞) with |dϕ| g < 1 and ϕ -1 (0) = Σ 0 . Denote Ω 0 = {ϕ < 0}. From Sard's theorem, there is a sequence of ϵ k → 0 such that

M k = ϕ -1 - 1 3ϵ k , 1 3ϵ k is a Riemannian band with ∂ ± = ϕ -1 ± 1 3ϵ k .
Consider the functional

A k (Ω) = H 2 g (∂ * Ω) -ˆM (χ Ω -χ Ω0 )h ϵ k • ϕ dH 3
g for all Caccipoli sets Ω such that Ω∆Ω 0 ⋐ Mk . It follows from Proposition 5.3 that there is a smooth minimizer Ω k with Ω∆Ω 0 ⋐ Mk for functional A k . For each component Σ k of ∂Ω k , the second variation formula for

A k yields ˆΣk |∇ k ψ| 2 -(Ric g (ν k , ν k ) + |A k | 2 -ν k (h ϵ k • ϕ))ψ 2 dσ k ≥ 0,
where ∇ k and dσ k is the gradient operator and area element of Σ k with the induced metric, ν k is the unit outer normal of Σ k with respect to Ω k and A k is the corresponding second fundamental form. After taking the test function ψ ≡ 1 and applying the Schoen-Yau's trick, we see

(5.2) ˆΣk R g + | Åk | 2 + 3 2 h 2 ϵ k + 2h ′ ϵ k • ϕ dσ k ≤ 4πχ(Σ k ) ≤ 8π.
Due to the facts R g ≥ 2 and

3 2 h 2 ϵ k + 2h ′ ϵ k ≥ -Cϵ k → 0,
we conclude that Σ k is a sphere with area no greater than 8π(2 -Cϵ k ) -1 for k large enough. Since ∂Ω k is homologous to Σ 0 , it represents a non-trivial homology class in H 2 (M, Z). In particular, at least one component of ∂Ω k is homotopically non-trivial, which yields π 2 (M ) ̸ = 0 and

sys 2 (M, g) ≤ 8π(2 -Cϵ k ) -1 → 4π, as k → ∞.
Now we show the desired rigidity result under the assumption sys 2 (M, g) = 4π. From previous discussion we can pick up a connected component Σ k of ∂Ω k representing a non-trivial class. Our assumption forces Σ k to have area no less than 4π and so (5.2) yields non-empty intersection of Σ k and the fixed compact set

K = ϕ -1 - 1 6 , 1 6 .
From direct comparison we have area(Σ k ) ≤ area(Σ 0 ). From the curvature estimate (see [ZZ20, Theorem 3.6]) and the minimizing property, Σ k converges smoothly to an area-minimizing boundary Σ with multiplicity one, which has area no greater than 4π and non-empty intersection with K. It follows from [GL83, Theorem 8.8] that Σ is a sphere. Now surfaces Σ k turn out to graphs over Σ and so Σ also represents a non-trivial homology class. From sys 2 (M, g) = 4π we know that Σ has the least area in its homology class. The rigidity now comes from the argument in [START_REF] Bray | Rigidity of area-minimizing two-spheres in three-manifolds[END_REF]. □

The idea to prove Theorem 1.5 is similar to the above but we need more effort to show the compactness of the limit of Σ k . As before, we only work in dimension 4 since no essential difference will occur in higher dimensions no greater than seven.

Theorem 5.8. Let (M, g) be a complete, oriented, open Riemannian 4-manifold with scalar curvature R g no less than 2, which admits a smooth proper map f : M → S 2 × S 1 × R. Then M has non-trivial second homotopy group and it holds sys 2 (M, g) ≤ 4π, where the equality holds if and only if the universal covering of (M,g) is isometric to the product manifold (S 2 × R 2 , g round + g euc ).

Proof. For convenience, we write

f = (f 1 , f 2 ) : M → (S 2 × S 1 ) × R. From Sard's theorem we can assume that Σ 0 = f -1 2 (0) is an embedded hypersurface in M . It is not difficult to construct a smooth function ϕ : M → (-∞, +∞) with |dϕ| g < 1 and ϕ -1 (0) = Σ 0 . Denote Ω 0 = {ϕ < 0}. Again there is a sequence of ϵ k → 0 such that M k = ϕ -1 - 1 4ϵ k , 1 4ϵ k is a Riemannian band with ∂ ± = ϕ -1 ± 1 4ϵ k .
As before, we consider the functional

A k (Ω) = H 3 g (∂ * Ω) -ˆM (χ Ω -χ Ω0 )h ϵ k • ϕ dH 4
g for all Caccipoli sets Ω such that Ω∆Ω 0 ⋐ Mk . From Proposition 5.3 there is a smooth minimizer Ω k with Ω∆Ω 0 ⋐ Mk for functional A k . Since ∂Ω k is homologous to Σ 0 , the restriction of f 1 to ∂Ω k gives a smooth map to S 2 × S 1 with non-zero degree and the same thing holds for some component Σ k of ∂Ω k . The stability of Σ k yields a positive smooth function u k and a non-negative constant λ k such that

(5.3) -∆ k u k -(Ric g (ν k , ν k ) + |A k | 2 -ν k (h ϵ k • ϕ))u k = λ k u k .
Denote g k to be the induced metric of Σ k from (M, g). Following Fischer-Colbrie-Schoen symmetrization, we can construct a new manifold ( Σk , gk ) with Σk = Σ k ×S 1 and gk = g k + u 2 k dt 2 . From a direct calculation and the Gauss equation, we have

R gk = R g k - 2∆ k u k u k ≥ R g + 4 3 h 2 ϵ k + 2h ′ ϵ k • ϕ ≥ 2 -Cϵ k .
Notice that the map 

F k = (f 1 | Σ k ,
( Σk , gk ) ≤ 8π (2 -Cϵ k ) -1 .
Moreover, it follows from the proof of Theorem 1.2 that there is an embedded 2sphere S k in Σ k with area no greater than 8π (2 -Cϵ k ) -1 and the map π • f 1 | S k : S k → S 2 has non-zero degree, where π : S 2 × S 1 → S 2 denotes the projection map. In particular, S k represents a non-trivial homology class in H 2 (M, Z) and so sys 2 (M, g) ≤ 8π (2 -Cϵ k )

-1 → 4π, as k → ∞.

In the following, we show a proof for rigidity assuming sys 2 (M, g) = 4π. In this case, Σ k has non-empty intersection with the compact set

K = ϕ -1 - 1 8 , 1 8 . 
We have area(Σ k ) ≤ area(Σ 0 ) from direct comparison. The curvature estimate and the minimizing property implies that Σ k converges to an area-minimizing boundary Σ with multiplicity one, which has area no greater than area(Σ 0 ) and non-empty intersection with K. Fixed a point p in Σ, we can find point p k in Σ k such that p k → p as k → ∞ from the convergence. Notice that we can always normalize the function u k in (5.3) to satisfy u k (p k ) = 1. As a consequence, u k converges smoothly to a smooth positive function u on Σ due to Harnack inequality and standard elliptic estimates.

Next we prove that Σ has non-negative Ricci curvature. Once this has been done, Σ has to be compact due to the well-known fact that a non-compact complete Riemannian manifold with non-negative Ricci curvature has infinite volume (see [START_REF] Yau | Some function-theoretic properties of complete Riemannian manifold and their applications to geometry[END_REF]). Combined with the fact sys 2 (M, g) = 4π, a similar argument as in the proof of Theorem 1.2 then yields that the universal covering of (M, g) is isometric to the product manifold S 2 × R 2 . So let us focus on a proof for the Ricci flatness of Σ. From the uniform curvature estimate and area bound for Σ k and Σ, there is a universal constant r 0 such that

Σ k ∩ K ⊂ B Σ k r0 (p k ) and Σ ∩ K ⊂ B Σ r0 (p) 
, where B Σ k r0 (p k ) denotes the intrinsic r 0 -ball of Σ k centered at the point p k and so is B Σ r0 (p). In the first step, we show that ( Σ, g) has non-negative Ricci curvature, where Σ = Σ × S 1 and g = g Σ + u 2 dt 2 . Actually, this comes from a careful analysis on elliptic operators

L k = ∆ gk + 1 - R gk 2 and L = ∆ g + 1 - R g 2 .
Observe that we have R g ≥ 2 from the fact R gk ≥ 2 -Cϵ k . We claim that R g must be identical to two. Otherwise, there is a point (q, θ) in Σ such that R g > 2 at that point. As a consequence, there will be a constant r 1 > r 0 such that µ(L, B Σ r1 (p) × S 1 ) > 0, where µ(L, B Σ r1 (p) × S 1 ) denotes the first Neumann eigenvalue of L on B Σ r1 (p) and we will continue to use similar notations below. This implies

µ(L k , B Σ k r1 (p k ) × S 1
) > 0 for k large enough and so we have µ(L k , Σk ) > 0 due to the fact R gk ≥ 2 outside B Σ k r0 × S 1 . Now we can find a positive smooth function ṽk on Σk such that

-∆ gk v k + R gk 2 -1 v k = µ(L k , Σk )v k .
From Fischer-Colbrie-Schoen symmetrization, we can construct a new manifold ( Σk , ĝk ) with R ĝk ≥ 2 + 2µ(L k , Σk ), where Σk = Σk × S 1 and ĝk = gk + ṽ2 k dt 2 . This will lead to the estimate 

L h,τ = ∆ g-τ h + 1 - R g-τ h 2 .
If the Ricci curvature Ric g is negative at some point q, then there is a unit one form Ω in Λ 1 (T q Σ) such that Ric g (ω) = λω for some negative constant λ. Of course, we can extend ω to a neighborhood U of q contained in B Σ r1 (p) × S 1 such that Ric g (ω, ω) < 0 holds in U . Let η be a non-negative cut-off function with compact support in U satisfying η(q) > 0. With h = η Ric g (ω, ω)ω ⊗ ω, we obtain d dτ τ =0 µ(L h,τ , B Σ r1 (p) × S 1 ) > 0 and so there is a positive constant τ 0 such that µ(L h,τ0 , B Σ r1 (p) × S 1 ) > 0. Writing Σ k as graphs over Σ, we can view h as a symmetric 2-tensor on Σk . Consider the metric gk,τ0 = gk -τ 0 h and the associated operator L k,h,τ0 = ∆ gk -τ0h + 1 -R g-τ0h 2 .

It holds for k large enough that µ(L k,h,τ0 , B Σ k r1 (p k )) > 0. Repeating Fischer-Colbrie-Schoen symmetrization argument above and using the fact gk ≤ gk,τ0 as quadratic forms, we conclude that sys 2 (M, g) ≤ 4π 1 + µ(L k,h,τ0 , B Σ k r1 (p k ))

< 4π, which leads to a contradiction again. From the proof of Theorem 1.2, deformation for lapse function u k is allowed when we do above argument. In particular, we can obtain the estimate Ric g (∂ t , ∂ t ) ≡ 0 for the tangential vector ∂ t along S 1 . Now, we are ready to prove the non-negativity of the Ricci curvature of Σ. From a direct computation and the fact Ric g (∂ t , ∂ t ) = 0, we see that u Since Σ has finite area, we see that u is a constant function by letting r → +∞.

In particular, Σ is the Riemannian product of manifold Σ and S 1 and the Ricci curvature of Σ is non-negative. □

Open questions

We present here some open questions.

The relation between positive scalar curvature and 2-systole in dimension 4 and more is a recent discovery and much remains unknown in this direction. As one goal of this field, we raise up with the following homotopical 2-systole conjecture. Conjecture 6.1. Let (M, g) be a closed Riemannian manifold with scalar curvature R g no less than 2. If the universal covering of M is homtopically equivalent to S 2 , then sys 2 (M, g) ≤ 4π.

The affirmative answer to above conjecture in dimension two and three comes quickly from Gauss-Bonnet formula and Theorem 1.4. As special cases, it follows from Theorem 1.2 the conjecture holds for S 2 × T n-2 with dimension n no greater than 7.

When the topology is less restricted, the situation is less clear. Even in dimension 4 the following quetion is open: Question 6.2. Let g be a metric of scalar curvature at least 4 on S 2 × S 2 , is sys 2 (g) ≤ 4π ? Theorem 1.3 shows that this holds when the metric is streched enough, this estimate can also be shown to hold for warped products of constant curvature 2-spheres.

Beyond product of spheres, the situation has not been investigated much yet. Any progress on the following question would be worthwhile for instance: Question 6.3. Let g be a metric of scalar curvature at least 24 on CP 2 , is sys 2 (g) ≤ sys 2 (g F S ) ? Here g F S is the Fubini-Study metric on CP 2 with sectional curvature between 1 and 4.

In higher dimensions, products of 2-spheres and higher dimensional complex projective spaces could also be investigated.

Another question is the applicability of hypersurface methods in dimension greater than seven. Though great efforts have been made in the last years, it is still unclear to the authors wether they can be used to extend the results of this survey in dimension 8 and more.

  Definition 5.2. A triple (M, ∂ ± , g) is called a Riemannian band if (M, g) is a compact Riemannian manifold with non-empty boundary, where ∂ + and ∂ -are two portions of the boundary ∂Ω such that (i) ∂ + and ∂ -are disjoint and ∂Ω = ∂ + ∪ ∂ -; (ii) ∂ + and ∂ -are union of boundary components of Ω.

Proposition 5. 3 .

 3 For n ≤ 7, if(5.1) lim x→∂-h(x) = +∞ and lim x→∂+ h(x) = -∞,then there exists a smooth minimizer Ω ∈ C for A h .

  sys 2 (M, g) ≤ 4π 1 + µ(L k , Σk ) < 4πfrom the proof of Theorem 1.2, which contradicts to the fact sys 2 (M, g) = 4π. The non-negativity of the Ricci curvature Ric g comes from a similar argument. Actually, we have the formulad dτ τ =0 µ(L h,τ , B Σ r1 (p) × S 1 ) = vol g (B Σ r1 (p) × S 1 ) Ric g ⟩ g dµ gfor any symmetric 2-tensor h with compact support in B Σ r1 (p) × S 1 , where

  is a positive harmonic function on Σ. Let v = log u, then we have ∆v = -|∇v| 2 .Let η be a smooth non-negative cut-off function such that η ≡ 1 on B Σ r (p), η ≡ 0 outside B Σ 2r (p) and |∇η| ≤ 2/r. Integral by parts, we have-ˆΣ η 2 |∇v| 2 dσ = ˆΣ η 2 ∆v dσ = -ˆΣ 2η∇η • ∇v dσ ≥ -1 2 ˆΣ η 2 |∇v| 2 dσ -2 ˆΣ |∇η| 2 dσ. It follows ˆBΣ r (p)|∇v| 2 dσ ≤ ˆΣ η 2 |∇v| 2 dσ ≤ 4 ˆΣ |∇η| 2 dσ ≤ 16 r 2 area(Σ).

  id) is a smooth map from Σk to S 2 × T 2 with nonzero degree. It follows from Theorem 1.2 that Σ k has non-trivial second homotopy group and sys 2