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SMALL TWO SPHERES IN POSITIVE SCALAR CURVATURE,

USING MINIMAL HYPERSURFACES

THOMAS RICHARD, JINTIAN ZHU

Abstract. In this survey, we review some results on the area of topologically

non trivial two spheres in manifolds with positive scalar curvature of dimension

at most 7. The main tool to get those results is the use of stable minimal hy-
persurfaces, and we give a short exposition of the usual ways to take advantage

of these in the presence of positive scalar: second variation, conformal method,

Fischer-Colbrie–Schoen symmetrization and µ-bubbles. The last sections lists
some open problems in the area.

1. Introduction

The study of positively curved Riemannian manifolds saw great developments
in the second half of the 20th century. In the case of positive sectional and Ricci
curvature, the quantitative theorems of comparison geometry such as Toponogov’s
theorem, Myers theorem or the Bishop-Gromov inequality, were pivotal tools in
this development, see for instance the classic ([CE75]).

At the same time, the study of manifolds with positive scalar curvature took a
more qualitative approach based on one side on the properties of the Dirac operator
on spin manifolds ([Lic63], [GL83]) and on the other side on the study of stable
minimal hypersurfaces ([SY79]).

Most of the results were topological in nature, the most celebrated one being the
impossibility to endow the torus Tn with a positive scalar curvature metric. This
theorem was proved in dimension at most seven by Schoen and Yau in the late 80’s
using minimal hypersurfaces and by Gromov and Lawson in any dimension soon
afterwards using Dirac operators methods.

In these same papers, it was noted that one can build new positive scalar curva-
ture manifolds by taking connected sums (or higher codimension surgeries). This
explains a bit why finding metric invariants which can be controlled by scalar cur-
vature is difficult: the sought for invariants should be insensitive to connected sums
with long or big manifolds.

The goal of this survey is to show how in certain contexts positive scalar curvature
can be used to control the area of the smallest topologically non-trivial 2-spheres in
a positive scalar curvature manifold. We illustrate in particular how hypersurfaces,
which are codimension 1, can be used to get information about higher codimension
submanifolds.

Let g be a smooth metric on S2. The classical Gauss-Bonnet formula yieldsˆ
S2
Rg dσg = 8π,

where Rg and dσg are scalar curvature and area element of (S2, g) respectively. As
a corollary, (S2, g) has area no greater than 4π if the scalar curvature Rg is no

1



2 THOMAS RICHARD, JINTIAN ZHU

less than 2. Despite its simplicity, this fact suggests the following principle: Large
positive scalar curvature favors the existence of 2-spheres with small area, as we
will see here in more general situations.

When looking for small 2-spheres in a given manifold, it is a good idea to focus
on a particular class of 2-spheres and look for the infimum of the area functional
restricted to this class. For a Riemannian manifold (M, g) with non-trivial second
homotopy group, we take the following homotopical 2-systole

sys2(M, g) = inf

{
area(S2, i∗g)

∣∣∣∣ i : S2 →M smooth such that
[i] homotopically nontrivial

}
raised up by Bray, Brendle and Neves in their work [BBN10], where they proved

Theorem 1.1. If (M, g) is a closed Riemannian 3-manifold with non-trivial second
homotopy group whose scalar curvature is no less than 2, then it holds sys2(M, g) ≤
4π. Moreover, the equality holds if and only if the universal covering of (M, g) is
isometric to the product manifold (S2 × R, ground + dt2), where ground denotes the
standard round metric on 2-sphere.

In general, no similar result can be expected for closed Riemannian manifolds
with dimension greater than 3. For n ≥ 5, one can simply take Sn−2(r1) × S2(r2)
with suitably chosen radius r1 and r2 as counterexamples. As a consequence, more
requirements are necessary to guarantee the existence of small two spheres from
large positive scalar curvature in dimensions greater than 3. In this direction, the
second named author investigated the class of closed n-manifolds that admits a
smooth map to S2 ×Tn−2 with non-zero degree. In dimension n no greater than 7,
he showed the following result in [Zhu20a].

Theorem 1.2. Let (M, g) be a closed oriented Riemannian n-manifold with scalar
curvature Rg no less than 2, which also admits a smooth map f : M → S2 ×
Tn−2 with non-zero degree. Then M has non-trivial second homotopy group and it
holds sys2(M, g) ≤ 4π. Furthermore, the equality holds if and only if the universal
covering of (M, g) is isometric to the product manifold (S2 × Rn−2, ground + geuc),
where ground is the standard round metric on S2 and geuc denotes the standard
Euclidean metric on Rn−2.

For compact manifolds with positive scalar curvature, the only other 2-systole
estimate has been proved by the second author in [Ric20] in the case of positive
scalar curvature metrics on S2 × S2 wtih an additional ”stretching” assumption.
Namely

Theorem 1.3. Let g be a smooth metric on S2 × S2 with Rg no less than 4 such
that the left stretch

s = sup
S1,S2∈Sl

distg(S1, S2) >

√
3π

2
,

where Sl denotes the set of all embedded surfaces representing the homology class
[S2 × {∗}]. Then it holds

sys2(S2 × S2, g) ≤ 8πs2

4s2 − 3π2
.

As for complete open Riemannian manifolds with positive scalar curvature, the
second named author also showed some optimal 2-systole estimates in [Zhu20b].
First he made a generalization to Theorem 1.1 as following
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Theorem 1.4. Let (M, g) be a complete open Riemannian manifold with non-
trivial second homotopy group. If the scalar curvature of (M, g) is no less than 2,
then it holds sys2(M, g) ≤ 4π, where the equality holds if and only if the universal
covering of (M, g) is isometric to the product manifold (S2 × R, ground + dt2).

In the case where the dimension n is no greater than 7, he proved

Theorem 1.5. Let (M, g) be a complete, oriented, open Riemannian n-manifold
with scalar curvature Rg no less than 2 for n ≤ 7, which admits a smooth proper
map f : M → S2 × Tn−3 × R. Then M has non-trivial second homotopy group
and it holds sys2(M, g) ≤ 4π, where the equality holds if and only if the universal
covering of (M,g) is isometric to the product manifold (S2 × Rn−2, ground + geuc).

The rest of this survey is organised as follows: in section 2 we give a brief
overview of how stable minimal surfaces in 3-manifolds have been used to get topo-
logical and quantitative information from a positive scalar curvature assumption.
In section 3 we sketch how the conformal method was used to get topological infor-
mation on positive scalar curvature manifolds in dimension 4 to 7 and why it failed
to prove quantitative statements. In section 4 we introduce the Fischer-Colbrie–
Schoen symmetrization process and show how it implies Theorem 1.2. Section 5
deals with applications of Gromov’s µ-bubble to these kinds of questions. Theorems
1.3, 1.4 and 1.5 are presented there in more details. The final section gathers open
questions in this subject.

2. Stable hypersurfaces and stable 2-spheres in 3-manifolds

2.1. Variation formulas, and the Schoen–Yau trick. Let (Mn, g) be a com-
plete Riemannian manifold of dimension at most seven, Σn−1 ⊂Mn be a two-sided
minimal hypersurface, and let ν be a unit normal field along Σ. Consider a smooth
family of hypersurfaces t 7→ Σt such that:

• Σ0 = Σ.
• d

dt |t=0Σt = fν for some smooth function f : Σ → R.
In this setting, the second variation of the t 7→ areag Σt is given by :

d2

dt2 |t=0
area(Σt) =

ˆ
Σ

|∇f |2 −
(
|A |2 +RicM (ν, ν)

)
f2dσ

where A is the second fundamental form of Σ.

Definition 2.1. Σ is said to be stable if for all f ∈ C∞(Σ) :ˆ
Σ

|∇f |2 −
(
|A |2 +RicM (ν, ν)

)
f2dσ ≥ 0

One way to get a stable hypersurface is when Σ is built by looking for a minimizer
of the area functional in some non trivial homology class. Federer’s geometric
measure theory ensures the existence of a minimizing rectifiable current if M is
compact, while Almgren’s regularity theory gives that this currents comes from a
smooth hypersurface if M has dimension at most 7. (See for instance [Mor16] and
the references therein.)

At first glance, it is unclear how stable minimal hypersurfaces can be of any use
in the study of Riemannian manifolds with positive scalar curvature. The crucial
observation was made by Schoen and Yau in the late seventies ([SY79]):
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Lemma 2.2. If Σ ⊂M is minimal,then :

2RicM (ν, ν) = RM −RΣ − |A |2

Proof. The proof is obtained by tracing the Gauss equations RmΣ = RmM +A∧A
twice. □

Hence the stability condition can be restated as follows: if Σ is a two-sided stable
minimal hypersurface then for any function f : Σ → R we have :ˆ

Σ

|∇f |2 − 1
2

(
RM −RΣ + |A |2

)
f2dσ ≥ 0.

2.2. No positive scalar curvature metric on T3. In dimension 3, the second
variation formula shows that stable minimal surfaces must be spheres:

Proposition 2.3. Let (M3, g) be an orientable 3-manifold with Rg > 0 and let
Σ2 ⊂M3 be a stable two-sided minimal surface, then Σ2 is diffeomorphic to S2.

Proof. We know that if Σ is stable and 2-sided thenˆ
Σ

|∇f |2 − 1
2

(
RM −RΣ + |A |2

)
f2dσ ≥ 0

for any function f : Σ → R. Plugging the constant function equal to 1 in this
inequality, we get : ˆ

Σ

RΣdσ ≥
ˆ
Σ

RM + |A |2dσ > 0.

Since the scalar curvature in dimension 2 is twice the Gauss curvature, this shows
using Gauss-Bonnet that χ(Σ2) > 0. Hence, since Σ2 is orientable it is diffeomor-
phic to S2. □

Using this simple observation, Schoen and Yau showed the Geroch conjecture in
dimension 3 [SY78]:

Theorem 2.4. T3 has no metric with positive scalar curvature.

Proof. Using the proposition above, it is enough to build a stable orientable minimal
surface in T3 which is not a sphere.

One way to do it is to consider X the homology class of T2 × {∗} ⊂ T3. Using
geometric measure theory there is a stable minimal surface Σ2 in X .

To see that Σ2 is not a sphere, consider the projection π : T3 → T2 × {∗}, and
let α1 and α2 be the two standard generators of the de Rahm cohomology group
H1(T2). Since Σ and T2×{∗} are homologous:

´
Σ2 π

∗(α1∧α2) =
´
T2×{∗} α1∧α2 =

1, which implies that π : Σ2 → T2 × {∗} has non zero degree and thus Σ2 is not a
sphere. □

2.3. Bray–Brendle–Neves result on small spheres in p.s.c 3-manifolds.
Surprisingly, it took thirty years for geometers to realize that the second variation
not only ruled out positive scalar curvature metrics on T3 but also gave some
quantitative information on positive scalar curvature metrics on 3-manifolds. This
was proved by Bray, Brendle and Neves:

Theorem 2.5. Let (M3, g) be a compact 3-manifold with Rg ≥ 2 and π2(M
3) ̸=

{0}. Then sys2(M, g) ≤ 4π, morever if equality is achieved then the universal cover
of (M3, g) is isometric S2 ×R with the product metric of constant scalar curvature
2.
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Proof. We will only prove the inequality in this section. For the rigidity part, see
section 4.2.

Let Σ2 be a minimizer of the area among all non contractible 2-spheres in M3.
Such a minimzer can be found thanks to results by Meeks and Yau ([MY80]). We
now write the stability inequality :ˆ

Σ

RΣdσ ≥
ˆ
Σ

RM + |A |2dσ.

By the Gauss-Bonnet formula, we have that
´
Σ
RΣdσ = 8π. Hence, since RM ≥ 2,

we get:

2 areaΣ ≤
ˆ
Σ

RM ≤
ˆ
Σ

RΣdσ = 8π

and areaΣ ≤ 4π. □

3. Higher dimensions: the conformal method and its failure to prove
quantitative results

In this section we will quickly review the progress made in the use of hypersur-
faces in the study of positive scalar curvature manifold of dimension between 4 and
7, and expalin why it cannot be used to get quantitative informations.

Schoen and Yau proved in [SY79] :

Theorem 3.1. Let (Mn, g) be a manifold such that:

• n ≤ 7.
• There exsits a non-zero degree map Mn → Tn.

then (Mn, g) admits non metric with positive scalar curvature.

This in particular implies the Geroch conjecture in dimension at most 7.

First part of the proof. The proof goes by induction on n. The cases n = 2 and
n = 3 are handled by the previous section.

The proof of the induction step starts as in section 2.2. Assume Mn+1 satisfies
the assumptions of the theorem and has positive scalar curvature. We will show
that this contradicts the theorem in dimension n.

Consider the projection π : Mn+1 → Tn+1 → T1 of Mn onto the last factor of
Tn+1. Let X be the homology class of generic fiber of π. Then for any smooth
hypersurface Σ ∈ X the projection Σn ⊂Mn+1 → Tn+1 → Tn on the first n factors
of Tn+1 has non zero degree. Let us consider a minimizer Σn of the area in X which
will be smooth since n + 1 ≤ 7. If we can prove that Σn admits a positive scalar
curvature metric we’re done.

Arguing as in dimension 3 by plugging the constant function in the second varia-
tion formula gives nothing more than

´
Σ
RΣdσ > 0: the scalar curvature is positive

in average. This is not enough! □

To take advantage of the full second variation (and not just variations along the
unit normal), we need to make a small detour in conformal land, see for instance
[Bes87]. The conformal Laplacian LΣ on Σ is the operator on functions given by:

LΣf = −4n−1
n−2∆Σf +RΣf.

It is tied to conformal geometry by the fact that the scalar curvature of the metric

f
4

n−2 gΣ is given by f
n+2
n−2LΣf .
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As a consequence of this formula, if LΣ is positive we can can use the first
eigenfunction f1 of LΣ (which will be positive) as a conformal factor to build a

metric f
4

n−2
1 gΣ whose scalar curvature is λ1f

2n
n−2

1 where λ1 > 0 is the first eigenvalue
of LΣ, which is positive.

End of the proof. Now if Σ is a stable minimal hypersurface in manifold with pos-
itive curvature, we have that for any f :M → R:ˆ

Σ

|∇f |2 + 1
2RΣf

2dσ > 0

Hence as operators we have 1
2RΣ > ∆Σ. Thus we can compute:

LΣ = −4n−1
n−2∆Σ +RΣ >

(
−4n−1

n−2 + 2
)
∆Σ = − 2n

n− 2
∆Σ

which shows that the conformal Laplaction LΣ is positive. Hence Σ admits a metric
with positive scalar curvature and we have completed the induction step. □

If we want to use this method to get quantitative results, we first assume that
RM ≥ σ > 0. This will give that the conformal laplacian satisfies LΣ ≥ σ and thus
its first eigenvalue λ1 satisfies λ1 ≥ σ.

Unfortunately, this only gives that the scalar curvature of Σ with the metric

f
4

n−2
1 gΣ is bigger than σf

2n
n−2

1 . Since f1 is only defined up to a positive factor this
lower bound cannot be used.

Moreover, if we would like to prove a metric inequality with this dimension de-
scent method, we would need to relate metric invariants of the conformally deformed

(Σ, f
4

n−2
1 gΣ) to those of (Σ, gΣ) in order to (hopefully) learn something about the

metric invariants of (M, g). This seems (at best) difficult.

4. Quantitative implications of uniformly positive scalar curvature

4.1. Fischer-Colbrie–Schoen symmetrization. In the last section we saw how
the conformal method pushed the use of minimal hypersurfaces beyond dimension
3 to give topological information on positive scalar curvature manifolds and how it
failed to give quantitative information.

Fischer-Colbrie and Schoen found another method to deal with stable minimal
hypersurfaces in [FS80]. Their original goal was to embed a complete Riemannian
plane (P, g) associated with a smooth positive function u on P such that ∆gu −
Kgu = 0 inside a complete scalar-flat Riemannian 3-manifold as a stable minimal
surface. Starting with such a function u, they constructed a new metric g̃ = g +
u2dt2 on P × T1 and a direct computation shows

Rg̃ = Rg −
2∆gu

u
= 0.

The above construction is now called Fischer-Colbrie–Schoen symmetrization.
As illustration of this method in higher dimension, one can given another proof

for the Geroch conjecture using Fischer-Colbrie–Schoen symmetrization. To ensure
smoothness of area minimizing hypersurfaces, we work in dimension at most 7. We
start with an orientable closed Riemannian manifold (Mn, g) with positive scalar
curvature, which also admits a continuous map f : M → Tn with non-zero degree
map. From geometric measure theory we can find an area-minimizing minimal
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hypersurface Σ in M such that Σ also admits a continuous map f ′ : Σ → Tn−1. In
particular, Σ is stable and the operator −∆g− 1

2

(
Rg −RΣ + |A |2

)
is nonnegative.

Hence its first eigenfunction u is smooth, positive, and satisfies:

∆Σu+
1

2

(
Rg −RΣ + |A|2

)
u ≤ 0.

From Fischer-Colbrie-Schoen symmetrization, we are able to construct a new metric
g̃ = g + u2dt2 on M̃ =M × T1 such that

Rg̃ = RΣ − 2∆Σu

u
≥ Rg + |A|2 > 0.

Notice that we have constructed a new Riemannian manifold (M̃, g̃) with positive

scalar curvature admitting a continuous map f̃ : M̃ → Tn with non-zero degree
map. What’s more, M̃ becomes simpler than M since it is T1-symmetric. Not
surprisingly, iterating this process, we will obtain a warped product metric

u1(t1)
2dt21 + u2(t1)

2dt22 + · · ·+ un(t1)
2dt2n

on Tn with positive scalar curvature after induction by Fischer-Colbrie symmetriza-
tion. Now the contradiction can be derived from a direct computation.

In a more intuitive way the difference between the Fischer-Colbrie symmetriza-
tion and the conformal method can be summarized in the following way:

• In the conformal method, we use the stability inequality for a minimal
hypersurface Σ ⊂ M to conformally deform the induced metric on Σ to
give it positive scalar curvature.

• When using the Fischer-Colbrie symmetrization process, the instrinsic ge-
ometry the stable minimal hypersurface Σ ⊂ M is kept intact. Instead
of using the stability inequality to build a deformation of Σ itself, we add
an extra dimension T1 and use the stability inequality to build a suitable
stretching for this extra factor such that Σ×T1 has the same lower bound
on the scalar curvature as M did and enjoy an extra symmetry.

The inductive use of Fischer-Colbrie–Schoen symmetrization is also called torical
symmetrization by Gromov in [Gro18], where he gave an upper bound for the
distance between the two boundary components of Tn−1 × [−1, 1] depending on a
positive scalar curvature lower bound. In the following, we will show a homotopical
2-systole estimate for S2×Tn with positive scalar curvature using Fischer-Colbrie–
Schoen symmetrization, which can be thought of as the 2D analog of Gromov’s
result.

4.2. Small two spheres in p.s.c S2 × Tn. In this subsection, we are going to
give a proof for Theorem 1.2 based on the Fischer-Colbrie–Schoen symmetrization
mentioned in previous subsection. We choose to present the proof only in dimension
4, this improves the readability while still showing the core idea of the proof. So
let us focus on the following result.

Theorem 4.1. Let (M, g) be a closed oriented Riemannian 4-manifold with scalar
curvature Rg no less than 2, which admits a smooth map f : M → S2 × T2 with
non-zero degree. Then M has non-trivial second homotopy group and it holds
sys2(M, g) ≤ 4π. Moreover, the equality holds if and only if the universal cov-
ering of (M, g) is isometric to the product manifold (S2 ×R2, ground + geuc), where
ground is the standard round metric on S2 and geuc denotes the standard Euclidean
metric on R2.
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First we show the desired homotopical 2-systole inequality.

Proof of the 2-systole bound. Let (θ1, θ2) be the standard coordinates on T2. Since
f :M → S2 × T2 has non-zero degree, we see

f∗ ([M ]⌢ f∗(dθ1)) = f∗([M ])⌢ dθ1 = (deg f) · [S2 × {∗} × S1].
In particular, [M ] ⌢ f∗(dθ1) is a non-trivial homology class in H3(M,Z). From
geometric measure theory, there is a smooth embedded oriented minimal hypersur-
face Σ1 with integer multiplicity homologous to [M ]⌢ f∗(dθ1), which has the least
area in its homology class. As a result, Σ1 is a two-sided stable minimal hypersur-
face in M . From the second variation formula, there is a smooth positive function
u1 on Σ1 such that

(4.1) −∆1u1 + (Ricg(ν1, ν1) + |A1|2)u1 = λ1u1,

where ∆1 is the Laplace operator of Σ1 with the induced metric g′1, ν1 is a chosen
unit normal vector field on Σ1, A1 is the second fundamental form of Σ1 with
respect to ν1, and λ1 is a non-negative constant. Following Fischer-Colbrie-Schoen
symmetrization, we define M1 = Σ1 × T1 and

g1 = g′1 + u21dt
2
1.

It follows from a direct computation and the Gauss equation that

(4.2) Rg1 = Rg′
1
− 2∆1u1

u1
= Rg + |A1|2 + 2λ1 ≥ 2.

Denote
π1 : S2 × T2 → S2 × T1, (p, θ1, θ2) 7→ (p, θ2)

to be the projection map and i1 : Σ1 → S2×T2 to be the inclusion map. Naturally,
the composed map f1 = π1 ◦ f ◦ i1 gives a smooth map from Σ1 to S2 × S1 with
non-zero degree. As a consequence, M1 admits a smooth map to S2 × T2 with
non-zero degree in the form of (f1, id).

We are going to repeat above procedure. Notice that the homology class given
by [M1]⌢ f∗1 (dθ2) is a non-trivial element in H3(M1,Z). Again we can construct a
smooth embedded oriented minimal hypersurface Σ2 inM1 with integer multiplicity
homologous to [M1]⌢ f∗1 (dθ2) such that it has the least area in its homology class.

Since (M1, g1) has T1-invariance, it is reasonable to expect that Σ2 splits as

Σ̂2 × T1. To see this, it suffices to show that the Killing field induced by the T1-
isometry is tangent to Σ2. Otherwise, the Killing field will induce a non-zero Jacobi
function on Σ2. The stability of Σ2 then yields the positivity of the Jacobi function
and the integral curve generated by the Killing field will have non-zero intersection
number with Σ2. From our choice of the homology class [M1] ⌢ f∗1 (dθ2), the
intersection should be zero and we obtain a contradiction. From the splitting of
Σ2 we obtain a smooth embedded surface Σ̂2 in Σ1 with integer multiplicity. As
a result, Σ̂2 is an embedded surface in M representing the homology class [M ] ⌢
(f∗dθ1 ⌣ f∗dθ2). Denote

π2 : S2 × T2 → S2 and i2 : Σ̂2 →M.

Then the map π2 ◦ f ◦ i2 is a smooth map from Σ̂2 to S2 with non-zero degree.
Now we derive more useful information from the stability of Σ2. As before, the

stability inequality actually yields a positive function u2 on Σ2 such that

(4.3) −∆2u2 + (Ricg1(ν1, ν1) + |A2|2)u2 = λ1u2, λ2 ≥ 0.
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Given the T1-invariance of M1 and Σ2, the Laplace operator ∆2 and the curvature
quantities above are all T1-invariant and so is the function u2. In the following, we
also view u2 as a function on Σ̂2 denoted by û2. According to the Fischer-Colbrie
symmetrization once again, we define

M2 = Σ2×T1 = Σ̂2×T2 and g2 = g′2+u
2
2dt

2
2 = ĝ2+û

2
1dt

2
1+û

2
2dt

2
2, û1 := u1|Σ̂2

,

where g′2 is the induced metric of Σ2 from (M1, g1) and ĝ2 is the induced metric of

Σ̂2 in (M, g). A straightforward calculation shows

(4.4) Rg2 = Rg′
2
− ∆2u2

u2
= Rg1 + |A2|2 + 2λ2 ≥ 2

and

(4.5) Rg2 = Rĝ2 − 2

(
∆̂û1
û1

+
∆̂û2
û2

)
− 2ĝ2(∇̂ log û1, ∇̂ log û2),

where ∆̂ and ∇̂ are Laplace and gradient operators of (Σ̂2, ĝ2). From (4.4) we know

that Σ̂2 consists of spherical components. By integrating (4.5) on each component

Σ̂′
2 of (Σ̂2, ĝ2), we see

2 area(Σ̂′
2, ĝ2) ≤

ˆ
Σ̂′

2

Rg2 dσĝ2

= 4πχ(Σ̂′
2)−

ˆ
Σ̂′

2

|∇̂ log û1|2 + |∇̂ log û1|2 dσĝ2

−
ˆ
Σ̂′

2

|∇̂(log û1 + log û2)|2 dσĝ2 ≤ 8π.

(4.6)

This yields that each component of (Σ̂2, ĝ2) has area no greater than 4π. Recall

that the map f2 : Σ̂2 → S2 has non-zero degree, then at least one component of Σ̂2

is homotopical non-trivial in (M, g) and so we have sys2(M, g) ≤ 4π. □

The rigidity will come from a more careful analysis. Before we continue the
proof, let us keep in mind the following diagram that illustrates our construction
above.

(Σ̂2, ĝ2)
i //

×T1

��

(Σ1, g
′
1)

i //

×T1

��

(M, g)

(Σ2, g
′
2)

i //

×T1

��

(M1, g1)

(M2, g2)

Proof of the equality case. Take a component Σ̂′
2 of Σ̂2 that represents a non-trivial

homology class. If we have sys2(M, g) = 4π, then area(Σ̂′
2, ĝ2) = 4π. From (4.6)

it follows that û1 and û2 are positive constant functions on Σ̂′
2 and then (Σ̂′

2, ĝ2)
is isometric to the standard round sphere. Combined with (4.3) and (4.4), the

component Σ′
2 = Σ̂′

2 × S1 of Σ is totally geodesic and the normal Ricci curvature
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vanishes identically on Σ′
2. Notice that the Jacobi operator of Σ′

2 reduces to the
Laplace operator. Now we borrow a nice idea from [BBN10] raised up by Bray,
Brendle and Neves. It turns out that we can construct a foliation {Σ′

2,t}−ϵ<t<ϵ with
Σ′

2,0 = Σ′
2 consisting of hypersurfaces with constant mean curvature (abbreviated

by CMC) from the implicit function theorem. If we can show that hypersurfaces
{Σ′

2,t} is area-minimizing in its homology class, then the same analysis as above
yields that each Σ′

2,t is totally geodesic and so (M1, g1) locally as the product
manifold Σ′

2×(−ϵ, ϵ). This further implies a local isometry from Σ′
2×R to (M1, g1)

after an open and closed argument.
So let us focus on the area-minimizing property of Σ′

2,t. In fact, the underlying
philosophy is that stable non-zero CMC hypersurfaces Σ possess more scalar cur-
vature than stable minimal hypersurfaces since the stability now yields a positive
function u satisfying

−∆u+ (Ric(ν, ν) + |A|2)u = λu,

where the term |A|2 provides more positivity due to the non-zero mean curvature.
Since sys2(M, g) is not smaller than 4π, it forbids the existence of a stable non-
zero CMC hypersurface Σ homologous to Σ′

2 that splits as Σ′ × T1 due to our
previous argument. This yields that the mean curvature of Σ′

2,t with respect to ∂t
is non-positive when t ≥ 0 and it is non-negative when t ≤ 0. If this is not the
case, say the mean curvature of Σ′

2,t is a positive constant c for some positive t,
then Σ′

2 and Σ′
2,t can serve as barriers and we can minimize the Brane functional

B(Ω) = area(∂Ω)− c
2 vol(Ω) to obtain a stable CMC hypersurface Σ homologous to

Σ′
2 splitting as Σ′ × T1, which leads to a contradiction. When the mean curvature

of Σ′
2,t behaves as described above, then the area of Σ′

2,t is always no greater than
Σ′

2 and so it holds area(Σ′
2,t) ≡ area(Σ′

2). As a result, Σ′
2,t is area-minimizing in

its homology class as Σ′
2.

Now, there is a local isometry Φ2 : Σ′
2 × R → M1. In particular, this yields

that the function u1 is a positive constant on Σ1 and there is a local isometry
ϕ2 : Σ̂′

2 × R → Σ1. Also, we see that the scalar curvature Rg1 is identical to 2.
Combined with (4.1) and (4.2), this implies that Σ1 is totally geodesic in (M, g)
and the normal Ricci curvature vanishes along Σ1. Repeating above analysis, we
obtain a local isometry Φ1 : Σ1 × R → M . The composition of ϕ2 and Φ1 gives a
local isometry from S2×R2 to (M, g), which yields the universal covering of (M, g)
is the standard product manifold S2 × R2. □

We emphasize that the above argument is still valid for higher dimensions no
greater than seven without any change.

5. Further quantitative implications using µ-bubbles

In previous sections, we have seen various applications of minimal hypersurface
in problems involving scalar curvature. However, one should not limit his sight
only to minimal hypersurfaces. In fact, there is a broader class of hypersurfaces
called µ-bubbles, whose variation theory is also powerful. They were introduced by
Gromov in his IHES lectures [Gro19].

Let (M, g) be a Riemannian manifold and µ be a Borel measure on M . A
hypersurface Σ bounding a region Ω is called a µ-bubble if Ω is a critical point of
the functional

B(Ω) = area(∂Ω)− µ(Ω).
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Usually, we take the Borel measure µ to be the one associated with a smooth
function h on M . Namely,

µ(Ω) =

ˆ
Ω

hd volg .

In this case, a µ-bubble is just an h-boundary (i.e. a boundary with mean curvature
h with respect to the unit outer normal).

The extra freedom given by the choice of µ can be used to ensure the existence of
stable µ-bubbles in situations where a stable minimal hypersurface would be hard
to find or control.

In the following, we discuss several applications of µ-bubbles to the estimation
of the homotopical 2-systole of manifolds with positive scalar curvature.

5.1. The width of p.s.c metrics on [−1, 1] × Tn−1. Assume for a minute we
don’t know that Tn doesn’t admit a metric with positive scalar curvature and try
to build a metric with scalar curvature n(n− 1) on Tn in the most naive way:
consider a warped product g = dt2 + f(t)2dx2 on (−ε, ε) × Tn−1, where dx2 is a
flat metric on Tn−1. A routine computation shows that

Rg = −2(n− 1)

(
f ′(t)

f(t)

)′

− n(n− 1)

(
f ′(t)

f(t)

)2

.

By requiring the scalar curvature to be n(n − 1) we get an ODE which can be

solved, and get that f(t) =
(
cos nt

2

) 2
n and thus that g is at best defined on (−π

n ,
π
n ).

In particular the two boundary components cannot be further than 2π
n apart.

In [Gro18], Gromov proved that this upper bound holds in a much more general
setting:

Theorem 5.1. Let n ≤ 7 and g be a metric on [−1, 1]× Tn−1 with Rg ≥ n(n− 1)
then:

dg
(
{−1} × Tn−1, {1} × Tn−1

)
≤ 2π

n
.

This is another kind of quantitative result involving scalar curvature, an inter-
esting fact is that the comparison is not made with a constant sectionnal curvature
metric but with the constant scalar curvature metric on (−π

n ,
π
n ) × Tn−1 we built

before.
This results also gives another proof of the impossibility to endow Tn with a pos-

itive scalar curvature: such a metric would lift to a complete metric with uniformly
positive scalar curvature using the covering R×Tn−1 → Tn, and the induced metric
on [−L,L] × Tn−1 would boundary components as far appart as wanted provided
L is big enough.

Sketch of proof using FCS symmetrization. The proof given in [Gro18] is an appli-
cation of Fischer-Colbrie–Schoen symmetrization with a twist: one needs to con-
sider hypersurfaces with boundary. To keep this survey short, we will not address
the technical issues raised by the presence of boundaries.

One starts by minimizing the area among all hypersurfaces which are homologous
to [−1, 1]×Tn−2×{∗} relative to the boundary of [−1, 1]×Tn−1. Let us call Σn−1

such a minimzer. The Fischer-Colbrie–Schoen symmetrization process allows us to
build a metric gn = gΣ + (undθn)

2 on Σn−1 × T1 with:

• un : Σ → R a positive function.
• gΣ being the metric induced by g on Σn−1.
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• gn = gΣ + (un(x)dθn)
2 has scalar curvature at least n(n− 1).

Let us notice that since Σn−1 is isometrically embedded in M in a boundary com-
patible way, the distance between the boundary component of Σn−1 is bigger than
the distance between the boundary components of M . And since the metric gn on
Σn−1×T1 is invariant by the action of R on T1, the distance between the boundary
components in Σn−1 × T1 is the same as it is Σn−1.

Assume for a while that Σn−1 is diffeomorphic to [−1, 1]×Tn−2×{∗}. We could
then minimize area among hypersurfaces of the form Sn−2×T1 ⊂ Σn−1×T1 where
Sn−2 ⊂ Σn−1 is homologous to [−1, 1] × Tn−3 × {∗} ⊂ [−1, 1] × Tn−2 relative to

the boundary, let us call Σ̃n−2 a minimizer. An application of the Fischer-Colbrie–
Schoen symmetrization then gives a metric gΣ̃ + u2n−1dθ

2
n−1 + u2ndθ

2
n on Σ̃n−2 ×T2

with scalar curvature greater than n(n − 1). Iterating this construction we gain
more and more symmetry and in the end get a metric dt2 +

∑n
i=2(ui(t)dθi)

2 on
I × Tn−1 with scalar curvature bigger n(n − 1) where I is an interval. This lower
bound on the scalar curvature gives a differential inequality on the functions ui
which in turns bounds the length of I by 2π

n .

The fact that Σn−1 may be topologically more complicated than [−1, 1]×Tn−2×
{∗} is handled by the use of non zero degree maps to [−1, 1]×Tn−1 at each step. □

5.2. A simpler proof using µ-bubbles. Looking at the model (−π/n, π/n) ×
Tn−1 with the metric dt2 +

(
cos nt

2

) 4
n dx2, the previous proof used the fact that

(−π/n, π/n)× Tn−2 × {∗} is a stable minimal hypersurface.
If we want to find a proof that avoids dealing with hypersurfaces with boundary,

we would need to find a stable closed minimal hypersurface in the model. The
hypersurface Σ0 = {0} × Tn−1 is minimal but not stable. In his IHES lectures
[Gro19], Gromov gave a new proof of the previous theorem by using µ-bubbles
with µ chosed in such a way that in the model the hypersurface Σ0 is a stable
µ-bubble.

First let us focus on the existence of µ-bubbles. For convenience, we introduce
the following definition.

Definition 5.2. A triple (M,∂±, g) is called a Riemannian band if (M, g) is a
compact Riemannian manifold with non-empty boundary, where ∂+ and ∂− are
two portions of the boundary ∂Ω such that

(i) ∂+ and ∂− are disjoint and ∂Ω = ∂+ ∪ ∂−;
(ii) ∂+ and ∂− are union of boundary components of Ω.

Let (Mn, g, ∂±) be a Riemannian band and Σ0 be a fixed closed hypersurface
separating ∂− and ∂+. We denote Ω0 to be the region associated to Σ0 such that
∂Ω0 = ∂− ∪ Σ0. Let

C = {Caccippoli sets Ω in M such that Ω∆Ω0 ⋐ M̊},

where M̊ denotes the interior of M . Given a smooth function h defined over M̊ ,
we consider

Ah(Ω) = Hn−1(∂Ω ∩ M̊)−
ˆ
M̊

(χΩ − χΩ0
)hdHn

g .

The use of Ah instead of the functional B defined above is necessary to handle
noncompact ambient space where h may not be integrable on some Ω that we
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would like include. Ah and B differ by a constant if they are both defined, hence
the variation formulas will not be affected by this change.

An advantage of µ-bubbles is that they always exist on a given Riemannian band
for a suitably imposed function h.

Proposition 5.3. For n ≤ 7, if

(5.1) lim
x→∂−

h(x) = +∞ and lim
x→∂+

h(x) = −∞,

then there exists a smooth minimizer Ω̂ ∈ C for Ah.

Proof. Denote

I = inf{Ah(Ω) : Ω ∈ C}.
First we show I > −∞. For any s > 0, we denote

Σ±
s = {x ∈ M̊ : dist(x, ∂±) = s}.

Clearly, Σ±
s is a foliation around ∂± when s is small. From (5.1) we can assume

H−
s ≤ h ◦ ϕ and H+

s ≤ −h ◦ ϕ for s ≤ s0, where s0 is a small positive constant and
H±

s is the mean curvature of Σ±
s with respect to ∂s. Let Ω

±
s be the region enclosed

by Σ±
s and ∂±. Possibly decreasing the value of s0, we can construct a smooth

vector field X such that X = ∂s on Ω±
s0 . It is clear that

divgX = H−
s ≤ h in Ω−

s0

and

divgX = H+
s ≤ −h in Ω+

s0 .

Notice that for any region Ω ∈ C we have the following estimate

Ah(Ω ∪ Ω−
s0\Ω

+
s0)−Ah(Ω)

=Hn−1(∂Ω−
s0\Ω)−Hn−1(∂∗Ω ∩ Ω−

s0) +Hn−1(∂Ω+
s0 ∩ Ω)

−Hn−1(∂∗Ω ∩ Ω+
s0)−

ˆ
Ω−

s0
\Ω
hdHn

g +

ˆ
Ω∩Ω+

s0

hdHn
g

≤Hn−1(∂Ω−
s0\Ω)−Hn−1(∂∗Ω ∩ Ω−

s0) +Hn−1(∂Ω+
s0 ∩ Ω)

−Hn−1(∂∗Ω ∩ Ω+
s0)−

ˆ
Ω−

s0
\Ω

divgX dHn
g −
ˆ
Ω∩Ω+

s0

divgX dHn
g

≤0,

since ˆ
Ω−

s0
\Ω

divgX dHn
g =

ˆ
∂∗(Ω−

s0
\Ω)

⟨X, ν⟩g dHn−1
g

≥ Hn−1(∂Ω−
s0\Ω)−Hn−1(∂∗Ω ∩ Ω−

s0)

and ˆ
Ω∩Ω+

s0

divgX dHn
g =

ˆ
∂∗(Ω∩Ω+

s0
)

⟨X, ν⟩g dHn−1
g

≥ Hn−1(∂Ω+
s0 ∩ Ω)−Hn−1(∂∗Ω ∩ Ω+

s0).

It follows

Ah(Ω) ≥ Ah(Ω ∪ Ω−
s0\Ω

+
s0) ≥ −CHn(M, g), ∀Ω ∈ C,

where C is a universal constant such that |h| ≤ C onM−Ω−
s0∪Ω

+
s0 . Hence I > −∞.



14 THOMAS RICHARD, JINTIAN ZHU

Now we establish the existence of a smooth minimizer for Ah in C. Let Ωk be
a sequence of regions in C such that Ah(Ωk) → I as k → ∞. According to the
discussion above we can assume Ωk∆Ω0 ⊂M −Ω−

s0 ∪Ω+
s0 . For k large enough there

holds
Hn−1(∂∗Ωk) ≤ I + 1 + CHn(M, g).

From the compactness of Caccippoli sets, after taking the limit of Ωk we can obtain
Ω̂ ∈ C with Ah(Ω̂) = I. The smoothness of ∂Ω̂ comes from the regularity theorem
[ZZ20, Theorem 2.2]. □

Proof of Theorem 5.1 using µ-bubbles. Let H(t) be the mean curvature of the hy-
persurface {t} × Tn−1 in the model (−π/n, π/n) × Tn−1, we will use this mean
curvature in the model to build a suitable µ-bubble functional. Note that 2H′ =
−n(n− 1)− n

n−1H
2.

The proof goes by contradiction. Assume ([−1, 1]×Tn−1, g) has scalar curvature
at least n(n − 1) and that dg

(
{−1} × Tn−1, {1} × Tn−1

)
> 2π

n . This allows us to

build a smooth surjective 1-Lipschitz function ϕ : [−1, 1] × Tn−1 → (−π+ε
n ; π+ε

n )

whose level sets separates the two components of the boundary of ϕ : [−1, 1]×Tn−1.
Set:

h : [−1, 1]× Tn−1 → [−∞,+∞]

x 7→


+∞ if ϕ(x) ≤ −π

n

H(ϕ(x)) if ϕ(x) ∈ (−π/n, π/n)
−∞ if ϕ(x) ≥ π

n

The behavior of h close to the boundary of [−1, 1]×Tn−1 ensures that a minimizer
Ω of the Ah functional defined on h−1(] − ∞,+∞[) with this choice of h and a
suitable choice of Ω0 exists and stays where h is finite, see Proposition 5.3 above.
The positivity of the second variation of B gives that for any function f : ∂Ω → R :ˆ

Σ

|∇f |2 − 1
2

(
RM −RΣ + |A |2 + 2⟨∇h, ν⟩+ h2

)
f2dσ ≥ 0

where Σ = ∂Ω and A and ν are the second fundamental form and unit normal to
Σ.

Using that on Σ we have h2 = H2
Σ ≤ (n−2)|A |2, this implies that the operator:

−∆Σ + 1
2RΣ − 1

2

(
RM − 2|∇h|+ n

n−1h
2
)

is nonnegative on C∞(Σ). Moreover, our choice of h together with the fact that
RM ≥ n(n − 1) will ensure that the term in between the parenthesis above is
nonnegative. The will then show that −∆Σ + 1

2RΣ ≥ 0, which implies as in section
3 allow us to show the conformal Laplacian of Σ = ∂Ω is positive, hence Σ admits
a metric with positive scalar curvature. Since the map Σ ⊂ [−1, 1]×Tn−1 → Tn−1

has non zero degree, this is a contradiction. □

Using the same proof without the topological assumption and using Fischer-
Colbrie–Schoen symmetrization instead of the conformal method in the last step,
Gromov also proved:

Theorem 5.4. Let (Mn, ∂±, g) (n ≤ 7) be a Riemannian band. Assume that

Rg ≥ 4(n− 1)π2

ndg(∂−, ∂+)2
+ δ



SMALL S2 IN POSITIVE SCALAR CURVATURE. 15

for some δ > 0. Then there exists

• an hypersurface Σ which separates ∂− and ∂+,
• a positive function u : Σ → R,

such that the metric h = g|Σ + u2dt2 on Σ× R has Rh ≥ δ.

The conclusion of this theorem can be summarized in the following way: if
(M, g) has two boundary components ∂− and ∂+ which are 2π

n appart and has
scalar curvature uniformly bigger than n(n− 1) by an amout of δ, then this excess
δ of scalar curvature compared to the [−1, 1]×Tn−1 situation can be used to build
a warped product metric of scalar curvature greater than δ on Σ × S1 where Σ is
an hypersurface in M separating ∂− and ∂+.

5.3. Small two-spheres in p.s.c S2 × S2. As an application of this idea, we give
an upper bound for the 2-systole of some metrics with positive scalar curvature on
S2 × S2, proved by the first author in [Ric20]. Let us first recall that no universal
upper bound is known for the 2-systole of (S2 × S2, g) with Rg ≥ 4.

In order to state the result, we need some terminology. Let Sℓ be the set of
embedded surfaces S ⊂ S2 × S2 which are homologous to S2 × {∗}. Let sysℓ(g) be
the infimum of the area of 2-spheres in Sℓ. By definition, sys2(g) ≤ sysℓ(g).

We also introduce a coarse measure of the size Sℓ, called the left stretch of g and
defined by strℓ(g) = supS1,S2∈Sℓ

dg(S1, S2). We can now state the estimate:

Theorem 5.5. Let g be a metric on S2 × S2 with Rg ≥ 4.

If s = strℓ(S2 × S2, g) >
√
3π
2 , then sysℓ(S2 × S2, g) ≤ 8πs2

4s2−3π2 . Moreover there is

an embedded 2-sphere whose area is at most 8πs2

4s2−3π2 .

Sketch of proof. We will show here in a qualitative way why a large enough lower
bound on strℓ gives an upper bound on sysℓ, the precise inequality is obtained by
writing the precise inequality at each step.

Let us assume that s = strℓ is big. Then we can find two surfaces S1 and S2 in
Sℓ which are far away from each other. Thus M̃ =M\(S1 ∪ S2) has two boundary
components which are about strℓ apart.

Since g has Rg ≥ 4, we can apply Theorem 5.4 provided s >
√
3π
2 . This implies

the existence of an hypersurface Σ which separates S1 and S2 together with a
function u : Σ → R such that the metric gΣ+(udθ)2 on Σ×S1 has strictly positive
scalar curvature. Moreover a topological argument shows that there is a non trivial
map Σ → S2 × T1, and thus a non trivial map Σ× T1 → S2 × T2.

Then we use Theorem 1.2 to conclude that there is a small 2-sphere in Σ × T1

which (thanks to the R-symmetry of gΣ + (udθ)2) is indeed a small 2-sphere in
Σ. Since Σ is isometrically embedded in S2 × S2, this gives us a small 2-sphere in
S2 × S2, which can be shown to belong to Sℓ. □

5.4. Rigidity results using µ-bubbles. In this subsection, we deal with Theorem
1.4 and Theorem 1.5. As we will see later, µ-bubbles have very nice compactness
property to guarantee the existence of an area-minimizing hypersurface in non-
compact complete manifolds sometimes.

In our later application, we will use the following family of functions.

Lemma 5.6. For any ϵ ∈ (0, 1), there is a function

hϵ :

(
− 1

nϵ
,
1

nϵ

)
→ (−∞,+∞)
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such that

(1) hϵ satisfies

n

n− 1
h2ϵ + 2h′ϵ = n(n− 1)ϵ2 on

(
− 1

nϵ
,− 1

2n

]
∪
[
1

2n
,
1

nϵ

)
and there is a universal constant C = C(n) so that

sup
− 1

2n≤t≤ 1
2n

∣∣∣∣ n

n− 1
h2ϵ + 2h′ϵ

∣∣∣∣ ≤ Cϵ.

(2) h′ϵ < 0 and
lim

t→∓ 1
nϵ

hϵ(t) = ±∞.

(3) As ϵ→ 0, hϵ converge smoothly to 0 on any closed interval.

Proof. Let

h+ϵ :

(
− 1

nϵ
,+∞

)
, t 7→ (n− 1)ϵ coth

(
nϵt+ 1

2

)
and

h−ϵ :

(
−∞,

1

nϵ

)
, t 7→ −(n− 1)ϵ coth

(
−nϵt+ 1

2

)
.

Through a straightforward calculation we see that h+ϵ and h−ϵ are solutions to the
equation

n

n− 1
h2 + 2h′ = n(n− 1)ϵ2.

We now glue h+ϵ and h−ϵ to obtain the desired function hϵ. Fix a nonnegative
smooth function η̄ with compact support contained in (− 1

2n ,
1
2n ) and define

η(t) =

(ˆ +∞

−∞
η̄(s) ds

)−1 ˆ t

−∞
η̄(s) ds.

Clearly, η is smooth with η′ ≥ 0 and 0 ≤ η ≤ 1. Furthermore, it satisfies η ≡ 0 on
(−∞,− 1

2n ] and η ≡ 1 on [ 1
2n ,+∞). Denote

hϵ = (1− η)h+ϵ + ηh−ϵ .

The proof is now completed by verifying listed properties one by one. □

Now we show how to prove Theorem 1.4 and Theorem 1.5 with µ-bubbles. The
key idea is to approximate an area-minimizing hypersurface by µ-bubbles.

Theorem 5.7. Let (M, g) be a complete open Riemannian manifold with non-
trivial second homotopy group. If the scalar curvature of (M, g) is no less than 2,
then it holds sys2(M, g) ≤ 4π, where the equality holds if and only if the universal
covering of (M, g) is isometric to the product manifold (S2 × R, ground + dt2).

Proof. Without loss of generality, we can assumeM to be simply connected. In this
case, we can find an embedded 2-sphere Σ0 in M from the sphere theorem. Clearly
Σ0 is also homologically non-trivial due to the Hurewicz theorem. So Σ0 divides M
into two unbounded connected component and there is a proper smooth function
ϕ :M → (−∞,+∞) with |dϕ|g < 1 and ϕ−1(0) = Σ0. Denote Ω0 = {ϕ < 0}. From
Sard’s theorem, there is a sequence of ϵk → 0 such that

Mk = ϕ−1

([
− 1

3ϵk
,

1

3ϵk

])
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is a Riemannian band with

∂± = ϕ−1

(
± 1

3ϵk

)
.

Consider the functional

Ak(Ω) = H2
g(∂

∗Ω)−
ˆ
M

(χΩ − χΩ0
)hϵk ◦ ϕdH3

g

for all Caccipoli sets Ω such that Ω∆Ω0 ⋐ M̊k. It follows from Proposition 5.3
that there is a smooth minimizer Ωk with Ω∆Ω0 ⋐ M̊k for functional Ak. For each
component Σk of ∂Ωk, the second variation formula for Ak yieldsˆ

Σk

|∇kψ|2 − (Ricg(νk, νk) + |Ak|2 − νk(hϵk ◦ ϕ))ψ2 dσk ≥ 0,

where ∇k and dσk is the gradient operator and area element of Σk with the in-
duced metric, νk is the unit outer normal of Σk with respect to Ωk and Ak is the
corresponding second fundamental form. After taking the test function ψ ≡ 1 and
applying the Schoen-Yau’s trick, we see

(5.2)

ˆ
Σk

Rg + |Åk|2 +
(
3

2
h2ϵk + 2h′ϵk

)
◦ ϕdσk ≤ 4πχ(Σk) ≤ 8π.

Due to the facts Rg ≥ 2 and

3

2
h2ϵk + 2h′ϵk ≥ −Cϵk → 0,

we conclude that Σk is a sphere with area no greater than 8π(2 − Cϵk)
−1 for k

large enough. Since ∂Ωk is homologous to Σ0, it represents a non-trivial homology
class in H2(M,Z). In particular, at least one component of ∂Ωk is homotopically
non-trivial, which yields π2(M) ̸= 0 and

sys2(M, g) ≤ 8π(2− Cϵk)
−1 → 4π, as k → ∞.

Now we show the desired rigidity result under the assumption sys2(M, g) =
4π. From previous discussion we can pick up a connected component Σk of ∂Ωk

representing a non-trivial class. Our assumption forces Σk to have area no less than
4π and so (5.2) yields non-empty intersection of Σk and the fixed compact set

K = ϕ−1

([
−1

6
,
1

6

])
.

From direct comparison we have area(Σk) ≤ area(Σ0). From the curvature estimate
(see [ZZ20, Theorem 3.6]) and the minimizing property, Σk converges smoothly to
an area-minimizing boundary Σ with multiplicity one, which has area no greater
than 4π and non-empty intersection with K. It follows from [GL83, Theorem 8.8]
that Σ is a sphere. Now surfaces Σk turn out to graphs over Σ and so Σ also
represents a non-trivial homology class. From sys2(M, g) = 4π we know that Σ has
the least area in its homology class. The rigidity now comes from the argument in
[BBN10]. □

The idea to prove Theorem 1.5 is similar to the above but we need more effort to
show the compactness of the limit of Σk. As before, we only work in dimension 4
since no essential difference will occur in higher dimensions no greater than seven.
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Theorem 5.8. Let (M, g) be a complete, oriented, open Riemannian 4-manifold
with scalar curvature Rg no less than 2, which admits a smooth proper map f :
M → S2 × S1 × R. Then M has non-trivial second homotopy group and it holds
sys2(M, g) ≤ 4π, where the equality holds if and only if the universal covering of
(M,g) is isometric to the product manifold (S2 × R2, ground + geuc).

Proof. For convenience, we write

f = (f1, f2) :M → (S2 × S1)× R.

From Sard’s theorem we can assume that Σ0 = f−1
2 (0) is an embedded hypersurface

in M . It is not difficult to construct a smooth function ϕ : M → (−∞,+∞) with
|dϕ|g < 1 and ϕ−1(0) = Σ0. Denote Ω0 = {ϕ < 0}. Again there is a sequence of
ϵk → 0 such that

Mk = ϕ−1

([
− 1

4ϵk
,

1

4ϵk

])
is a Riemannian band with

∂± = ϕ−1

(
± 1

4ϵk

)
.

As before, we consider the functional

Ak(Ω) = H3
g(∂

∗Ω)−
ˆ
M

(χΩ − χΩ0)hϵk ◦ ϕdH4
g

for all Caccipoli sets Ω such that Ω∆Ω0 ⋐ M̊k. From Proposition 5.3 there is a
smooth minimizer Ωk with Ω∆Ω0 ⋐ M̊k for functionalAk. Since ∂Ωk is homologous
to Σ0, the restriction of f1 to ∂Ωk gives a smooth map to S2 × S1 with non-zero
degree and the same thing holds for some component Σk of ∂Ωk. The stability of
Σk yields a positive smooth function uk and a non-negative constant λk such that

(5.3) −∆kuk − (Ricg(νk, νk) + |Ak|2 − νk(hϵk ◦ ϕ))uk = λkuk.

Denote gk to be the induced metric of Σk from (M, g). Following Fischer-Colbrie-

Schoen symmetrization, we can construct a new manifold (Σ̃k, g̃k) with Σ̃k = Σk×S1
and g̃k = gk + u2kdt

2. From a direct calculation and the Gauss equation, we have

Rg̃k = Rgk − 2∆kuk
uk

≥ Rg +

(
4

3
h2ϵk + 2h′ϵk

)
◦ ϕ

≥ 2− Cϵk.

Notice that the map Fk = (f1|Σk
, id) is a smooth map from Σ̃k to S2×T2 with non-

zero degree. It follows from Theorem 1.2 that Σk has non-trivial second homotopy
group and

sys2(Σ̃k, g̃k) ≤ 8π (2− Cϵk)
−1
.

Moreover, it follows from the proof of Theorem 1.2 that there is an embedded 2-
sphere Sk in Σk with area no greater than 8π (2− Cϵk)

−1
and the map π ◦ f1|Sk

:
Sk → S2 has non-zero degree, where π : S2 × S1 → S2 denotes the projection map.
In particular, Sk represents a non-trivial homology class in H2(M,Z) and so

sys2(M, g) ≤ 8π (2− Cϵk)
−1 → 4π, as k → ∞.
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In the following, we show a proof for rigidity assuming sys2(M, g) = 4π. In this
case, Σk has non-empty intersection with the compact set

K = ϕ−1

([
−1

8
,
1

8

])
.

We have area(Σk) ≤ area(Σ0) from direct comparison. The curvature estimate and
the minimizing property implies that Σk converges to an area-minimizing boundary
Σ with multiplicity one, which has area no greater than area(Σ0) and non-empty
intersection with K. Fixed a point p in Σ, we can find point pk in Σk such that
pk → p as k → ∞ from the convergence. Notice that we can always normalize
the function uk in (5.3) to satisfy uk(pk) = 1. As a consequence, uk converges
smoothly to a smooth positive function u on Σ due to Harnack inequality and
standard elliptic estimates.

Next we prove that Σ has non-negative Ricci curvature. Once this has been done,
Σ has to be compact due to the well-known fact that a non-compact complete
Riemannian manifold with non-negative Ricci curvature has infinite volume (see
[Yau76]). Combined with the fact sys2(M, g) = 4π, a similar argument as in the
proof of Theorem 1.2 then yields that the universal covering of (M, g) is isometric
to the product manifold S2 × R2. So let us focus on a proof for the Ricci flatness
of Σ. From the uniform curvature estimate and area bound for Σk and Σ, there is
a universal constant r0 such that

Σk ∩K ⊂ BΣk
r0 (pk) and Σ ∩K ⊂ BΣ

r0(p),

where BΣk
r0 (pk) denotes the intrinsic r0-ball of Σk centered at the point pk and so

is BΣ
r0(p).

In the first step, we show that (Σ̃, g̃) has non-negative Ricci curvature, where

Σ̃ = Σ × S1 and g̃ = gΣ + u2dt2. Actually, this comes from a careful analysis on
elliptic operators

Lk = ∆g̃k + 1− Rg̃k

2
and L = ∆g̃ + 1− Rg̃

2
.

Observe that we have Rg̃ ≥ 2 from the fact Rg̃k ≥ 2−Cϵk. We claim that Rg̃ must

be identical to two. Otherwise, there is a point (q, θ) in Σ̃ such that Rg̃ > 2 at that
point. As a consequence, there will be a constant r1 > r0 such that

µ(L, BΣ
r1(p)× S1) > 0,

where µ(L, BΣ
r1(p)× S1) denotes the first Neumann eigenvalue of L on BΣ

r1(p) and
we will continue to use similar notations below. This implies

µ(Lk, B
Σk
r1 (pk)× S1) > 0

for k large enough and so we have µ(Lk, Σ̃k) > 0 due to the fact Rg̃k ≥ 2 outside

BΣk
r0 × S1. Now we can find a positive smooth function ṽk on Σ̃k such that

−∆g̃kvk +

(
Rg̃k

2
− 1

)
vk = µ(Lk, Σ̃k)vk.

From Fischer-Colbrie-Schoen symmetrization, we can construct a new manifold
(Σ̂k, ĝk) with Rĝk ≥ 2+2µ(Lk, Σ̃k), where Σ̂k = Σ̃k×S1 and ĝk = g̃k+ ṽ

2
kdt

2. This
will lead to the estimate

sys2(M, g) ≤ 4π

1 + µ(Lk, Σ̃k)
< 4π
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from the proof of Theorem 1.2, which contradicts to the fact sys2(M, g) = 4π. The
non-negativity of the Ricci curvature Ricg̃ comes from a similar argument. Actually,
we have the formula

d

dτ

∣∣∣∣
τ=0

µ(Lh,τ , B
Σ
r1(p)× S1)

= volg̃(B
Σ
r1(p)× S1)−1

ˆ
BΣ

r1
(p)×S1

⟨h,Ricg̃⟩g̃ dµg̃

for any symmetric 2-tensor h with compact support in BΣ
r1(p)× S1, where

Lh,τ = ∆g̃−τh + 1− Rg̃−τh

2
.

If the Ricci curvature Ricg̃ is negative at some point q, then there is a unit one form

Ω in Λ1(TqΣ̃) such that Ricg̃(ω) = λω for some negative constant λ. Of course,
we can extend ω to a neighborhood U of q contained in BΣ

r1(p) × S1 such that
Ricg̃(ω, ω) < 0 holds in U . Let η be a non-negative cut-off function with compact
support in U satisfying η(q) > 0. With h = ηRicg̃(ω, ω)ω ⊗ ω, we obtain

d

dτ

∣∣∣∣
τ=0

µ(Lh,τ , B
Σ
r1(p)× S1) > 0

and so there is a positive constant τ0 such that µ(Lh,τ0 , B
Σ
r1(p)× S1) > 0. Writing

Σk as graphs over Σ, we can view h as a symmetric 2-tensor on Σ̃k. Consider the
metric

g̃k,τ0 = g̃k − τ0h

and the associated operator

Lk,h,τ0 = ∆g̃k−τ0h + 1− Rg̃−τ0h

2
.

It holds for k large enough that µ(Lk,h,τ0 , B
Σk
r1 (pk)) > 0. Repeating Fischer-Colbrie-

Schoen symmetrization argument above and using the fact g̃k ≤ g̃k,τ0 as quadratic
forms, we conclude that

sys2(M, g) ≤ 4π

1 + µ(Lk,h,τ0 , B
Σk
r1 (pk))

< 4π,

which leads to a contradiction again. From the proof of Theorem 1.2, deformation
for lapse function uk is allowed when we do above argument. In particular, we can
obtain the estimate Ricg̃(∂t, ∂t) ≡ 0 for the tangential vector ∂t along S1.

Now, we are ready to prove the non-negativity of the Ricci curvature of Σ. From
a direct computation and the fact Ricg̃(∂t, ∂t) = 0, we see that u is a positive
harmonic function on Σ. Let v = log u, then we have

∆v = −|∇v|2.
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Let η be a smooth non-negative cut-off function such that η ≡ 1 on BΣ
r (p), η ≡ 0

outside BΣ
2r(p) and |∇η| ≤ 2/r. Integral by parts, we have

−
ˆ
Σ

η2|∇v|2 dσ =

ˆ
Σ

η2∆v dσ

= −
ˆ
Σ

2η∇η · ∇v dσ

≥ −1

2

ˆ
Σ

η2|∇v|2 dσ − 2

ˆ
Σ

|∇η|2 dσ.

It follows ˆ
BΣ

r (p)

|∇v|2 dσ ≤
ˆ
Σ

η2|∇v|2 dσ ≤ 4

ˆ
Σ

|∇η|2 dσ ≤ 16

r2
area(Σ).

Since Σ has finite area, we see that u is a constant function by letting r → +∞.
In particular, Σ̃ is the Riemannian product of manifold Σ and S1 and the Ricci
curvature of Σ is non-negative. □

6. Open questions

We present here some open questions.
The relation between positive scalar curvature and 2-systole in dimension 4 and

more is a recent discovery and much remains unknown in this direction. As one
goal of this field, we raise up with the following homotopical 2-systole conjecture.

Conjecture 6.1. Let (M, g) be a closed Riemannian manifold with scalar curvature
Rg no less than 2. If the universal covering of M is homtopically equivalent to S2,
then sys2(M, g) ≤ 4π.

The affirmative answer to above conjecture in dimension two and three comes
quickly from Gauss-Bonnet formula and Theorem 1.4. As special cases, it follows
from Theorem 1.2 the conjecture holds for S2 × Tn−2 with dimension n no greater
than 7.

When the topology is less restricted, the situation is less clear. Even in dimension
4 the following quetion is open:

Question 6.2. Let g be a metric of scalar curvature at least 4 on S2 × S2, is
sys2(g) ≤ 4π ?

Theorem 1.3 shows that this holds when the metric is streched enough, this
estimate can also be shown to hold for warped products of constant curvature
2-spheres.

Beyond product of spheres, the situation has not been investigated much yet.
Any progress on the following question would be worthwhile for instance:

Question 6.3. Let g be a metric of scalar curvature at least 24 on CP2, is sys2(g) ≤
sys2(gFS) ? Here gFS is the Fubini-Study metric on CP2 with sectional curvature
between 1 and 4.

In higher dimensions, products of 2-spheres and higher dimensional complex
projective spaces could also be investigated.

Another question is the applicability of hypersurface methods in dimension
greater than seven. Though great efforts have been made in the last years, it
is still unclear to the authors wether they can be used to extend the results of this
survey in dimension 8 and more.
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