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Abstract. The thermal resistance of a wall can be readily measured in steady-state. However, such a state is 

seldomly achieved in a building because of the variation of outdoor conditions as well as the high thermal 

inertia of building materials. This paper introduces a novel active (dynamic) method to measure the thermal 

resistance of a building wall. Not only are active approaches less sensitive to external temperature variations, 

they also enable to perform measurements within only a few hours. In the proposed methodology, an artificial 

thermal load is applied to a wall (heating of the indoor air) and its thermal response is monitored. Inverse 

techniques are used with a reduced model to estimate the value of the thermal resistance of a wall from the 

measured temperatures and heat fluxes. The methodology was validated on a known load-bearing wall built 

inside a climate chamber. The results were in good agreement with reference values derived from a steady-

state characterization of the wall. The method also demonstrated a good reproducibility. 

1 Introduction 
From the perspective of limiting greenhouse effect, two 
approaches have to be considered: the development of the 
use of renewable energies and the limitation of global 
energy consumption. Regarding the second aspect, the 
building sector represents a significant part of the world 
primary energy consumption. Following the national 
building regulations implemented by governments, the 
thermal resistance of buildings walls tends to increase. 
However, a non-negligible difference is usually observed 
between theoretical estimations and in situ measurements 
of the thermal performance of buildings: this often 
referred to as the “performance gap” [1]. One major cause 
of the performance gap in practice is thermal bridging.  

Several methods were developed in academia and a 
lot of efforts are currently being made to improve their 
accuracy, rapidity and applicability. Bienvenido-Huertas 
et al. recently published a comprehensive review [2] 
summarizing most of these methods. For the sake of 
completeness, let us add the QUB/e method [3] to this 
review. However, these methods are deemed not mature 
enough to be widely used by the building construction 
industry. For the thermal insulation of building walls, 
there are only two existing standardized techniques, 
namely ISO 9869-1 [4] and 9869-2 [5]. Nevertheless, they 
do not accurately evaluate a thermal resistance in many 
situations, especially if heat transfers are far from being in 
steady-state regime and if the indoor-outdoor temperature 
gradient is too small. This is mainly because these 
approaches are passive methods, therefore strongly 
influenced by climate conditions. 

Active methods are an interesting alternative. They 
consist in applying an artificial thermal load to a wall and 
analysing its thermal response. The excitation may be of 
different nature: radiant heater, sun power, air heating, 
etc. Active methods have the advantage of being less 
sensitive to non-constant climate conditions. They are 
also faster than passive methods. 

The present study introduces a novel active in situ 
measurement of a wall thermal resistance. The indoor air 
is heated with electric heaters and the wall surface 
temperature as well as the heat flux are measured with 
contact sensors. Inverse methods are then applied to these 
measurements in order to estimate the wall thermal 
resistance from the dynamic thermal response of the wall. 
The direct model used in the inverse techniques must have 
a complexity adapted to the problem. The methodology 
was validated on a wall built inside a climate chamber. 
This wall is made of concrete building blocks on which a 
conventional internal insulation system is fixed. 

This paper is composed of 3 sections. Section 2 
presents the experimental setup used to validate the 
method. Section 3 details the inverse method used to 
estimate the wall thermal resistance. Finally, results are 
presented and discussed in Section 4. 

2 Experimental setup 

2.1 Presentation 

The measurements were performed on a load-bearing wall 
built inside a 4x4x3m3 climate chamber at CEREMA 
(Centre d’Etude et d’Expertise sur les Risques, 
l’Environnement, la Mobilité et l’Aménagement) in 
Nancy, France. As shown in Figure 1, the chamber is 
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equipped with two independent modules able to control 
the temperature between -30 and 30°C. The wall was built 
between the two modules so that a different temperature 
could be set on each side. 

 

Fig. 1. Modules inside the climate chamber 

The wall is 3.2 m wide and 2 m high and a thin door on 
the right-hand-side enables to go behind it. Figure 2 shows 
a photography of the wall before the installation of the 
right-hand-side gypsum board.  

 

Fig. 2. Photography of the wall (without one gypsum board) 

It consists of three layers (see Figure 3). The first one is 
made out of 20 cm-thick concrete building blocks. Then, 
a conventional internal insulation system was fixed: 10 
cm of glass wool held with metal rails and covered by a 
gypsum board.  

The gypsum board in the middle of the wall is only 
held by metal rails on its edges. The absence of rails in its 
centre enables to benefit from a large zone (1.2 m wide) 
where heat transfers are 1D (i.e., without any thermal 
bridge). Indeed, the metal rails makes the transfers 2D or 
3D which complexifies the problem. An infrared camera 
was used to check the temperature uniformity on the 
centre of the wall. 

 

Fig. 3. Scheme of the wall cut-out 

2.2 Theoretical values 

From knowledge of the material thermal conductivity � of 
the materials and the thickness � of the layers, the 
theoretical thermal resistance of the wall can be 
calculated: 
 

 (1) 
 

It may be noted that contact resistances between materials 
are neglected. The thermal conductivity of the gypsum 
was measured in laboratory with the “Hot Disk” method 
[6]. For the glass wool, manufacturer’s data was used. The 
thermal properties of the insulation layers are reported in 
Table 1. 

Table 1. Thermal properties of the insulation layers 

Layer gypsum glass wool 

� (m) 0.013 0.1 

 (W.m-1.K-1) 0.23 0.032 

R (W.m-1.K-1) 0.06 3.12 

 
Thus, the thermal resistance of the insulation system 
(gypsum + glass wool) is: 
 
����� = 3.18 m2.K.W-1  
 
The associated uncertainty is estimated to 0.15 m2.K.W-1. 

2.3 Sensors and data acquisition 

Temperatures were measured with 0.2mm-thick type-T 
thermocouples. These sensors were calibrated between 0 
and 60°C with a platinum sensor which enabled to reach 
an uncertainty of 0.1°C. In addition, heat flux densities 
were measured using normal gradient heat flux meters 
(HFM). These 10x10 cm² sensors are from Captec© 
manufacturer. A type-T thermocouple is also embedded 
inside. They have a sensitivity greater than 60 μV/(W/m²) 
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which is given with a 3% accuracy. The surface of the 
HFMs were covered with an adhesive tape which has 
similar optical properties as the wall surface: same 
emissivity (0.94 in the 2-20μm band) and diffuse 
reflection. This allows the sensors to be as less intrusive 
as possible. Temperature and heat fluxes were 
continuously monitored every 3 s and averaged every 
15 s. 

3 Methodology 
Here are presented the methodologies used to measure the 
wall thermal resistance both in passive and in active 
configurations. 

3.1 Passive characterization 

Steady-state measurements were undertaken to obtain a 
reference thermal resistance of the wall. This value will 
serve as a reference that will be useful to assess the 
accuracy of the active method presented in the next 
section. The measurements were conducted according to 
standard ISO 9869-1 [4]. The external and internal 
temperatures were set to constant values: 5 and 25°C 
respectively so that a temperature difference of 20°C was 
ensured across the wall (on the area free of thermal 
bridge). The wall required about 3 days to reach thermal 
equilibrium. A heat flux meter was placed on the middle 
of the wall to record the heat flux densities while 
thermocouples were put on each side as well as between 
the insulation system and the building blocks. The 
measured quantities were averaged over a period of two 
hours. This procedure filters out the high frequency 
temperature variations due to the regulating system of the 
climate chamber. The measured thermal resistance is 
given by: 
 

 (2) 
 

With Δ
 a surface temperature difference and � the heat 
flux across the wall. 

The measurement uncertainty was propagated from 
the uncertainty associated to Δ
 and � [7] 
 

(3) 
 
 
This leads to the following result: 
 
��
����� = 3.15 ± 0.06  m2.K.W-1 
 
This does not include the thermal resistance of the 
concrete blocks: Δ
 was measured between the indoor 
surface and the surface between the glass wool and the 
blocks. This result is in good agreement with theoretical 
predictions: the relative difference is of 1%. Its 
uncertainty is also smaller. 

3.2 Active characterization 

3.2.1 Thermal load 

Active methods rely on an artificial thermal load. Here, it 
was chosen to heat up the indoor air. This approach has 
the advantage of being easily applicable in situ thanks to 
electric heaters. In addition, it enables to heat up the entire 
wall rather than only a small area. This artificial thermal 
load is also used in the QUB/e method [3]. 
 In practice, the temperature regulation of the climate 
chamber is switched off on the indoor side and two 500 W 
electric heaters are switched on for a duration of about 8 h. 
Meanwhile, the temperature on the other side is controlled 
and remains constant. The indoor and outdoor initial air 
temperatures are 5°C and 15°C respectively. The air 
temperatures measured with thermocouples on each side 
of the wall during an active test are plotted in Figure 4.  

 

Fig. 4. Air temperatures during an "active" experiment 

Time � = 0 corresponds to the start of the electric heaters. 
The apparent noise on the outdoor temperature as well as 
at the beginning on the indoor temperature are due to air 
temperature fluctuations induced by the regulation 
systems of the climate chamber. 

It is important to point out that these two 
temperatures will not be used for the estimations of the 
wall thermal resistance (see sections 3.2.5 and 3.2.6). 
Thus, the exact location where there were measured is not 
important here. 

3.2.2 Measured quantities 

A heat flux meter plate is mounted on the sound area (no 
thermal bridge) of the indoor surface, 1.4m above the 
ground. It measures both the surface heat flux densities 
���  and temperature 
��  thanks to the embedded 
thermocouple. The time evolution of these quantities is 
plotted in Figure 5.  
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Fig. 5. Measured surface temperature and heat flux 

It may be noticed that the signal to noise ratio (SNR) is 
much better for the temperature than for the heat flux 
measurement. 

3.2.3 Presentation of inverse methods 

The wall thermal resistance is estimated from 
��  and ��� 
using an inverse technique. It is a non-linear parameter 
estimation problem [8]. Basically, we first consider the 
“direct problem”. It is defined by a model ��� that takes 
some parameters as input (gathered in a vector �) and 
gives an observation � as output. In the present context, � 
is composed of the wall thermal characteristics (thermal 
conductivities, thicknesses, etc.) and the observation � is 
the heat flux ��� on the indoor surface of the wall (the 
motivations of this choice are detailed below). However, 
we are not interested here in calculating the surface heat 
flux from the wall characteristics. We rather want to do 
the exact opposite: estimate the wall characteristics 
� from measurement of the surface heat flux, hence the 
terminology “inverse method”. 
 The parameters are estimated by minimizing the cost 
function � that quantifies the difference between the 
model and the measurements:  
 

(4) 
 

with � the number of points. 
 It is important to point out that the estimation of the 
desired parameters is not straightforward. Indeed, inverse 
problems are often ill-posed, and the choice of the 
experiment as well as the definition of the direct model 
are crucial. A too simple direct model would not be able 
to capture the physical phenomenon investigated while a 
too complex model would have too many parameters 
which would make the estimation impossible or biased. 

3.2.4 Thermal modelling and parameterization 

The problem considered is supposed one-dimensional. It 
is illustrated in Figure 6. Each layer is characterized by its 
thermal resistance � and thermal effusivity �. With the 

two heat exchange coefficients ℎ� and ℎ�, the inverse 
problem has eight unknown parameters. 

 

Fig. 6. Illustration of the complete problem (8 unknown 

parameters) 

 The direct model is derived from the thermal 
quadrupole formalism [9]. It is derived from the Laplace 
transform of the one-dimensional heat equation. The 
advantage is that the relationship between the Laplace 
transforms of temperatures 
� and heat fluxes � �  is simply 
given by a matrix multiplication: 
 

(5) 
 

with � a 2x2 matrix.  
Each homogeneous layer k of the wall is characterized by 
the following quadrupole matrix: 
 

  (6) 
 
 

with � the Laplace variable, �� and �� the kth layer 
thermal resistance and effusivity.  In the case of a 
multilayer wall, the quadrupole matrix � is simply given 
by the multiplication of matrices ��.  
 The internal and external heat exchange coefficients 
ℎ� and ℎ� are also included in the model thanks to a 2x2 
matrix. For ℎ� (and similarly for ℎ�): 
 

(7) 
 
Finally, it comes: 
 

(8) 
 

 Once the thermal problem is given in the Laplace 
domain, the De Hoog [10] algorithm is used to 
numerically work out the inverse Laplace transform and 
generate data in the time domain. 

3.2.6 Thermal load in the model 

To use the thermal quadrupole formalism, one needs to 
have an analytical expression of the thermal load in the 
Laplace domain. In the reduced model, the thermal load is 
the surface temperature. Therefore, a function of known 
Laplace transform is fitted on 
�� . This function does not 
need to have any physical meaning, it only must fit the 
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measured data as well as possible on the whole 
measurement duration. The following function was 
chosen: 
 
  (9) 
 
Its Laplace transform is given by: 
 
 

(10) 
 

with � a set of parameters to find and Γ the gamma 
function. The order " was empirically set to 7. It was 
noticed that a lower order would increase the difference 
between the function and the measurements while a 
higher order would not be beneficial. The � coefficients 
were estimated with the Levenberg-Marquardt algorithm. 
 

3.2.5 First model reduction 

The direct model given in Figure 6 has eight parameters: 
 ℎ�, �#,  �#,  �$,  �$,  �%,  �% and ℎ�. This is too many for 
a correct estimation of the wall thermal resistance. As 
detailed below, the number of degrees of freedom of the 
problem is lower than eight, so the number of parameters 
has to be reduced accordingly. 
 Given the considered wall and the chosen thermal load, 
some parameters should not be included in the model: 
several model reduction steps are required. 
 Not only is the third layer far away from the 
measurement point (on the front surface), it also has a 
massive thermal inertia (concrete building blocks). This 
means that during the few hours of the active experiment, 
the thermal wave does not have enough time to go through 
this last layer. Therefore, ℎ� is not modelled and the third 
layer is treated as a semi-infinite medium. Such a medium 
is characterized in the Laplace domain by an impedance 
&�'( = 1/)��'(*�+ which depends on the material 
thermal effusivity now referred as ��'(. Parameters ℎ� and 
�% are removed from the model. Thus, it will not be 
possible to estimate the thermal resistance of the concrete 
wall. This is not an issue as the main interest lays in the 
characterization of the internal insulation system. 
 The heat exchange coefficient ℎ� is complex to 
measure and so it the internal temperature 
� . Indeed, 
�  is 
the so-called “operative temperature”. It is a weighted 
average between the air temperature and the mean radiant 
temperature. In the building sector, the common 
assumption is to suppose 
�  equal to the air temperature. 
This hypothesis is justified in well insulated buildings 
when passive methods are used. In the current 
configuration however, the air is rapidly heated, and its 
temperature can be far from the mean radiant temperature. 
Thus, is has been chosen to measure both the temperature 
and the heat flux on the wall surface. This enables to 
exclude 
�  and ℎ� from the model. 
 
Finally, the system in Equation 8 reduces to: 
 

(11) 

 
with  

 (12) 
 
 

This model has 5 parameters: �#,  �#,  �$,  �$, and  ��'(. 
If 
��  is known, ��� may be calculated. In the present 
study, 
��  is supposed to be known (plays the role of the 
thermal load) and ��� is the output of the model. 

3.2.7 Second model reduction: sensitivity analysis 

The model has been reduced to 5 parameters. A sensitivity 
analysis is necessary to assess the ill-posedness of the 
problem and to determine whether the parameters can be 
estimated with an inverse method. 
 The reduced sensitivity coefficients quantify how 
much the model output depends on each parameter -2. 
They are simply given by the partial derivative of the 
output according to -2:  
 

(13)  

with the ^ subscript referring to estimated values.  
It is more convenient to work with the reduced 

sensitivity coefficients 4∗ because they are all expressed 
in the unit of the output which makes them comparable 
quantitatively:  

 (14) 
 
The evolution of the reduced sensitivities 4∗ with time is 
plotted in Figure 7. 

 

Fig. 7. Reduced sensitivity coefficients of the reduced model 

In non-linear problems as the one encountered here, 
sensitivities are defined locally around nominal values of 
the parameters. The nominal values used for the present 
analysis are gathered in Table 2. 
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Table 2. Nominal values of parameters 

Parameter Unit Nominal value 

�# m².K.W-1 0.06 

�# 
J.K-1.m-2.s-1/2 420 

�$ 
m².K.W-1 3.12 

�$ 
J.K-1.m-2.s-1/2 25 

��'( J.K-1.m-2.s-1/2 1500 

 

The first thing to point out is that the sensitivity to 
the thermal effusivity of the last layer ��'( is negligible 
during the duration of the experiment. This means that this 
parameter has no influence on the output ��� and cannot 
be accurately estimated by inversion. It will therefore be 
supposed known and fixed to a constant value. Given its 
very low sensitivity, an error on the default value would 
have a very limited impact on the estimation. 

In the context of the control of a new building for 
instance, the values given to the supposed known 
parameters could be supplied by the manufacturer or one 
could use standard values for the considered materials. 

In the end, the reduced model only has four 
remaining parameters: �#, �#,  �$, and  �$, as illustrated 
in Figure 8: 

 

Fig 8. Illustration of the reduced model (4 parameters) 

The quantity of interest is �# + �$ (thermal resistance of 
the internal insulation system), and especially �$ because 
�# is negligible. The others (�# and �$) will also be 
estimated but their final value is of little interest here. The 
shape of the reduced sensitivity curve of �$ is very 
different from the one of the other parameters so 
correlations should be small (this is confirmed below with 
the Vcor matrix). It may also be noted that the sensitivity 

to �$ increases with time, so there is a minimum duration 
of the experiment for the estimation of �$ to be accurate. 

3.2.8 Covariance matrix and estimation uncertainty 

The measurements are assumed to be corrupted with a 
white noise of zero mean and of constant standard 
deviation :. The variance-covariance matrix of the 
inverse problem is derived from the reduced sensitivity 
matrix X* (see Equation 13) [11]: 
 

(15) 
 
and 
 
 

(16) 
 

 
 
Let introduce the Vcor matrix: 
 
 
 

(17)  
 
 
 
with ;�2  the correlation coefficient between two 
parameters -� and -2.  
 These coefficients are between -1 and +1: the closer 
to -1 or +1, the more correlated the parameters. They are 
an interesting tool to detect ill-posed problems due to 
correlations between parameters. However, there might 
also exist correlations between three or more parameters. 
The diagonal terms of Vcor are the relative uncertainties 
on estimated parameters. 
Using the reference values given in Table 2 and the noise 

level observed on measurements, the Vcor is calculated. 

 

 

 

(18) 

 

 
 
Thanks to the model reduction described in the previous 
section, the parameters are not very much correlated: only 
�# and �# have a strong correlation coefficient but their 
estimation is not important. The thermal resistance �$ is 
estimated with an uncertainty of 2%. The relative 
uncertainties are higher for the other parameters. This is 
explained by correlations (�# and �#) and small 
magnitude of uncertainties (�$)  

It is also important to point out that these 
uncertainties only consider the variance due to the 
measurement noise (statistical errors). They do not 
consider any systematic error on the measurement of heat 
flux ��� or temperature 
�� . 
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3.2.9 Summary of the methodology 

The methodology described in this section is summarized 
in Figure 9. 
 

 
Fig. 9. Workflow of > estimation method 

4 Results and discussion 

4.1 Result of estimation 

This section presents the results of the active method. 
Four consecutive experiments were carried out to assess 
the reproducibility of the method. One of them is 
presented as an example in this section. Figure 10 plots 
the measured surface heat flux ��� alongside with the 
model prediction ���( �@) after estimation of the 
parameters �@. The difference between them are the 
residuals. The latter are not signed (have the shape of a 
white noise). This is a prerequisite for the parameter 
estimation being correct. It proves that the model can 
reconstruct the measurements: the only remaining 
difference is the measurement noise. 

 

Fig. 10. Reconstruction of heat flux from the reduced model 

The first few points were removed for the estimation 
procedure. Indeed, the changes in ��� are very fast at the 
beginning (just after the heaters are turned on). Not only 
does the HFM has a response time of a few minutes, but 
the heat flux is also very sensitive to the thermal 
properties of the first layer. 

The estimated parameters �@ and their uncertainty 
are summarized in Table 3.  

Table 3. Estimated parameters from one experiment 

Para-
meter Unit Reference 

value 
Estimated 

value Uncertainty 

�# m².K.W-1 0.06 0.05 0.01 

�# J.K-1.m-2.s-1/2 420 421 24 

>A m².K.W-1 3.12 3.04 0.05 

�$ J.K-1.m-2.s-1/2 25 35.9 3.5 

��'( J.K-1.m-2.s-1/2 1500 Not estimated 

The quantity of interest, �$, was well estimated: a 
relative difference of 2% is observed when compared to 
the reference value given in Table 1. The gypsum thermal 
resistance is estimated with a higher relative difference 
(10%) but its contribution to the total thermal resistance 
is almost negligible so this is not a problem. The effusivity 
of the gypsum layer �# was also well estimated whereas 
the one of the glass wool �$ was biased. This is due to the 
very low reduced sensitivity of �$ when compared to that 
of �# (see Figure 7). 
Consequently, on the presented example, the estimation 
of the thermal resistance of the insulation system (gypsum 
+ glass wool) is 3.09 m².K.W-1 ± 0.06  m2.K.W-1. 

4.2 Repeatability 

The repeatability of the method was assessed by repeating 
the same experiment four times. Table 4 presents the 
estimated thermal resistance � = �# + �$ of the 
insulation system for each experiment. 

The standard deviation between the different 
experiments is small: around 1%. This is in good 
agreement with the 2% relative uncertainty predicted by 
the Vcor matrix (see Equation 18). The mean value is: 

 
Ractive = 3.10 m2.K.W-1  ± 0.06  m2.K.W-1 

which is slightly below the reference value 
Rpassive = 3.15 m2.K.W-1 (see Section 3.1). The difference 
is not substantial (smaller than the uncertainties) and 
deemed not significant. 
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Table 4. Repeatability results 

Experiment 
Estimated 
�# + �$ 

(m2.K.W-1) 

1 3.10 

2 3.08 

3 3.11 

4 3.09 

 

Mean 3.10 

Standard 
deviation 

0.02 
(1%) 

 

5 Conclusion 

Thermal insulation of buildings has a key role to play in 
the reduction of greenhouse gases emissions. The so-
called “performance” gap was widely documented in the 
literature: real thermal performances of buildings are 
usually very different from theoretical calculations. From 
this perspective, there is a need for a fast and reliable in 
situ measurement method of building walls thermal 
resistance. This paper introduces a novel active technique. 
Unlike passive approaches, active methods do not rely on 
steady-state assumptions and are less sensitive to 
variations of the outdoor environment. In addition, a 
measurement can be made within a few hours. 

The proposed method was tested on a 3.2x2 m² load-
bearing wall built inside a climate chamber. The wall was 
made of concrete building blocks and the indoor surface 
was covered with an internal insulation system. The 
thermal resistance of the insulation was first characterized 
in steady-state according to ISO 9869-1 [4]. The 
measured resistance was of 3.15 m².K.W-1 and was used 
as a reference value for the validation of the active 
method. There was only a 1% discrepancy between this 
value and theoretical predictions based on materials 
thermal properties. 

The method developed is based on simultaneous 
measurements of the indoor surface temperature and heat 
flux during an active experiment in which electric heaters 
powered for several hours. The direct model used in the 
inverse method is 1D and based on the thermal 
quadrupole formalism. Several steps of model reduction 
were required to limit the number of parameters for the 
inversion to be possible. The retained model has only 
three unknown parameters. 

The results of the active method were good: the 
thermal resistance of the insulation system was estimated 
to 3.10 m².K.W-1 with a 2% uncertainty which was close 

to the reference value mentioned above. The method also 
has a good repeatability: the standard deviation between 
the measurements was around 1% (the same order as the 
measurement uncertainty predicted by the variance-
covariance matrix). 
 The main limitation of the method is thermal 
bridging. The authors are working on a generalization of 
the presented method to non-homogeneous walls. This 
would enable to characterize walls with defects and/or 
irregularities. 

We thank the CEREMA Nancy for making available their 
climate chamber for our experimental campaign. 
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