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ARTICLE

AI-based mobile application to fight antibiotic
resistance
Marco Pascucci 1,2,3,12, Guilhem Royer 4,5,6,12, Jakub Adamek7, Mai Al Asmar8, David Aristizabal7,

Laetitia Blanche1, Amine Bezzarga1,9, Guillaume Boniface-Chang7, Alex Brunner7, Christian Curel10,

Gabriel Dulac-Arnold11, Rasheed M. Fakhri8, Nada Malou1✉, Clara Nordon1, Vincent Runge2, Franck Samson2,

Ellen Sebastian7, Dena Soukieh7, Jean-Philippe Vert11, Christophe Ambroise2,13✉ &

Mohammed-Amin Madoui 5,13✉

Antimicrobial resistance is a major global health threat and its development is promoted by

antibiotic misuse. While disk diffusion antibiotic susceptibility testing (AST, also called

antibiogram) is broadly used to test for antibiotic resistance in bacterial infections, it faces

strong criticism because of inter-operator variability and the complexity of interpretative

reading. Automatic reading systems address these issues, but are not always adapted or

available to resource-limited settings. We present an artificial intelligence (AI)-based, offline

smartphone application for antibiogram analysis. The application captures images with the

phone’s camera, and the user is guided throughout the analysis on the same device by a user-

friendly graphical interface. An embedded expert system validates the coherence of the

antibiogram data and provides interpreted results. The fully automatic measurement pro-

cedure of our application’s reading system achieves an overall agreement of 90% on sus-

ceptibility categorization against a hospital-standard automatic system and 98% against

manual measurement (gold standard), with reduced inter-operator variability. The applica-

tion’s performance showed that the automatic reading of antibiotic resistance testing is

entirely feasible on a smartphone. Moreover our application is suited for resource-limited

settings, and therefore has the potential to significantly increase patients’ access to AST

worldwide.
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The development of new antimicrobial agents is currently
outpaced by the emergence of new antimicrobial resis-
tance1 (AMR). The appearance and diffusion of AMR have

become a serious health threat2, whose magnitude is not yet fully
understood because of the lack of data, especially in areas where
the access to antimicrobial susceptibility testing is difficult. A
high-profile review3 forecasts ten million deaths worldwide by
2050. Although these numbers have been criticized2, these studies
underline the critical health burden of AMR and the need for
global data2,4.

Testing the susceptibility of bacteria is important for patient
treatment and, if done systematically, gathering data can provide
precious epidemiological information. Different test methods5

exist. Arguably the most widely used is the Kirby–Bauer disk
diffusion test.

In this test, cellulose disks (pellets) containing antibiotics at a
given concentration are placed in a Petri dish with an agar-based
growth medium previously inoculated with bacteria. While the
plate is left to incubate, the antibiotic diffuses from the pellet into
the agar. The antibiotic concentration is highest near a pellet and
decreases radially as the distance from the disk increases6. The
bacteria cannot grow around those disks that contain antibiotics
to which they are susceptible. The growth of the bacterial colony
stops at a distance from the pellet which corresponds to a critical
antibiotic concentration, forming a visible bacteria-free area
around the cellulose disk. This is called a zone of inhibition. After
incubation, the diameter of the zone of inhibition around each
antibiotic disk is measured: the categorization of the micro-
organisms as susceptible (S) Intermediate (I) or Resistant (R) is
obtained by comparison of the diameter against standard
breakpoints7 established by international committees such as the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST) or the Clinical and Laboratory Standards Institute
(CLSI)8.

The disk diffusion method is relatively simple, can be per-
formed entirely by hand, requires no advanced hardware, and has
a low cost. However, it is criticized for several reasons. First, it is
labor intensive and time consuming. Second, it is subject to
important inter-operator variability: accurate performance of disk
diffusion testing relies on proficient technicians, starting with the
quality of plate preparation (e.g., inoculum, purity)9. The dia-
meter of the inhibition zone is measured by eye with a caliper or
ruler and approximated to the closest millimeter10. However, the
inhibition zone might not be a perfect disk (e.g., if the inhibition
zones overlap) or if the pellet is too close to the border of the dish.
In this case, the problem of measuring a diameter is ill-posed and,
together with intrinsic measurement error, introduces subjectivity
and inter-operator variability in the measurement. Third, it
requires an advanced level of expertise for interpretation. Some-
times, the inhibition zone diameter is not sufficient by itself to
determine the susceptibility. Indeed, several mechanisms of
resistance are expressed at a low level in vitro but have a major
impact in vivo and can lead to treatment failure. Moreover,
susceptibility to a whole class of antibiotics or a given molecule
class can sometimes be inferred from the susceptibility to another
one, thus reducing the number of required tests. In those cases,
interpretative reading is needed. Interpretation is based on expert
rules published and updated by scientific societies, such as
EUCAST in Europe11.

Automatic reading systems have been introduced to alleviate
the drawbacks of disk diffusion AST12,13. These systems acquire
pictures of the plate and automatically measure the diameters of
the inhibition zones. Most of them include an expert system that
can elaborate interpreted results. It helps mitigate the risk that the
laboratory reports erroneous susceptibility results and ensures
compliance with regulatory guidelines. Commercial devices14–16

that automatically read antibiograms are commonly used in
hospitals and laboratories, but the procedures they use are not
fully disclosed. These systems aim towards great and flawless
automation and a high degree of standardization of the culturing
procedures in order to concurrently increase quality and turn-
around times. These needs are not the same in resources-limited
hospitals, where AST might be not implemented at all.

Because of their price, and hardware and infrastructure
requirements, these systems are not suited to environments such
as dispensaries or hospitals in resource-limited settings. Afford-
able solutions are few. Image processing algorithms for automatic
measuring inhibition diameters have been published17–21. Among
these, only AntibiogramJ21 presents a fully functional user-
friendly software, but it operates on a desktop computer onto
which the images need to be previously transferred. We believe
that reducing hardware requirements to just a smartphone is key
for the adoption and diffusion of such a tool. Moreover, smart-
phone applications are easy to adopt and use if they follow
established design patterns, and they benefit from an ecosystem
that facilitates setup and updates.

This paper introduces a fully offline mobile application (the
App hereafter) capable of analyzing disk diffusion ASTs and
yielding interpreted results, operating entirely on a smartphone.
The need of such an application was identified by Medecins Sans
Frontieres (MSF), who often operates in low and middle income
countries (LMIC) where AST is difficult or impossible to imple-
ment. The MSF Foundation brought together the people and
skills needed for this application to be developed, truly believing
that the App can have a great impact on the fields where MSF
operates and the global fight against AMR.

The App combines original algorithms, using machine learning
(ML) and image processing, with a rule-based expert system, for
automatic AST analysis (see Fig. 1). It embeds a clinically tested
third-party expert system13,15 which could compensate for a lack
of microbiology expertise. The user is guided throughout the
whole analysis and can interact at any step with the user-friendly
graphical interface of the application to verify and possibly cor-
rect the automatic measurements if needed. The whole analysis
takes place on the same smartphone used to acquire the picture of
the AST. Since it does not require any hardware other than a
basic Android smartphone, and because it works completely
offline (without internet connection), the App is suited for
resource-limited settings. Therefore, the App could help fill the
digital gap, increase patients’ access to AST worldwide and pos-
sibly facilitate the collection of epidemiological data on anti-
microbial resistances, the lack of which is recognized today as a
major health danger2,4.

In fact, the main aim of this application is to facilitate the
adoption of the disk diffusion AST in resources-limited hospitals
and laboratories where this test is not available yet. The App
pursues this objective by partially alleviating the need of expert
human resources, making the reading more reliable, and pro-
viding interpreted results. Therefore this application does not
want to compete with high-end commercial systems, which can
count on dedicated hardware. Nevertheless, in order to be reli-
able, it is fundamental that the App fulfills the minimum viable
performance requirements, as we show in this work.

In the following, we demonstrate that the App’s performance
is similar to that obtained with a commercial system and
conform to manual reading (considered as the gold stan-
dard10). The application’s full automatic procedure is evaluated
on antibiograms prepared in laboratory conditions both on
standard and blood-enriched agar. Moreover, we explore
the feasibility of an ML-based automatic detection of
resistance mechanisms recognizable by peculiar shapes of the
inhibition zones.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21187-3

2 NATURE COMMUNICATIONS |         (2021) 12:1173 | https://doi.org/10.1038/s41467-021-21187-3 | www.nature.com/naturecommunications

https://fondation.msf.fr/en/projects/antibiogo
www.nature.com/naturecommunications


Results
Image processing steps. The App presented in this paper is an
automatic AST reading system capable of running the whole
analysis of a disk-diffusion antibiogram offline on mobile devices,
from image acquisition to interpreted results. It helps laboratory
technicians throughout the whole analysis process, suggesting
measurements, results, and interpretations. The App can be
summarized in three major components: first, a dedicated image
processing module (IP) that reads and analyzes the AST image;
second, an expert system (ES) responsible for the interpretation of
the data extracted by IP; third, a Graphical User Interface (GUI)
that allows the execution of IP and ES on a smartphone, and user
interaction.

The application’s image processing library22 implements an
original algorithm for the measurement of the inhibition diameters
(described in Methods) and uses ML for the identification of the
antibiotic disks, which is unprecedented in this kind of application.
The IP module consists in a C++ library developed on OpenCV23

and Tensorflow24. The choice of C++ makes our library
exploitable in various contexts, including desktop computers and
Android and iOS mobile devices. Moreover, the library has a
Python wrapper, useful for application prototyping, image batch
processing, and benchmarking.

The App includes an expert system capable of performing
coherence checks on the raw susceptibility and providing
interpreted results, with extrapolation on non-tested antibiotics
and clinical commentaries. The expert system’s knowledge base is
provided and regularly updated by i2a (Montpellier, France)13

and based on up-to-date EUCAST expert rules11. The expert

system’s engine was completely developed in TypeScript and
works completely offline within the App.

Commercial AST reading systems use built-in image acquisi-
tion devices (cameras and scanners) to ensure input consistency.
The App works on images of ASTs taken directly with the
phone’s camera, with no additional external acquisition hardware.
This inevitably introduces a certain variability in the image
quality. We tackle this issue by introducing a simple set of
guidelines for image acquisition (see Supplementary Note 1).
These guidelines are designed to optimize image quality, and
therefore to reduce the need of heavy post-processing and the risk
of numerical artifacts. For the same reason, perspective distor-
tions are not corrected. Instead, we developed a simple
acquisition setup (Fig. 1) which ensures parallelism between the
dish and the camera’s image plane. The acquisition guidelines are
conceived to be inexpensive and easy to implement and integrate
in the laboratory routine. Since smartphone cameras are not
designed for quantitative measurements, we provide a simple
method to assess the camera’s optical distortions with a
numerically generated AST image. Moreover, while taking the
picture, the application uses the device’s gyroscopes and
accelerometer, if available, to force the device orientation (parallel
to ground, to avoid perspective distortions) and stability (to avoid
motion blur). The application also displays a visual frame that
helps center the Petri dish in the picture. Although Petri dishes
have standard shapes (square or disk), we do not rely on this
assumption for the analysis.

The IP module analyzes an AST picture in three different
sequential stages: plate cropping, detection of antibiotic disks, and

Fig. 1 Analysis of an AST plate with the App. A prepared and incubated Petri dish (a) is positioned in a simple image acquisition setup made of cardboard
(b), we used two containers available in the laboratory as stands. A picture of the plate is taken with a smartphone and the analysis follows the workflow
described in (c): the Petri dish image is cropped and the antibiotic disks are found (c1); the image of each antibiotic disk is fed to a ML model that identifies
the antibiotic (c2); the diameter of the inhibition zone is measured (c3) with an original algorithm. Finally, the Expert System uses the diameters to output
interpreted results (c4).
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inhibition diameter measurement. The resulting diameters are
used to categorize the susceptibility of the bacteria and interpret
the results. These stages are described in Methods and
summarized in Fig. 1. Once the antibiogram picture is taken,
the Petri dish is cropped out, the antibiotic disks are found and
classified according to their label, the diameter of the inhibition
zones is measured and translated into susceptibility results. At
this point, the expert system verifies the coherence of the
measurements to highlight possible errors and finally returns the
interpreted results. Some screenshots of the App are shown in
Fig. 2 and a complete video demo is available online (see
Supplementary Video 1).

Preparation of antibiotic susceptibility tests. In order to eval-
uate the App’s performances, we ran the fully automatic analysis

procedure (without any manual intervention or correction) on
three sets of antibiograms (A1-3) described in Table 1.

AST groups A1 and A2 consist of 571 and 74 antibiograms
prepared during working routine in the microbiology laboratory
of the University Hospital in Creteil, France. The samples were
collected from patients of the hospital and the preparation and
analysis of the AST was not designed primarily for our study but
followed the normal hospital procedures. AST set A3 consists of
eight Petri dishes prepared in the Hospital of Medecins Sans
Frontieres in Amman, Jordan. In the case of this set, the plates
were inoculated with microorganisms purchased from the
American Type Culture Collection (ATCC) and routinely used
for quality control. Such strains are among the main pathogens
and have known inhibition diameters to various antibiotics.
Species distribution, preparation information, and other details
are reported in the Methods for all three sets.

Fig. 2 Screenshots of the App in action. a The App displays a zoomed image of an inhibition zone and indicates with a dashed circle the automatically
measured diameter and the detected antibiotic. The user can edit the results with the controls below the image. b The application can ask the users if they
see the peculiar shapes of inhibition zones associated with certain resistance mechanisms. c At the end of the analysis, the interpreted results are shown to
the user.

Table 1 Description of the AST sets used for the performance evaluation of the automatic reading. For each dataset, the columns
indicate: the number of single Petri dishes in the dataset, the corresponding total number of antibiotic disks, the type of growth
medium, the shape of the plates, the number of independent raters measuring the diameters, the reference used as control
diameter.

AST set Plates Antibiotics Growth medium Petri dish shape Raters control

A1 570 8168 MH square 1 SIRscan
A2 75 649 blood mixed 1 SIRscan
A3 8 98 MH circular 8 manual
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Data acquisition. All plates in AST groups A1 and A2 were
imaged with a smartphone camera (Honor 6x with a resolution of
12 megapixels). Since the App was still under development at the
time these images were taken, we used the default Android
camera application for acquisition. Then the images were ana-
lyzed with the App’s full automatic procedure (without manual
intervention). As control inhibition diameters for sets A1 and A2,
we collected the measurements effectuated by the laboratory
technician using a commercial automatic reading system (SIRs-
can13, i2a, Montpellier, France). The control diameters measured
by the technicians with the SIRscan system were extracted ret-
rospectively from the hospital database, since these antibiograms
were performed during routine analysis in the hospital. The
SIRscan system allows for correction on automatic measure-
ments. Nevertheless, for productivity reasons, the technician did
not always adjust the diameters if the adjustment did not yield a
different categorization result, therefore diameters can be unad-
justed even if they give the right susceptibility categorization.

Among the pictures of AST groups A1 and A2, we selected
standard and problematic pictures according to the following
criterion: if for more than two antibiotics in the picture we found
an absolute diameter difference between the App and control
values of more than 20mm, we considered the picture
problematic, otherwise, it was considered standard. The proble-
matic images are often associated with plates with defects or show
very low inhibition-to-bacteria intensity contrast (due to low
bacteria pigmentation and/or low illumination conditions).
Nevertheless, most of the low contrast images in A1 and A2
were classified as standard (see Fig. 3).

All plates in A3 were imaged with the App on a smartphone
(Samsung A10, 12 megapixels camera) by eight different
laboratory technicians to take into account inter-operator

variability (e.g., plate position, contrast, and random noise).
The resulting 64 images were analyzed with the App’s full
automatic procedure. As a control, each AST was measured
manually with a ruler by the same eight lab technicians. In this
way, each inhibition diameter was measured eight times.

Benchmark. The diameters of the inhibition zones read with the
App’s automatic procedure were compared with the control
diameters. For every diameter, we calculated the absolute differ-
ence with the corresponding control value. The susceptibility
categorization (SIR) of the antibiotics was made for both the
App’s procedure and control, by comparing the inhibition dia-
meter of each antibiotic to the breakpoint defined in the EUCAST
guidelines7. Antibiotics for which a breakpoint was not provided
are excluded. In order to evaluate the App’s performance, we
compared the susceptibility categorization of the automatic pro-
cedure to the control one. Following the same terminology pro-
posed by17,20,21, we calculated the agreement as the rate of
identical categorization; disagreement is classified as very-major,
major and minor. Very-major disagreement occurs when an
antibiotic is categorized S (Susceptible) while the control is R
(Resistant), major error corresponds to a categorization of R with
control S and minor disagreement is any other categorization
error involving the Intermediate value I (Intermediate). As a
measure of agreement between the App and control, we calcu-
lated the unweighted Cohen’s kappa index25.

Image processing performance. The App’s IP procedure proved
its reliability at each step. For each dataset, the photos were
automatically cropped to isolate the Petri dish. The automatic
crop procedure never failed if the image respected the acquisition
protocol (see Supplementary Note 1). The automatic pellet
detection correctly found all antibiotic pellets in A1 and A2. In
A3 0.5% of pellets were missed (false negatives). Half of the
missed pellet show visible flaws (see Supplementary Fig. 4) and
should not be considered in the analysis, according to experts'
advice. False positives never occurred (other objects wrongly
identified as pellets). In case a pellet was missed, the users can add
it with the help of the graphical interface.

The antibiotic labels were always correctly interpreted in A3,
even if the image was not perfectly focused or the text was
damaged (by bad printing or by positioning it with tweezers). In
datasets A1 and A2, the accuracy was 98%. Misclassification
happened in cases of very poorly printed labels or for pellets from
non-supported providers, on which the ML model was not
trained. To overcome this problem, in the app we calculate a
confidence value for each classification yielded by the model in
order to reject misclassified labels and ask the user to identify
them by eye (see Supplementary Note 3 for detailed results).
Moreover, since the whole process is supervised by the user,
misclassifications can easily be corrected.

Furthermore, we demonstrate a proof of concept for the ML
classification of resistance mechanisms. We examined two
clinically-relevant resistance mechanisms that are traditionally
detected by the presence of non-circular inhibition zones. By
training simple convolutional neural network models on the
relevant portions of AST images, we obtained encouraging
results: Accuracy higher than 99.7% in detecting induction
(indicative of MLSb-inducible resistant Staphylococcus aureus)
and 98% in detecting synergy indicative of ESBL production (see
Supplementary Notes 5 and 6). However, due to user experience
considerations in combination with concerns about model
transferability, we ultimately determined not to incorporate these
resistance mechanism-detecting models into the App. We do not
exclude reconsidering this approach in a future version of the

Fig. 3 Problematic images and the role of intensity contrast. A few
problematic images have been identified in the datasets. These correspond
to damaged plates (a) and images with very poor visible contrast between
the bacteria and the inhibition (b). Some inhibition zones are hard to
isolate, even by eye. For comparison, a standard image looks like (c). The
coupled effect of bacteria pigmentation and variable illumination produces a
considerable variability in the bacteria-to-inhibition intensity contrast (a,b,
c). The histogram in (d) shows the distribution of image contrast for
standard and problematic images in AST set A1 (the contrast is defined
here as the difference between the central intensity level of bacteria and
inhibition): problematic images (in red) are a small fraction of the total,
mainly concentrated in the lower contrast region. Finally, e shows the
observed mean diameter difference in millimeters versus contrast (Data are
presented as mean values ± SD): low contrast images yield worse results.
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application if we can generalize it to a larger and diverse dataset.
Instead, every time a resistance mechanism can appear in a
culture (given the bacteria species and the tested antibiotics) the
application will systematically ask the user to verify the presence
of the associated shape, showing illustrated examples (see Fig. 2).

Susceptibility categorization. Our new diameter measurement
approach yielded good classification results over most of the
available images, as shown in Table 2. Only a small fraction of the
pictures, classified as problematic in Table 2 (1.5%, 2.6%, and 0 in
A1, A2, and A3, respectively), produced major discrepancies.
Overall, diameter measurements allowed a susceptibility cate-
gorization agreement of at least 90% for all three antibiogram sets
(all images included). The categorization results are reported in
Table 2.

The actual distribution of the diameter differences among
manual, automatic, and assisted (corrected by the user) readings
of A3 are shown in Fig. 4. In general, we observe that the manual
measurements (done with a ruler) are on average slightly larger
than the automatic and assisted ones. The assisted measurements
are done by the technicians directly on a smartphone. The
graphical interface displays a circle centered on the antibiotic disk
that the user can adjust in diameter until it fits the zone of
inhibition. With this kind of visualization, the measurement is
easier and more accurate than the one done with a segment
(which is the case of the ruler). We argue that most of the
diameter differences between automatic reading and control are
due to the difficulty of measuring with a ruler the diameter of
inhibition zones which are not perfectly circular (see Supple-
mentary Fig. 4). Instead, more accurate measurements are
obtained by adjusting a circular guide as in the App. The positive
effect of measuring with the App is also visible in Fig. 4, which
displays the inter-operator average diameter difference. As
expected, we observe that using the App lowered inter-operator
variability.

The choices we made in building the App and the acquisition
setup are made in order to facilitate its adoption in the laboratory
routine in low-resource settings. The counterpart of this choice is
a certain difficulty in obtaining a constant image quality (notably
because of the intrinsic variability of smartphone hardware and
software). The acquisition setup and GUI assistance are there to
limit this variability, but can not standardize the image
acquisition at the level of commercial systems with dedicated

hardware. Nevertheless, the data in this study display a certain
variability (especially in contrast, as shown in Fig. 3) with which
the application’s IP could easily cope. Strong light reflections and
other important issues will result in evident wrong readings,
which are easily detectable by eye with the App’s user interface.
We remarked that, even without training, users can easily notice
such problems and adapt the acquisition setup in order to
eliminate them in future acquisitions.

Finally, we compared the App to other existing systems. The
categorization agreement and errors observed in this studies
among the App’s automatic procedure and control are similar to
those of other systems (free and commercial) found in the
literature (see Supplementary Table 3). The image treatment has
been designed to perform on mobile devices, and does not require
the user’s intervention to optimize image features (e.g., contrast).
We obtained consistent results even by downscaling the
antibiogram pictures up to a resolution of 1 megapixel (see
Supplementary Table 4). The whole reading of one antibiogram
(12 megapixels picture, 16 antibiotic disks) takes less than 1 s on a
PC using one 2.3 GHz Intel Core i5 processor, 1.5 s on a high-end
smartphone (Pixel 3 released in 2018), and 6.6 s on a low-end
smartphone (Samsung A10), still much faster than manual
reading.

For the matter of hardware compatibility, as of now, we have
tested three smartphone models (Google Pixel 3A, Honor 6x,
Samsung A10) ranging from high- to low-end. We thoroughly
tested the most affordable and available model (Samsung A10)
and can recommend it as a trusted device. In the future, we will
maintain a list of recommended devices associated with the App.

Discussion
In this paper, we have presented a fully offline smartphone
application capable of analyzing disk-diffusion antibiograms. The
App assists the user in taking a picture of a disk diffusion AST
plate, measuring and categorizing zones of inhibition, and
interpreting the results. The analysis is performed entirely on the
same device used to acquire the picture of the antibiogram.

The App shows performances similar to other existing auto-
matic reading systems. In particular, the automatic inhibition
zone diameter reading is consistent with manual reading (gold
standard). The observed accuracy is therefore considered
satisfactory for usage in an AST reading system assistant. A
user-friendly interface makes it easy for the user to adjust the

Table 2 Categorization agreement between the App automatic procedure and control. The number of antibiotics reported here is
the number of those for which clinical breakpoints are provided by the EUCAST7. The lines of this table present the agreement/
disagreement for all antibiogram sets (A1, A2, and A3). For each line, we specify the control of diameter values, the number of
analyzed images and corresponding antibiotic pellets, the agreement and disagreement (as defined in the text), the Cohen’s
Kappa coefficient as another measure of agreement. The label “overall” means that all pictures are considered, whereas
standard and problematic stand for the respective images subsets section. The plates in sets A1 and A3 were grown on a
standard Mueller–Hinton (MH) growth medium, whereas we used blood enriched MH in A2. In the last line of the table, the
abbreviation av. stands for average. In this line, we used as control diameters the average value across the measurements of all
eight technicians.

AST set Control Images Antibiotics Agreement (%) Disagreement (%) Kappa

very major major minor

A1
overall SIRscan 570 7334 90 54 (0.7) 428 (5.8) 270 (3.7) 0.77
standard SIRscan 561 7223 90 46 (0.6) 390 (5.4) 269 (3.7) 0.77
problematic SIRscan 9 111 58 8 (7.2) 38 (34.2) 1 (0.9) 0.12
A2
overall SIRscan 75 534 91 4 (0.7) 36 (6.7) 6 (1.1) 0.71
standard SIRscan 73 509 95 4 (0.8) 16 (3.1) 4 (0.8) 0.83
problematic SIRscan 2 25 12 0 (0) 20 (80.0) 2 (8.0) 0.01
A3
overall manual 64 776 95 3 (0.4) 7 (0.9) 27 (3.5) -
overall manual (av.) 64 97 98 1 (1.03) 0 (0.0) 1 (1.03) 0.96
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automatic results if needed. We tested the App on antibiograms
prepared with standard Mueller–Hinton (MH) growth medium
as well as with MH supplemented with blood, used for fastidious
organisms, and obtained similar results.

We built and trained two ML-based image classification
models to identify resistance mechanisms. The accuracy results
are encouraging, but given the relatively small training sets, we
consider the risk of over-fitting too high for the scope of this
mobile application. Nevertheless, these cases are handled by the
integrated Expert System, which asks the user to confirm/exclude
the presence of such shapes, when likely to happen.

The App aims to encourage the implementation of disk dif-
fusion AST in resource-limited hospitals and laboratories where
antibiograms are not routinely used or poorly interpreted. It does
this by simplifying the measurement task and by providing an
interpretation tool, offline, on a simple smartphone with a cam-
era. The App is part of the mobile-Health26 (mHealth) revolution,
which aims to increase patients’ access to testing, to aid in their
treatment, and to decrease the digital gap in the world. Our hope
is that the App could help fill the digital gap and increase patients’
access to AST worldwide.

Further clinical investigations using the App in MSF hospitals
will estimate the patient benefit enabled by AI-based antibiotic
resistance testing. Pending the results, the mobile application will
be released and open sourced to the public under the name of
AntigbioGo. The App will support selective reporting of anti-
biotic sensitivity27, an important component of the antibiotic
stewardship strategy. It will offer the option of contributing data
to global AMR surveillance with institutional bodies in place such
as the WHO program GLASS (Global Antimicrobial Resistance
Surveillance System) and/or WHONET in order to facilitate the
collection of epidemiological data on antimicrobial resistance.

Methods
Detail of the AST sets. In this section, we give a detailed description of the AST
datasets used for the benchmark. The specific characteristics of each data set are
summarized in Table 1. The bacterial species appearing in this study are reported
in Fig. 5.

The plates were inoculated with 0.5 McFarland of a pure culture of the studied
organism. Then antibiotic disks were positioned onto the plates with a dispenser
gun (A1 and A2) or by hand (A3) and the plates were incubated from 16 to 24 h
under aerobic or 5% CO2 conditions depending on the species.

● Datasets A1 and A2: More than 91% of the plates in these datasets were
square; the remaining 9% were circular. The antibiotic disks were bought from
i2a (Montpellier, France) and positioned onto the plate with a dispenser gun.
Antibiograms were performed according to the EUCAST10 recommendations.
Standard Mueller–Hinton agar was used in A1, whereas in A2, we used MH-F
agar (blood-agar) for fastidious organisms (Biorad, Marnes-la-Coquette,
France). The bacteriology laboratory of Creteil University Hospital is
accredited under ISO15189 (Accreditation certificate N8-3372 rev. 9) therefore
antibiotic disks and culture media are routinely quality checked.

● Dataset A3: This dataset consists of eight Petri dishes, all circular. The
antibiotic pellets were produced by Liofilchem and positioned by hand with
metallic tweezers. Specifically, the Petri dishes have been inoculated with the
following ATCC dried microorganisms:

Pseudomonas aeruginosa (ATCC 27583)
Klebsiella pneumoniae carbapenemase producer (ATCC 700603)
Klebsiella pneumoniae SHV-18-ESBL-producer (ATCC 700603)
Fluoroquinolone susceptible Escherichia coli reference strains (ATCC 25922)
Methicillin-Resistant Staphylococcus aureus (NCTC 12493)
Vancomycin-sensitive Enterococcus faecalis (ATCC 29212)
Gentamicin-resistant Enterococcus faecalis (ATCC 49532)

Image processing procedure. The IP module of the App consists of a custom C+
+ library and it is endowed with a Python wrapper module and a quick-start
documentation. We have deliberately developed the IP as a standalone module in
order to facilitate its use in other projects involving, for example, batch processing
of many images, or the integration in a Desktop application with the development
of dedicated image acquisition hardware. Our aim for the App is to keep the
hardware and setup as simple as possible, which is why we adopted the smartphone
strategy. Nevertheless, in other projects, the mobile phone could be replaced with a
small cost device like a Raspberry Pi with a camera still using our IP library.

The first raw input to IP is an AST picture, which consists of a plate (Petri dish)
to be cropped out from the remaining background (see Fig. 1). Cropping is
accomplished with the GrabCut algorithm28, with the assumption that the plate is
approximately centered in the image (i.e., lies within the frame displayed on the
camera screen). From the cropped plate image, we extract the dominant color, to
distinguish the type of growth media (MH or blood enriched HM), and the shape
of the plate (round or square). Finally, the image is converted to gray scale for
further processing.

Fig. 4 Benchmark results on dataset A3. The histograms (a,b) show the distribution of the absolute diameter differences between the App’s automatic
procedure (auto) and the manual measurement with ruler (a) as well as with the diameter adjusted on the smartphone by the technicians (assisted, b). On
the right, the heat-maps show the average absolute measurement difference among the eight technicians (given two readers i and j, square i, j represents
the average difference between them) measuring with the ruler (c) and in assisted mode with the App (d). The assisted measure seems to reduce inter-
operator variability.
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The image of a plate (Fig. 1a) contains three main distinct components: the
bacteria-free growth medium, the bacteria-covered growth medium, and the
antibiotic disks. The latter are white round cellulose disks of known constant
diameter (usually 6 mm). The precision of the whole automatic analysis depends
on the accuracy of measuring their position and diameter in the image. Since the
disk radius is known, the average disk radius in pixels is used to calculate the
picture scale (pixel-to-mm ratio). Then, the inhibition diameters are measured
from the disk center. The App features a fully-automatic method to measure
antibiotic disks’ positions and diameters based on intensity and shape, followed by
user-assisted verification/correction. (see Supplementary Note 2).

Each pellet is printed with the acronym of the antibiotic it contains. There are
only a few dozen antibiotics used in AST. Nevertheless, the acronym and the print
features (font, shape, size, contrast, etc.) depend on the manufacturer of the
antibiotic disks. The acronym of each antibiotic disk in the analyzed antibiogram
must be read in order to retrieve the corresponding breakpoint for susceptibility
categorization. Previously-proposed methods for reading these acronyms
compared the image moment invariants20 or used ORB (Oriented FAST and
rotated BRIEF) descriptors21,29. For this task, we chose ML and trained a
Convolutional Neural Network (CNN) model with Tensorflow24 (see
Supplementary Note 3 for details). We trained the model on a total of 18,000
images of antibiotic disks from two different manufacturers (resulting in 65 unique
labels) and achieved 99.97% accuracy. In order to limit the out-of-distribution
error (wrong classifications of disks on which the model was not trained), we used
an ensemble of ten models and set a threshold on the output entropy. (see
Supplementary Note 3 for details). The ML model showed to work also on poorly-
printed disks and out-of-focus or low-resolution images. Interestingly we observed
that even if the printed text is damaged when the disks are placed manually (using
metal tweezers), the classification is always correct.

The inhibition zone diameter is the diameter of the largest circle centered on the
antibiotic disk that does not include any bacteria; that is, the largest circle that can
be drawn in the inhibition zone without touching any bacteria. In the easiest case,
the inhibition forms a disk-shaped halo around the antibiotic pellet, but sometimes
the disk is not well-defined, for example, because of the overlap of several
inhibition zones or because the antibiotic disk lies close to the plate borders (see
Figs. 6a, 7). The bacteria-to-inhibition intensity contrast in the image depends on
the bacteria species. Also, illumination can vary both among different images and
within the same image. The observable effect is a visible difference of contrast in
the AST images (see Figs. 6a, 8, 9), especially when taken with a mobile phone
where the illumination conditions cannot be controlled.

The new algorithm for automatic diameter measurement, presented here, is
referenced as SWITCH (Spatial Weighted Intensity Threshold CHangepoint).
SWITCH operates a k-means clustering of the pixel intensity locally (around each
antibiotic pellet) to classify inhibition and bacteria pixels (k= 2). Successively, in
order to find the inhibition zone boundary, it calculates and segments a radial
profile I(r) measured in the surroundings of the antibiotic disk (up to the closest
neighboring disk). For each value of r all pixels at distance r from the pellet center
are considered. The value of I(r) is determined by the portion of pixels belonging to
bacteria colonies (see details in Supplementary Note 4). Although SWITCH

operates on a radial profile, the latter is calculated in a way that does not assume
any preferential direction in the analysis of the image, which is important especially
if the antibiotic disks are positioned by hand on the plate. Moreover, it partially
takes into account the texture of the colony, thereby increasing robustness to noise.

Susceptibility categorization and Interpretation. In this study, the susceptibility
categorization of the tested antibiotics (S/I/R) is done by comparing the measured
inhibition zone diameters to the EUCAST clinical breakpoints7. The breakpoint
values are stored offline in the application, within the expert system knowledge
base. This base, which contains also the expert rules and other expert system
resources, is maintained and updated yearly by i2a13,15 (Montpelier, France).

In the context of AI, an Expert System is a program capable of taking reasoned
conclusions from a given input, thereby simulating a human expert. Expert Systems
have long been successfully used in microbiology30 and most commercial systems
use them today. An Expert System consists of an inference engine that takes
reasoned conclusions on the input information, based on a set of rules written by
human experts.

The Expert System integrated in the App takes as input the diameter of the
inhibition zones of the observed plate. It categorizes the susceptibility of the
bacteria to the tested antibiotics and runs a coherence check and a final
interpretation. The coherence check examines the input information and alerts the
user if incoherent data are found (for example, if an antibiotic is not coherent with
the entered species, or if a natural resistance is not observed). The interpretation
extrapolates the results to classes of antibiotics and produces final alerts for
important resistance mechanisms.

Auto-detection of resistance mechanisms. Certain resistance mechanisms to
antibiotics can be detected by disk diffusion AST because they often produce
inhibition zones with characteristic shapes31,32 (see Fig. 7). These shapes appear
between specific antibiotic disks. If the disks are close enough, the antibiotic
molecules they diffuse can interact and produce a synergy effect against the bacteria
or induction of resistance. We used ML models to automatically recognize two
particular shapes associated with two specific resistance mechanisms: synergy and
induction, which can happen with Extended-Spectrum β-lactamase (ESBL) pro-
duction33 and Macrolide-inducible resistance to Clindamycin, respectively.

For each of the two tests, we trained a neural network model to classify positive
vs. negative images. The models to recognize Clindamycin-inducible resistance and
ESBL reach an accuracy of 99.7% and 98%, respectively (see Supplementary
Notes 5 and 6 for details). However, the models have not been proven to perform
well on a wide variety of images (varying in pellet arrangement, bacteria texture,
etc). Also, since classification errors can have very serious consequences in AST
interpretation and patient treatment, the App would need to ask the user for
confirmation when automatically detecting a resistance mechanism. So, in the best
case, including the resistance mechanism models in the App would bring only
modest clinical improvements. Therefore, an ML-based automatic detection
procedure was not included in the current version of the mobile application.

Fig. 5 Distribution of species in the AST groups used in this study. a Dataset A1. b Dataset A2. c Dataset A3.
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Nevertheless, the App asks users if they see such shapes wherever they are likely to
appear, and shows them examples for comparison (Fig. 2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets analyzed during the current study are available online at http://stat.
genopole.cnrs.fr/ast.zip. The data used for training the ESBL and D-SHAPE proof-of-
principle models are available from The MSF Foundation upon reasonable request.

Code availability
The image processing library described in this paper is distributed as open-source
software at https://github.com/mpascucci/AST-image-processing. As of today, The App
and its source code are available for research purposes upon request at https://form.
typeform.com/to/qEGVBzbu. We plan to release the App as open-source software after
approval of the CE authority as a clinical device. Fondation Medecins sans Frontieres sees
the CE mark of its app solution (as a self-certified IVD SW) as a means to demonstrate
and communicate on the quality and robustness of this digital tool for a non-profit.
Waiting to comply to the IVDD Directive 98/79, they do not want to grant open access
until they get this certification, as it could imply legal pursuit in France for the legal
manufacturer (Fondation MSF) distributing a medical device without certification.
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