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1. Introduction
Multifractal analysis based on the Hölder or p-exponent presupposes that the data belong to L∞ or Lp (or to Hp if p < 1). This condition is not always
true. If we don’t want to regularize the data by fractional integration, we can perform a multifractal analysis based on the weak scaling exponent,
which does not presuppose any regularity for the data, and can be used in the context of temperate distributions. In this prospective work, we propose
multi-resolution quantities adapted to this exponent in order to investigate the numerical feasibility of the method and we show its relevance for white
Gaussian noise, for which no p-exponent can be used, and we apply it on the cadence of marathon runners.

2. (θ, ω)-leaders
Let ψ be a "wavelet". The wavelet coefficients of a signal X are defined by
cj,k= 2j/2 ∫

RX(t)ψj,k(t)dt. The wavelet scaling function ηX is defined by

2−j
∑

k

|cj,k|p ∼ 2−ηX (p)j.

If ηX(p) < 0, ∀p > 0, then X /∈ Lp(R) and we can use the weak scaling
exponent. It was introduced by Yves Meyer from the (θ, ω)-leaders.

A function ω : N → R+ is sub-exponential growth if it is increasing and
verifies ω(j) → +∞ and log(ω(j))/j → 0 when j tends to 0.

Let (θ, ω) a couple of sub-exponential growth function. The set Vω(j, k)
are the indices (j′, k′) such that

j ≤ j′ ≤ j + θ(j) and
∣∣∣∣ k2j

− k′

2j′

∣∣∣∣ ≤ ω(j)
2j

.

The (θ, ω)-leaders are defined by dj,k = sup
(j′,k′)∈Vω(j,k)

|cj′,k′ |.

representation of the wavelet coefficients in time-scale half plane: In grey
the selected wavelet coefficients for leaders (left) and (θ, ω)-leaders (right)

3. Weak scaling exponent
The weak scaling exponent is characterized by:

hws
X (t0) = lim inf

j→+∞

log(dj,k(t0))
log(2−j) .

where dj,k(t0) is the (θ, ω)-leader associated with the dyadic interval
[k2−j , (k + 1)2−j [ which contains t0.

The (θ,ω)-multifractal spectrum of a function X is Dws
X : H 7→

dimH ({t ∈ R : hws
X (t) = H}) . The scaling function ζX associated with

(θ, ω)-leader is defined by: 2−j
∑

k |dj,k|p ∼ 2−ζX (p)j. In the log-log plot
regressions we took care of the quantification effect of the data following
the results of [1].
The Legendre transform of ζX is LX(H) = infp∈R (d+Hp− ζX(p)). It is
used to estimate the (θ, ω)-spectrum. Indeed Dws

X (H) ≤ LX(H).

4.Gaussian white noise
The Gaussian white noise W (t) can be defined as the derivative in the
sense of distrubution of the Brownian motion. No p-exponent is suitable
to perform the multifraclat analysis and it can be shown that its weak
scaling exponent satisfies:

a.e. ∀t ∈ R, hws
W (t) = −1

2 .

Legendre spectrum estimation of the
white Gaussian noise multifractal
spectrum. The (θ, ω)-leaders for-
malism provides an excellent esti-
mate of the spectrum whose sup-
port is very tight around the point
h = −1/2.

5.Multifractal analysis of cadence

Representation of a cadence signal of a marathon runner
(number of steps per minute).

Estimation of wavelet scaling func-
tion η(p) of the cadence.
η(p)<0, for all p>0. Hence, it is not
possible to apply multifractal analy-
sis based on p-exponent.

The Legendre spectrum of the cadence
using the (θ, ω)-leaders with θ(j) =
j0,25 and ω(j) = j, j > 0. We ex-
tract two parameters from the spec-
trum, the uniform regularity exponent
(Hmin) and the almost everywhere ex-
ponent of the signal (cws

1 ).

Multifractal analysis applied to the
weak scaling exponent allows to put
into light differences between the be-
haviours of the 10 marathon runners
using the representation of the cou-
ple (Hmin, c

ws
1 ), which might lead to

new classification tools useful to un-
derstand in a more precise way their
running caracteristics.

6. Conclusions
We have shown that an analysis based on weak scaling exponent allows
us to perform a multifractal analysis directly on the data, and that it is
efficient. In addition, the variability over the whole run based on cadence
doesn’t seem to be directly related to performance. An open question is to
understand its physiological interpretation.
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