Détection de l'érosion éolienne par émissivité apparente

Samy BRAZANE

Début de these : 1 oct 2021

Direction de thèse : Laurent IBOS & Olivier RIOU

Problématique de la thèse

Système à énergie renouvelable

Conditions climatiques

Dégradations du verre :

- Salissure
- Hydratation
- Érosion éolienne
- Corrosion chimique
- Fatigue thermique
- Épisode climatique extrême

Baisse du taux de transmission optique du verre

Problématique de la thèse

Système à énergie renouvelable

Conditions climatiques

Dégradations du verre :

- Salissure
- Hydratation
- Érosion éolienne
- Corrosion chimique
- Fatigue thermique
- Épisode climatique extrême

Baisse du taux de transmission optique du verre

Détection des dégradations

Moyens classiques de détection

Contrôle électrique

Contrôle visuel

Détection des dégradations

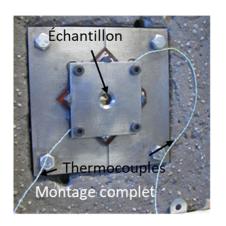
Problèmes des moyens classiques :

- Prennent beaucoup de temps
- Ne permettent pas de détecter les dégradations fines

Nouveau moyen de détection du CERTES:

- Sans contact
- Non destructif
- Détecte des dégradations fines
- Obtenu par une caméra thermique
- Utilisable sur des surfaces étendues

Centrale solaire photovoltaïque de Cestas dans le Gironde


Approche thermique pour le mesurage de l'émissivité apparente

Formule (WALACH, 2008)

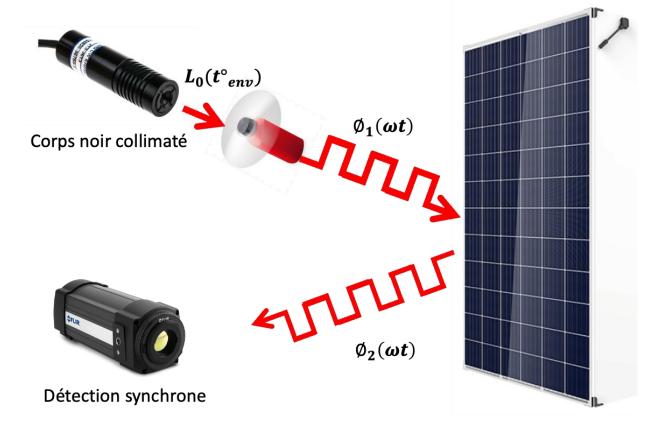
$$\varepsilon_{\Delta\lambda}(t) = \frac{L_{\Delta\lambda}(t_{\rm app.}) - L_{\Delta\lambda}(t_{\rm env.})}{L_{\Delta\lambda}(t) - L_{\Delta\lambda}(t_{\rm env.})}$$

 $L_{\Delta\lambda}$: thermosignal (l'image de la radiance en niveaux numériques)

Banc expérimental du CERTES Sénart

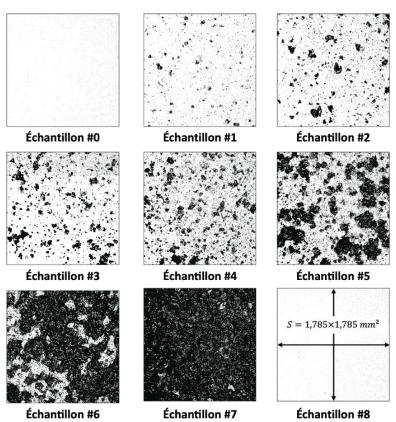
Réflecteur infrarouge

Cet outil fonctionne parfaitement en condition laboratoire (contrôle strict des températures)


Notre projet : production d'un émissogramme in situ

Cet outil sera une aide à la décision du maintien ou du remplacement des panneaux photovoltaïques ou miroirs à concentrateur solaire

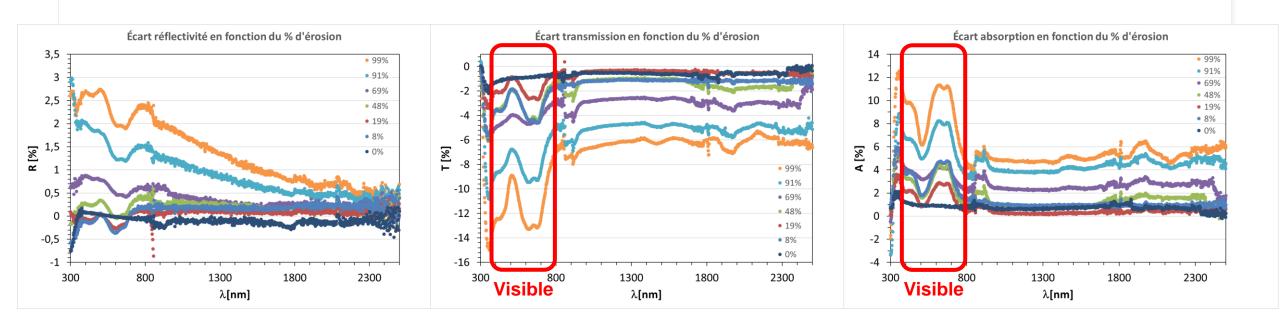
Verrou technologique : s'affranchir des températures d'émission


$$r_{app} = \frac{\emptyset_2(\omega t)}{\emptyset_1(\omega t)} = 1 - \varepsilon_{app}$$

Cette méthode élimine les influences statiques (température d'environnement et émission) et exploite les capacités d'imagerie de la caméra

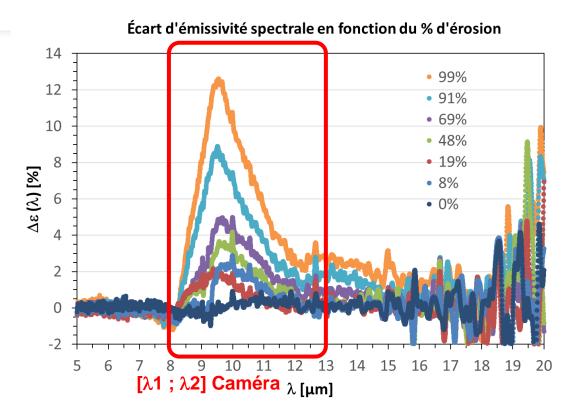
Sablage des échantillons

Images échantillons issues du microscope agrandissement de 50



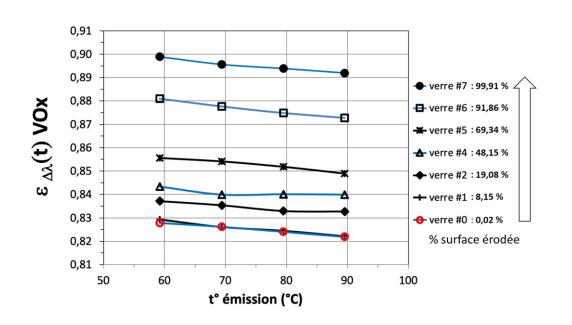
Résultat traitement d'image

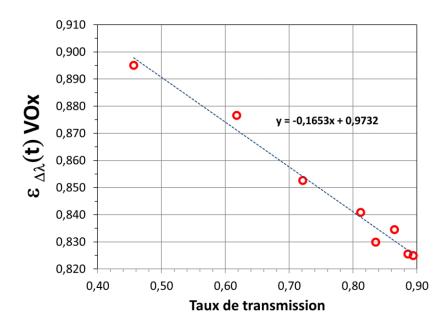
logiciel de traitement d'image basé sur le contraste noir et blanc


	% surface non érodée	% surface érodée
Echantillon 0	99,98	0,02
Echantillon 1	91,85	8,15
Echantillon 2	80,92	19,08
Echantillon 3	71,32	28,68
Echantillon 4	51,85	48,15
Echantillon 5	30,66	69,34
Echantillon 6	8,14	91,86
Echantillon 7	0,09	99,91
Echantillon 8	99,98	0,02

Caractérisation spectrale des effets de l'érosion dans le visible

- Effet de seuil observé en réflectance entre 48% et 69% de surface érodée : transition spéculaire/diffus ?
- L'érosion affecte principalement la transmittance et l'absorbance dans le visible → l'érosion impacte l'efficacité énergétique des systèmes à énergie solaire de l'ordre de 15% pour le PV et 28% pour les systèmes à concentrateur solaire : le problème est sérieux
- La détectabilité dans le visible est possible en transmittance → la détectabilité de l'érosion par des méthodes optiques est limitée (problème des fonds opaques des panneaux photovoltaïques)


Caractérisation spectrale de l'érosion dans les infrarouges moyens (LWIR)


La détectabilité des effets de l'érosion est optimale dans la bande spectrale des caméras LWIR

→ Comme émissivité apparente est raccordée à l'émissivité spectrale [RIOU, 2014], l'indicateur est pertinent pour la détection de l'érosion

Emissivité apparente des verres sodocalciques érodés

Très bonne sensibilité de l'émissivité apparente avec l'érosion → localisation des zones érodées

Corrélation entre l'émissivité apparente et la transmission [0,3 – 2,8 µm] → quantification de la gravité de l'érosion

Conclusions

Nous avons étudié les effets d'érosion sur du verre sodo-calcique

- Dans le visible la transmission diminue
- Dans l'infrarouge l'émissivité spectrale augmente dans la gamme LWIR [8μm 13 μm]
- La détectabilité de l'érosion est faible avec les méthodes optiques et optimale dans l'infrarouge.

<u>Perspectives</u> : développer un outil de contrôle in situ produisant un émissogramme pour la localisation des zones altérées et pour la quantification de leur gravité.

Cet outil sera une aide à la décision au maintien ou au remplacement des panneaux photovoltaïques ou miroirs à concentrateur solaire dans les installations étendues.

Contact: Samy Brazane

samy.brazane@u-pec.fr