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ABSTRACT
Background and Objective: Major Depressive Disorder is a highly prevalent and disabling mental
health condition. Numerous studies explored multimodal fusion systems combining visual, audio, and
textual features via deep learning architectures for clinical depression recognition. Yet, no comparative
analysis for multimodal depression analysis has been proposed in the literature.

Methods: In this paper, an up-to-date literature overview of multimodal depression recognition is
presented and an extensive comparative analysis of different deep learning architectures for depression
recognition is performed. First, audio features based Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) are studied. Then, early-level and model-level fusion of deep audio
features with visual and textual features through LSTM and CNN architectures are investigated.

The performance of the proposed architectures using an hold-out strategy on the DAIC-WOZ
dataset (80% training, 10% validation, 10% test split) for binary and severity levels of depression
recognition is tested. Using this strategy, a set of experiments have been performed and they have
demonstrated: (1) LSTM-based audio features perform slightly better than CNN ones with an accuracy
of 66.25% versus 65.60% for binary depression classes. (2) the model level fusion of deep audio and
visual features using LSTM network performed the best with an accuracy of 77.16%, a precision of
53% for the depressed class, and a precision of 83% for the non-depressed class. The given network
obtained a normalized Root Mean Square Error (RMSE) of 0.15 for depression severity level prediction.
Using a Leave-One-Subject-Out strategy, this network achieved an accuracy of 95.38% for binary
depression detection, and a normalized RMSE of 0.1476 for depression severity level prediction. Our
best-performing architecture outperforms all state-of-the-art approaches on DAIC-WOZ dataset.

Conclusions: The obtained results show that the proposed LSTM-based surpass the proposed
CNN-based architectures allowing to learn temporal dynamics representations of multimodal features.
Furthermore, model-level fusion of audio and visual features using an LSTM network leads to the
best performance. Our best-performing architecture successfully detects depression using a speech
segment of less than 8 seconds, and an average prediction computation time of less than 6ms; making
it suitable for real-world clinical applications.

1. Introduction
Clinical depression (also known as Major Depressive

Disorder) is a highly prevalent and disabling mental health
condition. Nearly 4.4% of the world’s population (i.e. 322
million people) are living with depression [1]. A survey paper
reported the rise of depression among adults with the increase
of age in Europe and its elevated risk for suicidal behavior
[2].

Clinical depression diagnosis is a major challenge for
health professionals. It lacks the biological gold standards
[3, 4], and like most mental health conditions, it cannot be
detected by a blood test or an imaging test. The most com-
mon approach for depression diagnosis constitutes clinical
interviews [5, 6] and self-report scales and inventories (Self-
RIs) [7, 8, 9, 10]. Clinical interviews scales are completed
by a trained mental health professional in the context of a
clinical interview. While such scales allow the assessment
of various depression symptoms, however, their reliability
is questioned [11, 12]. On the other hand, although Self-RIs
alone are insufficient to support the diagnosis of depression,
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they are widely used screening tools in primary health care
[13, 14]. Compared to clinical interviews, Self-RIs suffer
from several shortcomings. For instance, such scales ignore
the clinical significance of the reported symptoms, and do not
account for individual personality characteristics, comorbid
conditions, and life events that might have triggered depres-
sive symptoms in the patient [15]. Additionally, both clinical
interviews scales and Self-RIs are vulnerable to intentional or
unintentional reporting bias including subjective bias, central
tendency (avoiding extreme responses), and social acceptance
[16].

Recently, automatic mental states and mental disorders
recognition have attracted considerable attention from the
Artificial Intelligence community. Several systems have been
developed to automatically assess the person’s emotions and
mental state [17, 18, 19, 20, 21]. In these approaches, verbal
and non-verbal behaviours were investigated.

Particularly, speech has been proven to be a robust indi-
cator in the automatic diagnosis of clinical depression. In
several works, it has been demonstrated that the speechmodal-
ity outperforms visual and textual modalities in automatic
clinical depression diagnosis. [22, 23]. However, the use
of different depression benchmark datasets and estimation
approaches makes it hard to conclude which acoustic features
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have the most discriminating power for depression assess-
ment [24, 25]. Yet, the Mel Frequency Cepstral Coefficients
(MFCCs), which are considered as top audio features in appli-
cations like speech and speaker recognition [26], have proven
their high efficiency in detecting clinical depression com-
pared to other audio features in shallow-based approaches
[24, 27]. Additionally, verbal information from speech tran-
scription were also investigated as predictors of depression
[23, 28, 29, 30].

Furthermore, depression is also conveyed through visual
non-verbal cues. Several studies have reported promising
results on the use of facial Action Units (AUs), introduced
by Ekman et al. [31], for automatic depression assessment
[18, 22, 32]. For instance, the first use of AUs for this task was
performed in Cohn et al. [18], where statistical features such
as the frequency of occurrence, mean duration, onset/total
duration, and onset/offset ratios were extracted.

Moreover, numerous studies in the literature use multi-
modal fusion systems combining visual, audio and textual
features for depression recognition [22, 32, 33]. The fu-
sion of MFCC-based audio and video modalities leads to
high-performance depression prediction results [32, 33]. Yet,
these studies lack the information about model level fusion
of MFCC features with other modalities. Also, they did not
investigate the temporal dynamics’ representations for multi-
modal depression recognition.

The efficiency of deep learning techniques in various intel-
ligent applications has led to the exploration of different deep
architectures for automatic depression assessment [34, 35].
Deep neural networks have significantly improved the perfor-
mance on such task compared to shallow machine learning
approaches due to their capability to automatically abstract
both low and high level descriptors from the patient’s verbal
and non-verbal signals without the need of human interven-
tion. Both, Convolutional Neural Networks (CNNs) [36, 37]
and Recurrent Neural Networks (RNNs) [29, 33] based ap-
proaches were proposed in the literature for automatic de-
pression recognition. CNNs were proven to be very efficient
in modeling non-sequential visual data (by employing fil-
ters within convolutional layers to transform data). However,
their incapacity to model temporal information leads to lower
performances when used on sequential data. On the other
hand, RNNs have the ability to interpret temporal informa-
tion present in sequential data by reusing activation functions
from preceding or succeeding data points in the sequence to
influence the output and make better predictions. Despite all
the deep-learning based approaches proposed in the literature
for depression recognition, there is no reported work that
investigates the performance of CNNs compared to RNNs
for this task.

In this paper, a comparative analysis of several deep
MFCC-based multimodal depression recognition frameworks
is proposed. Learning the temporal dynamics from contin-
uous and spontaneous data are considered. Two unimodal
representations based on CNNs and RNNs allowing to learn
high level MFCC audio features are proposed and compared.
Moreover, an extensive study is performed to investigate the

best suited multimodal fusion approach for clinical depres-
sion recognition. Early and model-level fusion of MFCC
features with Word2Vec textual and AU visual features are
investigated.

The remainder of this article is organised as follows. In
section 2, a comprehensive review of related works in de-
pression assessment and multimodal fusion is presented. The
motivations and contributions of this paper are presented in
section 3. In section 4, the proposed approach and deep learn-
ing architectures for depression assessment are presented. In
section 5, details about the different performed experiments
and results are presented. Finally, the findings are discussed
in section 6, and section 7 concludes the paper.

2. Related Work
Traditionally, clinical interviews and self-report scales

and inventories (Self-RIs) are used by health practitioners
to assess clinical depression. The Diagnostic and Statistical
Manual of Mental disorders (DMS) [5] and the Hamilton
Depression Rating Scale (HDRS) are the most popular scales
used in clinical interviews settings [6]. These scales are com-
pleted by a trained mental health professional in the context
of a clinical interview. They allow the assessment of var-
ious depression symptoms such as mood swings, suicidal
ideations, loss of interest in life, insomnia, anxiety, agitation,
somatic symptoms, etc. Yet, both scales are widely criticized
regarding their reliability [11, 12]. In addition, the assess-
ment rely on clinicians subjective assessments which might
present subjective biases [38] due to the clinician’s skill.

On the other hand, self-report scales and inventories (Self-
RIs) include Hospital Anxiety and Depression Scale (HADS)
[7], Quick Inventory of Depression Symptomatology (QIDS)
[8], Beck’s Depression Inventory (BDI) [9], and the most
commonly used Patient Health Questionnaire (PHQ) [10].
Although Self-RIs alone are insufficient to support the di-
agnosis of depression, they are widely used as screening
tools in primary health care [13, 14]. Compared to clinical
interviews, Self-RIs suffer from several shortcomings. For
instance, such scales ignore the clinical significance of the
reported symptoms, and do not account for individual per-
sonality characteristics, comorbid conditions, and life events
that might have triggered depressive symptoms in the patient
[15]. Additionally Self-RIs are vulnerable to intentional or
unintentional reporting bias including subjective bias, central
tendency (avoiding extreme responses), social acceptance
[16], and the reliability of a patient’s perception of their men-
tal state [38].

Consequently automatic depression assessment approaches
emerged which offer an objective way of mapping patient’s
verbal and non-verbal cues to a depression score. In the
following, the existing methods for automatic depression as-
sessment using redvisual-based, audio-based and text-based
features are reviewed. Then, multimodal features fusion ap-
proaches for automatic depression recognition are reported.
In addition, state-of-the-art approaches for learning temporal
dynamics’ representations are studied and its importance is
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highlighted.
2.1. Automatic Depression Assessment

Automatic depression assessment approaches are consti-
tuted mainly of three steps: 1) data acquisition where uni-
modal or multimodal data are acquired from various sources
(audio, video [36, 37], text [29, 39], context [40], etc..) and
the depression score ground truth is collected simultaneously
using clinically validated scales, 2) data processing where
data are pre-processed, and depression markers extracted
(features), and 3) prediction where machine learning models
are applied to predict the individual’s depression state.
2.1.1. Visual-based Depression Assessment

Visual-based features approaches for depression assess-
ment rely on the extraction of visual features from patients’
image sequences or video. For a comprehensive review of de-
pression recognition based on visual cues, please refer to the
survey of [41]. Visual features learned for depression recog-
nition concern mainly head and body features. While some
approaches learn handcrafted features, other approaches in-
vestigate more complex and abstract features representations
using deep learning [41].
Handcrafted head features include non-verbal cues ex-
tracted from the head pose or face. Previous studies extracted
visual cues in the form of facial expressions [42], Action
Units [18, 22, 23, 32, 43], gaze and pupil dilation [44, 45],
eyelids movements and blinks [43, 45, 46], facial landmarks
[30, 43], facial appearance [47] which can be extracted with
several methods such as Local Binary Patterns (LBP), Edge
Orientation Histogram (EOH) and Local Phase Quantization
(LPQ) [48], and head motion and orientation [43, 49].
Handcrafted body features encode the body’s orienta-
tion andmovement, which carry significant information about
an individual’s mental state. For instance depressed individu-
als tend to move less. Few approaches have concentrated on
the investigation of handcrafted body features for depression
recognition. Example features used in the literature include
Space-Temporal Interesting Point (STIP) features that de-
scribe the body movements [50] and the so-called “parts
algorithm” which allows extracting the body’s orientation
and distance [51].
Deep visual features offer an automatic abstraction of
facial image descriptors contributing to the manifestation
of depression, which has proven to be a good diagnostic
biomarker for depression recognition. The full face or spe-
cific facial regions are either used as input to deep architec-
tures [48, 52, 53], or handcrafted visual features are extracted
a priori and then used as input to the deep neural network
[37]. For instance, in the approach of [37], spectral represen-
tations of a set of facial non-verbal behaviour features (AUs,
gaze, head pose) were used as inputs to the deep learning
model.

Deep learning architectures, in particular, Convolutional
Neural Networks (CNN)were used for depression recognition

from images sequence. These include Deep Transformation
Learning (DTL) [54], 2D-CNN [36, 37], Artificial Neural
Network (ANN) [37], 3D-CNN [52], and 3D-CNN followed
by RNN [55]. VGG-Face [56] and AlexNet [48], initially de-
veloped for facial recognition, were also used for depression
recognition from images by [48]. Particular architectures
tried to tackle the challenging aspects that might be present
in visual data. For instance, to account for varying head poses
and imaging conditions in facial images, [57] introduced the
memory attention mechanism. In this approach, an attention
module acts as a pooling layer by adaptively learning the
weights emphasising or suppressing face images with vary-
ing poses and imaging conditions. On the other hand, the
deep architecture of [58], DepressNet, attempted to model
the depression patterns visually encoded in the face. This
was done through the generation of a depression activation
map, which allows to identify salient regions of the input
image in terms of depression severity score.
2.1.2. Audio-based Depression Assessment

Audio-based approaches for depression assessment rely
on the extraction of acoustic and prosodic markers from pa-
tients’ speech segments. These include low and high level
features designed and extracted from the audio signal in an at-
tempt to model the characteristics of speech such as prosody,
voice quality, frequency range, energy, etc. Extracted features
are then fed to main-stream classifiers to predict depression
[25, 32, 59, 60, 61].

Acoustic features used for depression assessment can be
categorized into six categories: Prosodic, Source, Formant,
Spectral [62], Cepstral and deep learning features. These
features have demonstrated that they contain relevant infor-
mation about the depressed speech. For a comprehensive
review of audio-based depression recognition, please refer to
[62].
Prosodic features represent phoneme-level variations in
speech rate, rhythm, loudness, intonation and stress [25, 29,
60, 63]. Examples include the fundamental frequency (F0)
and energy which represent the perception of pitch and loud-
ness [62].
Source features capture information of the voice produc-
tion source. Such features parameterise the air flow from the
lungs through glottis via glottal features [25, 64], Teager En-
ergy Operator (TEO) features [64] or vocal fold movements
via voice quality features [32, 60, 63].
Formant features contain information concerning the phys-
ical vocal tract properties such as the muscle tension in the
form of formant frequencies (F1, F2, F3) that are affected by
the depression state of the patient [29, 65].
Spectral features characterise the speech spectrum which
constitutes frequency distribution of the speech signal at a
specific time instance [25, 29, 60, 63]. Examples of spectral
features used in the literature include spectral flux, energy,
slope and flatness [25, 64, 66].
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Cepstral features are those based on a non-linear spectrum-
of-a-spectrum representation. The most common used are
Mel-Frequency Cepstral Coefficients (MFCC) [63] and Lin-
ear Prediction Cepstral Coefficients [25, 61, 64, 67].
Deep audio features can be either learned from raw audio
input [68], or from acoustic features, extracted from the audio
signal and used as input to the Deep Neural Network (DNN).
For instance, [69] proposed a self-supervised pre-trained
audio embedding method to extract audio descriptors for
depression recognition. Other audio features used as input
to DNN include Mel-scale filter bank [19], MFCC features
[19, 33, 34, 35], spectogram [34, 70], prosodic features [35],
spectral and voice quality features [23].

Proposed deep learning architectures include Feed-Forward
Neural Network (FF-NN) [43], Convolutional Neural Net-
work (CNN) [34, 70], Long Short-Term Memory Convolu-
tional Neural Network (LSTM-CNN) [19, 68], Bidirectional
Long Short-Term Memory Convolutional Neural Network
(BLSTM-CNN) [35, 69], Long Short-Term Memory Recur-
rent Neural Network (LSTM-RNN) [29, 33], BLSTM-RNN
[35], and Deconvolutional Neural Network Multiple Instance
Learning (DNN-MIL) [35].
2.1.3. Text-based Depression Assessment

Text-based approaches for depression assessment rely
on the extraction of descriptors from the patients’ speech
transcriptions. In the literature, two categories of textual
features are reported for depression assessment: statistical
and text-to-vector embedding.
Statistical features compute statistics on spoken utterances
of the patient and/or the interviewer (in case of clinical inter-
views). Statistics can be calculated on the detected sentiment
from the textual data such as arousal, valence [63], pleasure
and dominance [43]. Statistics can also be extracted directly
from the verbal responses of the participant or interviewer.
Example features include the total number of sentences, spo-
ken words, average words spoken in each sentence, laughter
to spoken words ratio, depression related words to spoken
words ratio [43].
Text-to-vector embedding features convert textual data to
numerical vectors, which are then input to Machine Learning
models. For instance, Paragraph Vectors (PV), also called
Doc2Vec, which project text documents (phrases, paragraphs,
etc.) into d-dimensional space were employed as textual
modalities for depression assessment [23, 28, 29, 30].
2.2. Multimodal Features Fusion

Several approaches for depression recognition are based
on features extracted from different modalities, such as visual,
audio and text. An important step in multimodal recognition
approaches is modalities fusion, which tackles fusion strate-
gies of the different modalities, or even different features
from the same modality. Four categories of strategies are
reported in the literature: feature-level, decision-level, hy-
brid and model-level fusion [71, 72]. For a comprehensive

survey of multimodal fusion strategies for multimedia anal-
ysis, please refer to [73]. Table 1 presents a summary of
state-of-the-art approaches employing multimodal fusion for
depression recognition, categorized by the fusion level.
Feature-level fusion, also calledEarly-fusion, is themost
commonly used strategy for multimodal recognition systems.
It concerns approaches which concatenate features extracted
from different modalities into a single high-dimensional fea-
ture vector at an early stage, immediately after extraction.
For instance, in the approach of [63], the high dimensional
feature vector resulting from the early fusion of audio and
textual features is fed to an SVM classifier. Similarly, the
approach of [28] extracted session-level audiovisual features
using a multimodal Deep Denoising Autoencoder (multiD-
DAE) followed by a Fisher Vector encoding. The audiovisual
features were then fused with textual features in a multi-task
Deep Neural Network (DNN) framework.
Decision-level fusion orLate-fusion concerns approaches
that perform fusion at the decision level. After obtaining a
decision based on each of the modalities, an integration step
is performed on these decisions by applying an algebraic
combination rule (e.g. minimum, maximum, sum, etc.) of
the multiple predicted class labels. For instance, [74] imple-
mented a decision-level fusion method based on the decisions
obtained by Random Forest regressors on visual, audio and
text modalities. A modality-wise confidence score was com-
puted using the standard deviation of the outcomes of all
trees for each modality. Decisions were fused based on a
winner-takes-all strategy were the modality prediction with
the highest confidence score was chosen as the final result .
Hybrid fusion performs early fusion in addition to fusion
of individual classification scores of each used modality at the
decision level. For example, [23] fused the prediction results
of audiovisual and text-based models using a multivariate
regression model. Two audiovisual Deep Convolutional Neu-
ral Network (DCNN) models are trained separately to predict
depression and non-depression scores, which are then fused
with binary depression classification results obtained from
two text-based models.In their text-based model, statistical
utterance features were fused at an early level to detect a
binary depression score with a Random Forest classifier.
Model-level fusion aims to learn a joint representation of
the different modalities with an extended learning after uni-
modal features extraction and concatenation. Fusion at the
model-level is the most adapted way for fusing multimodal
features.

In this family of approaches, Multiple Kernel Learning
(MKL) [75], graphical models [76], or also neural networks-
based approaches [71, 77, 78, 29, 30, 33] have been employed.
MKL is used to find an optimal combination of the input
modalities’ features by constructing a kernel for each feature
type [75].

Graphical models are able to easily exploit the spatial
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Table 1
State-of-the-art multimodal fusion systems for depression (and emotion) recognition

Fusion Level Paper Modalities Model
Decision [74] Audio, Video, Text Random Forests
Hybrid [23] Audio, Video, Text DCNN-DNN

SVM
Random Forests

Feature [28] Audio, Video, Text DNN
[63] Audio, Text SVM
[78] Audio, Video LBP-TOP

CNN
CNN-LTSM

Model [29] Audio, Text LSTM per modality
[30] Audio, Video, Text DCNN-DNN
[33] Audio, Video LSTM
[77] Audio, Video LTSM
[71] Audio, Video CNN per modality

DBN for fusion
SVM for classification

[78] Audio, Video Probabilistic Graphical Model
[75] Audio, Video MKL per modality

SVM

and temporal structure of the multimodal data by incorporat-
ing multiple simple predictors and exploiting the temporal
correlation between multiple time points and multiple input
modalities [76].

Neural Networks have been widely used for audiovisual
fusion. Feature representations of the different modalities are
first learned with a different architecture for each modality.
Multimodal data are then fused by concatenating the learned
feature representations followed by an additional hidden layer.
Mainly, Recurrent Neural Networks were used due to their
ability of incorporating temporal information. For instance,
audiovisual segment features are fused using a Deep Belief
Network (DBN) [71], LSTM [77] or Bi-directional LSTM
(BLSTM) [78]. Similarly, in the approach of [29], audio and
text modalities are trained separately using BLSTM. Then, a
multimodal model is trained after combining these twomodal-
ities by merging the outputs into a final feed-forward network.
In [30] high level features from video, text, and audio data are
learned using DCNN-DNN networks and then fused at the
model-level with a DNN network. Authors of [33] extracted
MFCC-based audio features which were fed to a series of
LSTM networks and then fused with AU descriptors with
two fully connected layers and one output layer.

It has been reported in the literature that model-level
strategy achieves better performances than other strategies.
Particularly, Neural Networks-based approaches for modality
fusion obtain good performance thanks to their capacity of
learning from large amounts of data in addition to finding
complex decision boundaries [76].
2.3. Learning Temporal Dynamics Representation

Multimodal data are characterized by a dynamic nature
represented by the signals in two dimensions: spatial and
temporal. Thus, three representations could be learned [79]:

Spatial-features’ representation consider the spatial de-
pendencies of extracted features from each single modality
without considering the temporal correlation between time
steps. Spatial information is learned in the literature with
2D CNN coupled with Feature Dynamic History Histogram
(FDHH) [48] to map features variations, or through fusion
of multiple 2D CNN on different facial regions [58]. In [57],
the authors fused video features by employing an attention
mechanism.
Temporal-features’ representation where features are
learned from temporal data sequences. Consequently, tempo-
ral dynamics are learned within the features’ representations
and the contextual information of the temporal dimension
is considered. It has been demonstrated that Recurrent Neu-
ral Networks capture the temporal dynamics present in the
data [80]. To represent the temporal dynamics of expres-
sive behaviour in video-based automatic depression analysis,
spectral representation of such behaviors is extracted [37].
The constructed spectral signals of all behaviours are then
aligned and fed to CNN and ANN for depression analysis.
Joint spatial and temporal features representation where
both spatial and temporal modeling of the data is performed.
Once features are extracted from multiple modalities at dif-
ferent time points, they are fused using one of the modality
fusion strategies [81]. Spatial and temporal information can
be exploited separately with DNN by cascading 2D CNN
with RNN. However, such approach can degenerate intrin-
sic spatio-temporal relationships [52]. Alternatively, 3D-
CNN (C3D) permit to leverage spatio-temporal information
[52, 55, 82]. In the work of [52], fusion of diverse C3D
predictions is proposed, where spatio-temporal features are
extracted from global and local regions of the face. The net-
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work integrates a 3D Global Average Pooling layer instead
of fully-connected layers, allowing to efficiently summarize
spatio-temporal features, together while reducing the number
of the model parameters and avoiding overfitting. On the
other hand, [36] propose a novel temporal pooling method
to capture and to encode the spatio-temporal dynamics of
video clips into an image map. Their method is based on
two-stream model that performs late fusion of appearance
and dynamic information.

3. Motivations and Contributions
In this paper, low-level and high-level audio features are

used in Deep Neural Networks frameworks to assess Major
Depressive Disorder from speech. Mel Frequency Cepstral
Coefficients (MFCCs) audio features have proven their high
efficiency in detecting clinical depression compared to other
audio features in shallow-based approaches [24, 27, 33]. In
addition, they are considered as top audio features in speech-
based applications like speech and speaker recognition. To
thoroughly explore the discriminative power of MFCC fea-
tures for depression assessment, different MFCC-based deep
learning architectures are proposed and compared in this
work.

Previous studies showed that Recurrent Neural Network
attained significantly high performance in speech recognition
[29, 35]. Therefore, we investigate the performance of the
Short Long-Term Memory (LSTM) based networks and com-
pare their performance with Convolutional Neural Networks
for depression assessment. Therefore, two unimodal audio
representations based on CNNs and RNNs are proposed and
compared, allowing to learn high level MFCC representations
from low level features and to classify depression.

Furthermore, deep model-level fusion of deep audio fea-
tures with visual and textual features through LSTM and
CNN architectures is investigated. This results in a higher
performing deep neural network architecture for multimodal
depression recognition.

The contributions of this research can be summarized as:
• Comparing different strategies of deep features learn-

ing and fusion for clinical depression recognition.
• A comparative analysis of several deep neural networks

architectures for multimodal depression recognition.
• Learning temporal dynamics representations frommul-

tidimensional signals andmodalities for clinical depres-
sion recognition.

• An automatic and high performing approach for detect-
ing depression in less than 5.26milliseconds, based on
input segments of less than 8 seconds from multimodal
data.

4. Methods
Audio, visual, and textual data are investigated in this

work and they are used for unimodal and multimodal repre-
sentations in several deep learning frameworks.

The proposed approach is based on clinical interviews
data from the DIAC-WOZ dataset [83]. The data constitute
conversations between participants (patients) and an Em-
bodied Conversational Agent (ECA), playing the role of the
interviewer. During the conversation, the patient responds to
a clinically validated questionnaire assessing his/her depres-
sion level. A detailed description of this dataset is provided
in section 5.1.

The proposed approach is constituted of five steps. First,
a preprocessing step is performed (section 4.1) where pa-
tients’ speeches are extracted and the corresponding audio
signals are divided into fixed-size windows (section 4.1.1).
Audio data are synchronized with visual and textual data,
and textual data are pre-processed to clean noisy informa-
tion (4.1.2). Visual features are provided in the used dataset,
and thus, no preprocessing is needed for visual data. In a
second step, audio data augmentation is performed to mini-
mize overfitting and data scarcity problems relative to deep
learning (section 4.2). Then, low or high-level features are
extracted from the different modalities (section 4.3). After-
wards, multimodal features fusion strategies for automatic
depression detection are studied in section 4.4. The last step
of the proposed approach concerns the final classification of
the learned multimodal representations (section 4.5).
4.1. Preprocessing

A preprocessing step is applied only to audio and to tex-
tual data prior to features extraction as follows. Visual fea-
tures are provided in the used dataset, and thus, no prepro-
cessing is needed for visual data.
4.1.1. Audio Preprocessing

The proposed approach is based on depression assessment
from patients’ responses to clinical questions asked by an
interviewer. Audio recordings are preprocessed in order to
separate the patient’s speech from that of the interviewer. For
each audio recording, timestamps relative to the interviewer
and the participant’s speech are provided. These timestamps
are used to retrieve the participant’s speech. The speech
segments relative to the interviewer’s speech are discarded
and only the patient’s speech is used for automatic depression
detection. The participant’s audio is then divided into small
speech segments of size n = 7.6 seconds.
4.1.2. Text Preprocessing

The audio recordings of the clinical interviews are ac-
companied with speech transcriptions corresponding to the
conversations between the participant and the interviewer.
Table 2 presents an extract of a speech transcript from the
DAIC-WOZ dataset. Contrary to the audio data, we use both
the transcriptions of the interviewer and the participant. As
a matter of fact, verbal reactions of the interviewer following
those of the participant, might carry relevant information
about the participant’s emotions encoded in their responses.
For instance, when the participant replies negatively to the
interviewer’s questions, the interviewer’s responses include
phrases like “that sucks” or “I’m sorry to hear that” which
caries significant information about the depressive state of
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Table 2
An extract of a speech transcript from the DAIC-WOZ dataset.

Start Time Stop Time Speaker Value
81.03 82.23 Ellie where are you from originally
82.72 83.69 Participant los angeles
84.56 85.02 Ellie really
86.47 88.41 Ellie what are some things you really like about LA
89.85 90.62 Participant um
92.59 94.81 Participant well <laughter> that’s a good question
95.84 100.56 Participant um I like the familiarity with everything

I know where everything is in the city
101.89 102.38 Ellie mhm

the participant. We have made the choice of using solely
the audio patterns of the participant because the audio pat-
terns of the interviewer do not present signs of depression
but his/her words can present signs of sympathy when the
patient is depressed.

First, participant’s speech transcriptions (text) are syn-
chronized with her/his speech (audio). This is done using the
timestamps provided with the text transcript files (cf. Table
2). Then, the participant’s transcriptions are extracted for the
same fixed size windows duration as the audio data segments
(7.6 s). The corresponding interviewer’s question is then
identified and extracted from the start and stop time, and the
“Speaker” value.

A set of preprocessing techniques is applied to clean
the textual data. These include: (1) removal of numerical
numbers, punctuation and white spaces, (2) grammar cor-
rection using the language python tool1, and (3) removal of
stop words, lower case conversion and lemmatization using
NLTK toolbox [84]. Note that lemmatization is the process
of reducing inflectional and derivationally related forms of a
word to a common base form, known as the lemma. A lemma
is referred to as the canonical, dictionary, or citation form of
a word.
4.2. Audio Data Augmentation

The technique of artificially expanding labeled training
sets by transforming data points while preserving class la-
bels, known as data augmentation, is considered in this work.
Such technique allows handling the labeled data scarcity prob-
lem, avoid overfitting relative to deep neural networks, and
improve the performance of the proposed approach and its
robustness to noise. Two types of audio augmentation tech-
niques are then performed on the audio frames to perturb the
raw audio signals and generate new ones [33].

• Noise Injection: a random white noise is added to the
speech segments of participants. If y is the audio signal
and � is the noise factor, then the noise augmented data
x is given by: x = y − � × rand(y). We use � = 0.01,
0.02 and 0.03.

• Pitch Augmentation: audio frames pitch is lowered
and the audio duration is kept unchanged. Audio frames

1https://pypi.org/project/language-tool-python/

pitch is lowered by 0.5, 2, 2.5 in semitones.
4.3. Data Encoding

In this section, the audio, visual, and textual features used
in this work are presented.
4.3.1. Audio Features

A good representation of the audio signal can allow the
discrimination between depressed and non depressed sub-
jects. A negative emotion, such as when a person is sad or
bored, is translated by slower speaking frequencies. Thus,
low level audio features to describe the variation of low fre-
quencies signal are needed. This makes the Mel Frequency
Cepstral Coefficients (MFCC) good candidates for this task.
MFCC are thus extracted from the patient’s preprocessed au-
dio signals. Following MFCC features extraction, high level
deep audio features are learned fromMFCC to further encode
audio patterns for depression recognition. In the following,
MFCC features extraction and deep audio features encoding
are described.

MFCC Extraction – MFCC features describe the audio
cepstrum energies in a non-linear scale known as the mel-
scale. Tracking MFCC variations over time allows tracking
the speech tone variation [85] which is largely affected in
depressed speech. To extract MFCC features, the speech
signal is first divided into frames by applying a Hamming
window function of window length of 60 milliseconds. Let
s[n] be the original audio signal, w[n] the hamming window
function, then the sliced audio frame is given by:

x[n] = w[n]s[n] (1)
with

w[n] = � − � cos
(

2� n
N − 1

)

(2)
where � = 0.54, � = 0.46, N represents the length of the
window, and 0 ≤ n ≤ N .

Discrete Fourier Transform (DFT) is then computed for
each frame to extract information in the frequency domain.

X[k] =
N−1
∑

n=0
x[n]e−j

2�
N kn (3)
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Mel-scale filter banks are then applied to the DFT power
spectrum to map the frequency information to the Mel scale
which approximates the human perception of pitch.

Yt[m] =
N
∑

k=1
Wm[k]|Xt[k]|2 (4)

whereWm represent the triangular Mel-scale filter banks, k
is the DFT bin number, 1 ≤ k ≤ N , and m represents the
mel-filter bank number, 1 ≤ m ≤ N .

This results in a power spectrum. The spectrum is then
smoothed and 19 spectral components are collected in the
Mel frequency scale.

Only the logarithm of the amplitude spectrum is retained
and a cepstral feature vector is then generated. The compo-
nents of the Mel-spectral vectors calculated for each frame
are highly correlated. Therefore, the Karhunen-Loeve (KL)
transform is applied which is approximated by the Discrete
Cosine Transform (DCT).

yt[n] =
M−1
∑

m=0
log

(

Yt[m]
)

cos
(

n(m + 0.5) �
M

)

(5)

This results in the mel frequency cepstral features matrix
of 378 × 60 for each 7.6 seconds audio signal.
Deep Audio Features Encoding – FollowingMFCC fea-
tures extraction, high level deep audio features are learned
to further encode audio patterns for depression recognition.
CNNs were proven to be very efficient in modeling non-
sequential visual data (by employing filters within convolu-
tional layers to transform data). However, their incapacity
to model temporal information leads to lower performances
when used on sequential data. On the other hand, RNNs
have the ability to interpret temporal information present in
sequential data by reusing activation functions from preced-
ing or succeeding data points in the sequence to influence
the output and make better predictions. To compare RNNs
and CNNs for depression recognition, two unimodal repre-
sentations of MFCC features are proposed in this work: (1)
CNN-based and (2) RNN-based. Two deep neural networks
architectures are studied based on these unimodal representa-
tions of the audio signal for clinical depression recognition.
All implementation details of the proposed deep architectures
are provided in section 5.3.

1. MFCC-CNN (Figure 1a). In the given network, high
level MFCC-based descriptors are learned with an ar-
chitecture consisting of 2 consecutive blocks, each
includes consecutive convolutional and Relu layers,
followed by dropout and flatten layers.

2. MFCC-LSTM (Figure 1b). In this network, MFCC-
based high level descriptors are learned with an RNN
architecture. It consists of 3 blocks. Each block is
composed of an LSTM layer followed by batch nor-
malization and dropout layers. There is flatten layer at
the end of third block.

Table 3
The list of the Visual Action Units in the DAIC-WOZ dataset.

Face Part AU Description
Upper Face AU01 inner brow raiser

AU02 outer brow raiser
AU04 brow lowerer
AU05 upper lid raiser
AU06 cheek raiser
AU45 eyes blink

Lower Face AU10 upper lip raiser
AU12 lip corner puller
AU15 lip corner depressor
AU09 nose wrinkler
AU14 dimpler
AU17 chin raiser
AU20 lip stretcher
AU25 lips part
AU26 jaw drop
AU11 nasolabial deepener
AU15 lip corner depressor
AU23 lip tightener
AU28 lip suck

4.3.2. Visual Features
The publicly available baseline visual features in the

DAIC-WOZ dataset are considered in this work. These visual
features consist of facial Action Units (AUs), which were first
introduced in the Facial Action Coding System (FACS) [86].
AUs refer to a set of facial muscle movements that correspond
to a displayed emotion. Using FACS, any displayed emotion
can be described in terms of a set of AUs. For ethical rea-
sons, no raw video was made available in the DAIC-WOZ,
which is the main reason behind limiting our work to this set
of features. The visual features consist of 20 Action Units
(AUs) [86] which are extracted from the upper and lower face
of each subject using the OpenFace2 Framework [87]. The
extracted AUs are presented in Table 3. The participants’
facial Action Units are synchronized with their speech and
text transcripts using the provided timestamps.
4.3.3. Textual Features

As textual features, the words uttered by the participant
and the interviewer are converted during each audio segment
(7.6sec) to sequences of vectors using the word embedding
approach, as shown in Figure 2.

Word embedding allows to transform words into dimen-
sional vectors, where similar words or words that appear in
the same context tend to be mapped to vectors which are
close in the dimensional space. In particular, each frame
transcript is represented by a matrix E = (e1,… , ek,… enw)where ek is the word vector corresponding to the ktℎ word
and nw is the number of words in the frame transcript. We
use the fastText pretrained network [88], trained on Common
Crawl3 with sub-word information resulting in word vectors
of size 300. Words that do not exist in the pretrained model

2https://github.com/TadasBaltrusaitis/OpenFace
3https://commoncrawl.org/2017/06
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(a) MFCC-based CNN network consisting of 2 consecutive blocks, each includes consecutive convolutional and Relu layers, followed by
dropout and flatten layers.

(b) MFCC-based LSTM network consisting of 3 blocks of an LSTM layer followed by batch normalization, dropout, and flatten layers.
Figure 1: MFCC-based deep unimodal representations for depression recognition. 60 MFCC coefficients are extracted from the
audio segment of 7.6 seconds. Then, they are fed to a CNN (a) or to an LSTM (b) followed by two fully connected layers. The
output layer is a dense layer of size 2 for binary depression recognition and of size 24 for PHQ-8 depression severity levels prediction
with a sigmoid activation function.

Figure 2: Process of textual features extraction. Text segments
at first preprocessed to remove noisy information, then word
vectors are extracted.

were replaced by their synonyms. Moreover, the resulting
word vectors matrix for each transcript frame were resized to

378×9where 378 corresponds to the MFCC coefficients size
and 9 corresponds to the minimum number of words existing
in one frame.
4.4. Multimodal Data Fusion

The deep encoded audio features are combined with tex-
tual and visual modalities following different data fusion
strategies. The goal is to explore the best suited fusion strat-
egy for multimodal depression assessment, as well as the
best modality to be coupled with MFCC audio features for
this task. Therefore, the CNN and LSTM based unimodal
audio representations are fused with the textual and the visual
modalities using two fusion strategies: (1) Early Fusion and
(2) Deep Model-Level Fusion.
Early Fusion – The audio deep unimodal representation
is concatenated with the visual or textual features, and the
resulting vector is used to detect depression. The correspond-
ing architecture is shown in Figure 3. Thus, four different
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(a) The MFCC-based CNN audio features are fused with visual or textual features using an early fusion strategy

(b) The MFCC-based LSTM audio features are fused with visual or textual features using an early fusion strategy
Figure 3: Proposed multimodal early fusion strategy frameworks for depression recognition. After extrating the MFCC-based
unimodal representations as described in Figure. 1, visual or text features are concatenated with the deep audio features into a
single high-dimensional feature vector and then fed to two fully connected layers to predict depression. All implementations details
are given in Section. 5.3.

deep neural networks are studied:
1. MFCC-CNNAU (Figure 3a). High levelMFCC-based

descriptors are learned with an architecture consisting
of 2 consecutive blocks, each including consecutive
convolutional and Relu layers, followed by dropout and
flatten layers. Then, the obtained high level MFCC fea-
tures are concatenated with the 20 visual Action Units.

2. MFCC-LSTM AU (Figure 3b). MFCC based high
level features consisting of 3 blocks of LSTM layers
are extracted. Then, the obtained high level MFCC
features are concatenated with the 20 visual Action

Units.
3. MFCC-CNN Word2Vec (Figure 3a). The network

is the same as the MFCC-CNN AU. The AU visual
features are replaced by the Word2Vec textual features.

4. MFCC-LSTMWord2Vec (Figure 3b). The network
is the same as the MFCC-LSTM AU. The AU visual
features are replaced by the Word2Vec textual features.

Deep Model-Level Fusion – The unimodal representa-
tions of the different modalities are concatenated and a joint
representation is learned with an extended deep learning
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Figure 4: Proposed model-level fusion approach for depression recognition. The MFCC-based deep audio features are concatenated
with the visual or the textual features and then fed to an LSTM-based deep neural network to learn a joint multimodal representation
for depression recognition. All implementations details are given in Section. 5.3.

architecture. LSTM is used in order to learn a temporal repre-
sentation of the two modalities. The architecture is shown in
Figure 4. Two multimodal architectures fusing MFCC high
level features with visual and textual features, respectively,
are implemented as follows.

1. MFCC-AU Model-Level Fusion. MFCC based high
level descriptors are learned with a deep architecture
consisting of 3 blocks. Each block is composed of an
LSTM layer followed by a batch normalization layer
and a dropout layer. The obtained high level MFCC
features are concatenated with 20 Action Units and
fed to an LSTM layer followed by batch normalization,
dropout, and flatten layers.

2. MFCC-Word2VecModel-Level Fusion. The network
is similar to that of the MFCC-AU model-level fusion.
The AUs visual features are replaced by the Word2Vec
textual features.

4.5. Depression Classification
All proposed frameworks and representations, whether

unimodal or multimodal are fed to two fully connected layers
followed by one output layer that implements the following
equation:

l̂ = �(W T
2 .(�(W

T
1 .(�(W

T
0 .f + b0)) + b1)) + b2) (6)

where f is the embedding vector, � is the sigmoid func-
tion and � is a tanℎ function. W0,W1,W2 represent the firstdense layer weights, second dense layer weights, and output
layer weights, respectively. b0, b1, and b1 are the bias vectorsof the first dense layers, the second dense layers and the out-
put layer, respectively. Both the weight matrices and the bias
are learned through a training process and the classification is
learned by optimizing the cross-entropy between the ground
truth and classification outcome using the function defined
by:

L = 1∕N
n
∑

i=1
(Yi − Ŷi)2 (7)

where L is the average loss for all the training samples, Ŷi isthe estimated depression label and Yi is the real depressionlabel.

5. Experiments and Results
In this section, we present the evaluation results of the

proposed approaches. A description of the used dataset is
presented in section 5.1. The used evaluation metrics are
presented in section 5.2. All the proposed deep networks
implementation details are described in section 5.3. Finally,
the performed experiments and corresponding results are
presented and discussed in section 5.4.
5.1. Dataset

The performances of the proposed architectures are evalu-
ated on the Distress Analysis Interview CorpusWizard-of-Oz
dataset (DAIC-WOZ) [83]. DAIC-WOZwas collected by the
University of California and introduced in the Audio/Visual
Emotion Challenge and Workshop in 2017 (AVEC 2017)
[60]. The dataset is composed of clinical interviews between
an interviewer and 189 participants aiming to investigate dif-
ferent psychological distress conditions such as depression,
anxiety, and post-traumatic stress disorder. Due to technical
reasons, in this work, only data of 182 participants have been
used.
Multimodal data – The dataset includes the visual Action
Units of the participants in addition to the audio recordings
and the speech transcript files of the participants and the
interviewer. In order to respect the privacy of the subjects
who participated in the study, the participants’ images are
not included in the dataset. Transcript files and visual Action
Units are timestamped. The average length of participants’
audio recordings is 15 minutes obtained at a sampling rate
of 16kHz.
Depression labels – Participants’ data are labeled in terms
of depression severity level and a binary depression label
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(a) Partition of depressed and
non-depressed participants.
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(b) Participants repartitions across the severity levels of the PHQ test.
Figure 5: Participants repartitions for binary depression and severity level scores within the DAIC-WOZ dataset. (a) Depressed
versus Non-Depressed participants. (b) Participants repartitions across the twenty four depression severity levels given by the
PHQ-8 questionnaire.

Table 4
Training, testing and validation DAIC-WOZ subjects distribu-
tion in our experiments following the hold-out strategy.

Dataset Number of Subjects (%) Samples
Subjects

Train 146 80 8191 (*57337)
Testing 18 10 1250
Validation 18 10 1064
Total 182 100 10505

*Including augmented samples

indicating if a participant is depressed or not. Depression in
this dataset was assessed using a self-report depression test
based on the Patient Health Questionnaire (PHQ). The PHQ
is constituted of eight questions (PHQ-8) [10] giving a binary
depression label (PHQ-8 binary) and 24 depression severity
levels (PHQ-8 scores). The distribution of the number of
participants across the depression labels sets (PhQ binary
and PhQ-8 scores) for the DAIC-WOZ dataset is shown in
Figure 5.

For all experiments, the dataset is randomly divided into
80% for training, 10% for validation, and 10% for testing. In
order to keep a balanced ratio between the labels, depressed
and non-depressed subjects are first separated before perform-
ing the random split. Different subjects were used for training,
testing and validation (i.e. among 182 subjects, 146 were
considered for training, 18 for validation, and the remaining
18 for testing). Further details are given in Table 4 regarding
the number of subjects and augmented data samples in each
partition.
5.2. Evaluation Metrics

The given approach is assessed using Accuracy, Precision,
Recall, Root Mean Square Error (RMSE), Pearson Correla-
tion Coefficient (CC) and Concordance Coefficient Correla-
tion (CCC) [89]. CCC is usually used to evaluate inter-rater
reliability and it measures the agreement between the pre-
dicted and true depression scores. Let T r and Pr be the true
and predicted depression score vectors, then CC(T r, P r) and

CCC(T r, P r) are given by:

CC(T r, P r) =

n
∑

i=1
(Pri − �Pr)(T ri − �T r)

n
∑

i=1
(Pri − �Pr)2

n
∑

i=1
(T ri − �T r)2

(8)

CCC(T r, P r) =
2�T r�PrCC

�2T r + �
2
Pr + (�T r − �Pr)2

(9)

�T r and �Pr represent the standard deviations of variables T rand Pr, and �T r and �Pr represent their respective means.
5.3. Network Implementation Details

In the following, we present the proposed networks im-
plementation details.

• Dense layers: The dense layers’ sizes are set to 15
and 10, respectively. In all experiments, a hyperbolic
tangent activation function (tanh) is used for both dense
layers.

• Output layer: For predicting the PHQ-8 binary score,
the output layer is a dense layer of size 2with a sigmoid
activation function. To predict the 24 severity levels
(PHQ-8 scores), the output layer’s size is changed to
24 neurons.

• Learning rate: To prevent the models from training
instability or failure caused by a large or tiny learning
rate value, an adaptive learning rate is used. It is up-
dated each epoch and decreases from the initial value to
a minimum of 10−10 according to the estimated error.
The LSTM models are trained using an initial learning
rate of 10−5 and a decay of 10−6. While, for convo-
lutional models, an initial learning rate of 10−6 and a
decay of 10−6 are used.

• Batch size: The batch size is set to 120 samples for all
experiments.
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• Epochs: A total number of 300 epochs is set for training
where an early stopping is performed when the loss
function stops improving after 10 epochs.

• Optimizer: The proposed models are trained with the
RMSProp optimizer and Root Mean Square Error as a
loss function.

CNN architectures – For both MFCC-based and audiovi-
sual based CNN architectures, filters of sizes 128 and 64 are
used for the convolutional layers. ReLU is used as an acti-
vation function for both convolutional layers. The filter and
stride are set to 3 and 1, respectively. The dropout fraction
value is set to 0.02%.
LSTM architectures – In all LSTM architectures, the fol-
lowing number of output cell units was used:

• MFCC LSTM: 60, 40, and 20 output cell units;
• MFCC-AU LSTM: 60, 40, and 20 output cell units;
• MFCC-Word2Vec LSTM: 60, 40, and 20 output cell

units;
• Model-level fusion LSTM: 20 output cell units.
Batch normalization and dropout layers are assigned to

every LSTM layer with fraction values of 0.02%. Further-
more, in the model-based fusion architecture, a dropout layer
is added after the flatten layer with a fraction value of 0.02%.
The following parameters are used for all LSTM layers:

• Activation function: all LSTM layers are activated with
the hyperbolic tangent activation function (tanh).

• Recurrent step: the first two LSTM layers, recurrent
step is activated with the hard sigmoid function, while
in the remaining LSTM layers, recurrent step is acti-
vated with the sigmoid function only.

• Recurrent dropout: in order to prevent the recurrent
state from overfitting, a recurrent dropout of 0.2% is
applied.

• Kernel weights: in all LSTM layers, kernel weights
are initialized using the glorot_uniform initializer.

• Optimization: penalties are applied over the bias vec-
tor using a regularization function to improve perfor-
mances. The l1 and l2 imposed constraints are set to
0.0001 and 0.0001, respectively.

5.4. Experiments
In this section, the different performed experiments for de-

pression recognition and assessment using speech, visual and
text signals are presented. First, the performance of MFCC-
based unimodal deep learning frameworks for PhQ-binary
depression detection is evaluated (section 5.4.1). Then, the
performances of early fusion (section 5.4.2) and model-level
fusion (5.4.3) based frameworks for fusing MFCC features

with visual and textual modalities are investigated. Addition-
ally, further analysis is performed to depict the performances
of the proposed networks for the detection of depression
and non-depression classes (section 5.4.4). Moreover, the
performance of the proposed architectures are compared for
the prediction of depression severity levels (section 5.4.5).
Furthermore, comparison with state-of-the-art benchmark
approaches in automatic depression assessment is performed
(section 5.4.7). Finally, the best performing architecture
among the proposed ones is further evaluated with a Leave-
One-Subject-Out strategy (section 5.4.6).

In the following, details concerning the performed exper-
iments are given.
5.4.1. MFCC-based Deep Learning for Audio

Depression Detection
Table 5 summarizes the resulting performances of the

proposed MFCC-based networks on the testing set for PHQ-
binary detection. As the table shows, comparing MFCC-
based CNN and LSTM architectures, the LSTM architecture
performs slightly better than the CNN one with an accuracy
of 66.25% vs. 65.60%. The slight augmentation of accuracy
might be an indicator that RNN models are better suited for
audio-based depression detection than CNN due to their abil-
ity to model the temporal dynamics of audio signals. Thus,
the fusion of MFCC high level descriptors with other modal-
ities needs to be investigated.
5.4.2. Early Fusion Strategy for Multimodal

Depression Detection
The performance of early fusion strategy of MFCC high

level descriptors with visual AUs and textual Word2Vec fea-
tures for binary depression detection are also presented in
Table 5. The fusion of both MFCC unimodal representa-
tions, learned with CNN and LSTM models, with the other
modalities is compared.

Using the early fusion strategy, fusing CNN and LSTM
based MFCC high level descriptors with Word2Vec textual
features slightly degrades the results compared to unimodal
audio deep models.

On the other hand, fusion with AUs, achieves better re-
sults with respect to using single audio modality in both, the
CNN and LSTM architectures. An accuracy increment of
2.72% is obtained with the MFCC-AU CNN with respect to
the MFCC CNN. Similarly, an accuracy increment of 5.08%
is obtained with the MFCC-AU LSTM network compared
to the MFCC LSTM network. Moreover, the audiovisual
fusion LSTM architecture achieves better performance than
the CNN one (accuracy of 71.33% vs. 68.32%). The AUC
scores and other performance metrics presented also in Table
5 confirm that the best performing deep neural network is the
MFCC-AU LTSM.

This confirms that audiovisual fusion models perform bet-
ter than audio-based models for binary depression detection,
regardless of the architecture type (RNN vs. CNN).
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Table 5
Performance of proposed deep learning models for binary depression recognition in terms of
AUC score, Accuracy, RMSE, CC, and CCC on the testing set.

Fusion Features Deep Audio AUC Score Acc. (%) RMSE CC CCC
Features

MFCC CNN 0.4866 65.60 0.49 0.149 0.06
MFCC LSTM 0.4816 66.25 0.49 0.154 0.07

Early MFCC-Word2Vec CNN 0.4740 64.29 0.49 0.12 0.06
MFCC-Word2Vec LSTM 0.4678 65.98 0.48 0.13 0.07
MFCC-AU CNN 0.5059 68.32 0.47 0.22 0.09
MFCC-AU LSTM 0.5391 71.33 0.46 0.35 0.17

Model MFCC-Word2Vec LSTM 0.4690 68.79 0.46 0.20 0.12
MFCC-AU LSTM 0.6575 77.16 0.42 0.54 0.34

Table 6
Performance of the proposed networks for binary depression recognition in terms of Precision,
Recall, and F1-Score. ND: Non-Depressed, D: Depressed

Fusion Features Deep Audio
Features Precision Recall F1-Score

D ND D ND D ND
MFCC CNN 21 75 16 81 18 78
MFCC LSTM 20 75 13 83 16 79

Early MFCC-AU CNN 25 76 16 85 20 80
MFCC-AU LSTM 34 78 20 88 25 82
MFCC-Word2Vec CNN 19 75 15 80 17 77
MFCC-Word2Vec LSTM 16 75 10 84 12 79

Model MFCC-Word2Vec LSTM 12 75 05 89 07 81
MFCC-AU LSTM 53 83 44 88 48 85

5.4.3. Model-level Fusion Strategy for Multimodal
Depression Detection

The model-level fusion of MFCC-LSTM descriptors with
textual and visual modalities are summarized in Table 5.
Model-level fusion of audiovisual signals achieved a higher
accuracy and a lower RMSE compared to all other models. In
this high performing model, two LSTMs are applied: (1) in
the first one, MFCC features are fed to LSTM to extract high
level representation and more deeper features from the audio
signal. (2) The deep audio and the visual features are fused
through a second LSTM to learn a deep joint representation
of the audiovisual signal. This model-level fusion of audio
and visual features boosts the performance for PHQ-8 binary
where an accuracy of 77.16% is achieved. The fusion model
accuracy is improved by 11.56%, 10.91%, 8.84%, and 5.83%,
with respect toMFCCCNN,MFCCLSTM,MFCC-AUCNN,
and MFCC-AU LSTM respectively.

Concerning fusion with textual features, using the same
model-level fusion architecture, fusing MFCC with word
embedding features degrades the performance by 8.37% with
respect to fusion with Action Units. On the other hand, model-
level fusion with textual features improves the performance
with respect to early fusion of audio features with the same
modality.

5.4.4. Performance Analysis for Binary Depression
Classes Detection

To better analyze the performance of the proposed archi-
tectures for detecting PHQ-8 binary classes, Table 6 summa-
rizes the resulting performances of all experiments in terms
of Precision, Recall and F1-Score, on the testing set, for both
Depression and Non-Depression binary classes.

In model-level fusion, an increment is observed in Preci-
sion, Recall and F1-Score for both binary depression classes
of Depressed and Non-Depressed as compared to all other
methods. This can be explained by the fact that further high
level features are learned using model-level fusion. In ad-
dition, adding an LSTM layer which combines the MFCC-
based deep features with AU features allows the network to
learn temporal dynamics of the audiovisual signal, resulting
in better modeling of depression.

An F1-score of 85% is obtained for the Non-Depressed
class, corresponding to 3% and 6% increment compared to
MFCC-AU LSTM and MFCC LSTM models, respectively.
Similarly, an increase in F1-score of 5% and 7% were noted
for the Non-Depressed class compared to MFCC-AU CNN
and MFCC CNN experiments, respectively. While, for the
Depressed class an increment of 23%, 28%, 32% and 30% in
F1-score has been observed as compared to the other four
models. Furthermore, all LSTM based models performed
better as compared to CNN based models. This could be
due to temporal dynamic based learning of LSTM layers.
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Table 7
Performance of the proposed deep learning models for PHQ-
scores severity levels of depression prediction in terms of RMSE
on the testing set. (N): Normalized RMSE

Fusion Features Deep Audio
Features RMSE

MFCC CNN 0.2041N∕4.69
MFCC LSTM 0.2093N∕4.81

Early MFCC-Word2Vec CNN 0.2175N∕5.00
MFCC-Word2Vec LSTM 0.2109N∕4.85
MFCC-AU CNN 0.1978N∕4.55
MFCC-AU LSTM 0.1862N∕4.28

Model MFCC-Word2Vec LSTM 0.1945N∕4.47
MFCC-AU LSTM 0.1519N/ 3.49

On the other hand, Action Units play a notable role in the
performances of the models. For instance, MFCC-AU LSTM
and MFCC-AU CNN models achieved 9% and 2% higher F1-
score for the Depressed class compared to MFCC LSTM and
MFCC CNN, respectively.

Figure 6 shows the confusion matrices for all the pro-
posed architecture in terms of PHQ-binary classes detection.
From the figure 6, one can notice that the concatenation of
AU with audio features considerably improves the perfor-
mance of CNN and LSTM based deep learning networks.
For Non-Depression detection, an increment of 3.47% and
4.46% is achieved in both audiovisual based CNN and LSTM
networks, respectively. Similarly, for Depression class de-
tection, an increment of 0.39% and 7.03% is observed for
audiovisual based CNN and LSTM networks, respectively.
These results show that fusion of AU features in LSTM net-
work considerably improves its performance for depression
detection compared to CNN-based deep learning network.
Furthermore, in audiovisual model based fusion, the addition
of LSTM layer after concatenation plays an important role for
the detection of depression. 23.44% and 30.47% depressed
samples are predicted more accurately as compared to early
fusion of audiovisual modalities with LSTM network and
MFCC-based LSTM network, respectively.
5.4.5. Evaluation of the Depression Severity Levels

Prediction
Table 7 summarizes the resulting performances of the

proposed frameworks on the testing set for the PHQ-score pre-
diction task. Similar to the binary depression detection task,
the audiovisual model-level fusion approach outperforms all
the other approaches with a normalized RMSE value of 0.15.
The model that performed the worst is the one implementing
early fusion of CNN-based audio descriptors with Word2Vec
features (MFCC-Word2Vec CNN)which obtained the highest
normalized RMSE value of 0.2175.
5.4.6. Leave-One-Subject-Out Experiment for

MFCC-AU LSTM
As mentioned in section 5.1, all of the above experi-

ments were performed using a hold-out strategy with an

80∕10∕10 percentage split. Leave-One-Subject-Out (LOSO)
is generally a better strategy for measuring generalization
performance of Machine Learning models. Thus, Leave-
One-Subject-Out (LOSO) evaluation has been performed for
the best performing architecture (MFCC-AU LSTM). Results
of this experiment are presented in Table 8 for binary PHQ
detection and PHQ-score prediction. As shown in the table 8,
an overall accuracy of 95.38% for the binary depression as-
sessment task was obtained by the MFCC-AU LSTM model.
On the other hand, the obtained AUC score, RMSE, and CCC
values are 0.94 , 0.22, and 0.89 respectively.

Moreover, the corresponding confusion matrix is given
in Figure 7 for PHQ binary recognition task. For LOSO
experiment, the proposed model achieved a higher precision
for both depressed and non-depressed classes as compared
to the 80∕10∕10 hold-out strategy. Furthermore, regarding
PHQ-score prediction, a decrease in RMSE value has been
observed with the LOSO strategy (0.15). Overall, the high
performance of MFCC-AU LSTM architecture measured
using a LOSO strategy for both PHQ assessment tasks (binary
and severity level) confirms the generalization power of the
proposed architecture.
5.4.7. Comparison with State-of-the-Art Methods

In the following, a comparison of performance with state-
of-the art benchmark approaches in clinical depression as-
sessment from speech are presented for both PHQ-binary and
PHQ-Score prediction tasks.
PHQ-binary – Table 9 compares the performance of the
given deep audiovisual model-level fusion approach with ex-
isting state-of-the-art methods for PHQ-8 binary (depressed
and non-depressed) classes in terms of Precision, Recall and
F1-score. The table also presents the average F1-score, Ac-
curacy, RMSE and CC when available.

The presented MFCC-AU LSTM model-level fusion ob-
tained an overall higher accuracy as compared to EmoAu-
dioNet [34] and MFCC-based Recurrent Neural Networks
proposed in [33].

The authors of DepAudioNet [19] only provided Preci-
sion, Recall, and F1-score for depressed and non-depressed
classes. Table 9 shows that the Precision of the proposed
MFCC-AU LTSM model for non-depressed class is less than
that obtained by DepAudioNet [19]. However, the given
MFCC-AU LTSM model achieved a higher precision for de-
pressed class as compared to the DepAudioNet approach.
Along with that, our model achieved a higher Precision for
both depressed and non-depressed classes as compared to
EmoAudioNet and MFCC-based Recurrent Neural Networks
proposed in [33, 34].

Among the state-of-the-art approaches presented in Ta-
ble 9, only the approach of Salekin et al. (2018) [35] was
evaluated with a LOSO strategy. With their BLSTM-MIL
model, the authors reported an accuracy of 96.7% and an F1-
Score of 85.44%. For our LOSO experiment, the accuracy
is slightly lower as compared to BLSTM-MIL model, yet a
notable increment has been found in average F1-Score.
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Figure 6: Confusion matrices of the different proposed deep neural networks architectures for binary depression recognition task.
ND: Non-Depressed, D: Depressed.

(a) MFCC CNN

P
re

di
ct

ed
Actual

ND D total

ND 657
(61.75)

215
(20.21)

75.34
24.66

D 151
(14.19)

41
(3.85)

78.65
21.35

total 81.31
18.69

83.98
16.02

(b) MFCC LSTM

P
re

di
ct

ed

Actual
ND D total

ND 671
(63.06)

222
(20.86)

75.14
24.86

D 137
(12.88)

34
(3.20)

80.12
19.88

total 83.04
16.96

86.72
13.28

(c) MFCC-AU CNN Early Fusion

P
re

di
ct

ed

Actual
ND D total

ND 685
(64.38)

214
(20.11)

76.20
23.80

D 123
(11.56)

42
(3.95)

74.55
25.45

total 84.78
15.22

83.59
16.41

(d) MFCC-AU LSTM Early Fusion

P
re

di
ct

ed

Actual
ND D total

ND 707
(64.45)

204
(19.17)

77.61
22.39

D 101
(9.49)

52
(4.89)

66.01
33.99

total 87.50
12.50

79.69
20.31

(e) MFCC-Word2Vec CNN Early Fusion

P
re

di
ct

ed

Actual
ND D total

ND 646
(60.71)

218
(20.49)

74.77
25.23

D 162
(15.23)

38
(3.57)

81.00
19.00

total 79.95
20.05

85.16
14.84

(f) MFCC-Word2Vec LSTM Early Fusion

P
re

di
ct

ed

Actual
ND D total

ND 677
(63.63)

231
(21.71)

74.56
25.44

D 131
(12.31)

25
(2.35)

83.97
16.03

total 83.79
16.21

90.23
9.77

(g) MFCC-Word2Vec LSTM Model-Level Fusion
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Table 8
Leave-One-Subject-Out (LOSO) experiment for the best performing architecture (MFCC-
AU LSTM) for both depression assessment tasks (binary and severity level) in terms of
Accuracy, RMSE, CC, and CCC. (Norm): Normalized RMSE

Assessment task Metric Value
Binary AUC Score 0.94

Acc. (%) 95.38
RMSE 0.22
CC 0.94
CCC 0.89

Severity Level RMSE 0.15Norm / 3.40

Figure 7: Confusion matrix of the best performing architecture (MFCC-AU LSTM) using Leave-One-Subject-Out evaluation
strategy. ND: Non-Depressed, D: Depressed.
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PHQ-Score – Table 10, presents state-of-the-art compar-
ison results for predicting the depression severity levels in
terms of RMSE. The proposed audiovisual model-level fusion
approach performs better (0.15) than the MFCC-based Recur-
rent Neural Network architecture [33] (0.17), EmoAudioNet
(fusion of MFCC and Spectorgram based CNN Networks)
[34] (0.18), [23] (1.46 for depressed male) and other state-of-
the-art approaches [30, 32] for the PHQ-8 scores prediction.
5.4.8. Computational Complexity

The proposed deep neural networks architectures were
implemented on an Intel Xeon E-2124G @ 3.40GHz Pro-

cessor (with 32.GB memory and an Nvidia Quadro P4000
graphics card). The computational complexity for the best
performing deep neural network (MFCC-AU LSTM) is eval-
uated on the validation set consisting of 1064 samples. For
binary depression detection, the average computation time
for prediction of one sample is 5.26 milliseconds. On the
other hand, for depression severity levels prediction, the av-
erage computation time for prediction of one sample is 5.37
milliseconds. We can conclude that our proposed approach
is high performing with a reasonable computation time, and
thus satisfies the computational requirements of clinical and
real-world applications.

Table 9
Comparison of proposed network with state of the art methods for PHQ-8 binary in terms of
Precision, Recall and F-Score (%) for Depressed (D) and Non-Depressed (ND) classes. The
table also summrizes the average F-score, Accuracy, RMSE and CC. The best performances
are highlighted in bold. (*Evaluation with Leave-One-Subject-Out strategy.)

Method Precision Recall F1-Score Acc. RMSE CC
D ND D ND D ND Av.

DepAudioNet [19] 35 100 100 54 52 70 — — — —
EmoAudioNet [34] 52 80 46 84 49 82 72.89 73.25 0.47 —-
MFCC-based RNN [33] 69 78 35 94 46 85 73.65 76.27 0.41 —
MFCC-AU LSTM 53 83 44 88 48 85 76.09 77.16 0.42 0.54
BLSTM-MIL* [35] — — — — — — 85.44 96.7 — —
MFCC-AU LSTM* 96 95 89 98 92 97 95.48 95.38 0.22 0.94
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Table 10
Performance comparison of our best performing proposed deep
neural network and state-of-the-art depression severity levels
prediction methods on the DAIC-Woz dataset. (DM) : De-
pressed Male, which refers the depression value of males only.
(Norm): Normalized RMSE.

Method RMSE
Valstar et al. (2016) [32] 7.78
Yang et al. (2017)[30] 5.59DM
Yang et al. (2017b)[23] 1.46DM

Othmani et al. (2020)[34] 0.18∗
Rejaibi et al. (2019)[33] 0.17∗

MFCC-AU LSTM 0.15Norm / 3.49

6. Discussion
In this research, a comparative analysis of different Deep

Neural Networks is conducted for multimodal depression
recognition. The obtained results show that Recurrent Neural
Networks are better suited than Convolutional Neural Net-
works for clinical depression detection due to their temporal
dynamics characteristics [90]. Furthermore, the fusion of
deep audio features with visual features leads to better per-
formance comparing to their fusion with word embedding
textual features. Surprisingly, CNN based audio features
alone provided better results as compared to their fusion with
textual features. This degradation in performance does not
necessarily indicate that fusing audio and textual features is
not suitable for depression assessment. It is possible that
the way textual information is encoded in this work with
Word2Vec embedding is not the optimal way for encoding
the patient’s and interviewer’s responses. More suitable rep-
resentations of textual features should be investigated.

According to our experiments, the best outperforming
model is based on the model-level fusion using an LSTM
network of the deep audio and the visual features. This con-
firms that the facial information encodes relevant patterns
about depression. In this work, the only considered visual
features are Actions Units, because the raw videos were not
made available in the DAIC-WOZ for ethical reasons. Re-
search and development of clinical real-world applications
for depression diagnosis is plagued by ethical and privacy
issues. In fact, the use of several modalities, as shown in
this work, improves the prediction performance. However,
strict limitations are present because of: (1) the lack and the
small size of the available datasets. (2) the limited available
data/modalities and the absence of interesting data/modalities
like the facial images, raw images of silhouette and other
clinical and sociological factors that could be relevant for
depression diagnosis. Artificial Intelligence can be used as
a tool to improve data privacy without being a threat and by
making profit of the potential of many modalities [91]. Thus,
efforts and innovation from scientific communities is needed.

7. Conclusion and Future Work
This paper presents experiments aimed at showing ro-

bust multimodal features and the best strategy to fuse them
for depression detection and assessment. Two unimodal rep-
resentations based on CNNs and RNNs allowing to learn
high level audio features from MFCC features are proposed
and compared. Temporal dynamics representations of mul-
timodal data are learned with Short Long-Term Memory
(LSTM) Recurrent Neural Networks. Moreover, an extensive
study is performed to investigate the best suited multimodal
fusion approach of MFCC-based deep audio features with
other modalities for clinical depression recognition. Early
and model-level fusion strategies of MFCC-based deep audio
features with word embedding textual and Action Units visual
features are evaluated on the DAIC-WOZ corpus. Model-
level fusion of audiovisual features improves significantly the
results and a notable increment in performance is observed.
Further, a comparison with state of the art benchmark ap-
proaches is performed. Our model attains state-of-the-art per-
formance on binary depression detection, and outperforms all
existing approaches in the recognition of depression severity
level.

In future work, we aim to apply the proposed best per-
forming deep neural network in a real-world application that
can assist clinicians in making more accurate diagnosis and
better follow-up and monitoring of patients. Follow-up and
assisting systems are needed to prevent the onset of a mental
health crisis by seeking the health practitioner’s aid at the
right time and recommend personalized interventions.
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