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Abstract11

The temporal variability of indoor Particle Number (PN) concentrations, their determinants and their relative con-12

tributions in an occupied workspace were investigated. The presented study is based on the receptor modeling13

approach, focusing on Non-negative Matrix Factorization (NMF) to provide new insights on the source time vari-14

ability. Continuous size distribution from 0.3 µm to 20 µm were collected with a short time step sampling (1 min)15

over six months in 2015. The measurements were made inside and outside an open-plan office occupied by 6-816

persons. NMF distinguished five major patterns obtained from PN concentrations time series. The apportionment17

results were expressed as source diurnal profiles and strengths by relating the obtained source contributions to the18

source information provided by the office occupancy and natural ventilation (the effect of opening windows). Factor19

2 contributes to 75% of the total contributions for finer size fraction (< 0.5 µm). Combining NMF results with20

indoor occupancy and windows states successfully demarcated the main sources of fluctuation. The diurnal profiles21

of the third factor (F3) and PN0.9−1.8 concentrations time series are very similar (r = 0.95). The diurnal variation of22

factor 1 is very similar to that observed for CO2 variations and PN6.25−12.5 time series. Coarse particles (> 17.5 µm)23

are associated with the 4th factor. The latter does not contribute to any of the other particle ranges. The NMF24

factors interpretation was supported by correlation analysis and statistical tests, as well as by temporal variation25

comparison.26

Keywords: Non-negative Matrix Factorization (NMF), Temporal source apportionment, Particle27

Number (PN) concentration, Open-plan Office.28

1. Introduction29

Nowadays, it is becoming increasingly evident that indoor environments play a critical role to30

understand and assess total human exposure to air pollution. Indoor air quality became a matter31

of particular interest for the following three main reasons: (i) people spend about 85% of their32

time indoors, (ii) indoor pollutant concentrations can be significantly higher from those outdoors33
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and (iii) many potentially health-hazardous pollutants are emitted from indoor sources [40]. The34

assessment of the indoor source variability is now necessary for the design and implementation35

of effective control strategies. Airborne Particulate Matter (PM) is one of the major types of36

contaminants in indoor air due to their ubiquitous occurrence and toxicity [42, 38]. Particulate37

matter is a mixture of many different chemical species and the assessment of human exposure to38

PM requires some knowledge about the sources, and the determination of the time variability of39

the PM time series.40

PM represent a complex mixture of organic and inorganic species which vary in size, composition,41

and origin. Regarding particle size, PM is usually classified according their aerodynamic diameter42

such as coarse (2.5 µm-10 µm), fine (<2.5 µm), and ultra-fine particles (< 0.1 µm) [12]. Since differ-43

ent particles originate from different sources and their concentration in a given place is influenced44

by different factors, scientific knowledge about the occurrence, strength, and temporal variability45

of the sources is required to reduce the indoor exposure impact. Several studies focused the extent46

to which human exposure to outdoor PM occurs indoors [64, 41]. From outdoors to indoors, PM47

enters by infiltrating through cracks and gaps in the building envelope, via natural or mechanical48

ventilation [11, 26]. Consequently, the temporal patterns of indoor PM concentrations are resulting49

from both indoor and outdoor sources variability which constantly varies over time. In addition, the50

PM temporal patterns are influenced by many factors: (i) penetration and ventilation efficiency, (ii)51

indoor occupancy and occupants’ activity, and (iii) building’s volume and interaction with surfaces.52

Important indoor sources of PM include, but not limited to, household chores (combustion, candles,53

and cooking, ...) [1, 26] and different human activities [18]. In indoor offices, particles also can54

be generated from some equipment, such as copier and printers machines, computers, and other55

electronic devices [39, 9, 56]. Furthermore, many studies claim that particle re-suspension from56

walking is an important indoor source of PM [53, 57]. The source emissions and sinks are generally57

variable and depend on many environmental factors, such as temperature, humidity, and air ex-58

change rates. Particle deposition and resuspension within the microenvironments are mechanisms59

that can extremely change the time variability of the indoor PM concentration. Overall, as detailed60
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in [40], three main factors determine indoor pollutant variations in occupied spaces: (i) properties61

of pollutants, (ii) occupants’ behavior and (iii) building characteristics. In the case of the testing62

chambers or experimental automated houses, these parameters are usually well defined [68, 61].63

To the best of our knowledge there are few studies in the literature focusing on the impact of the64

occupancy and windows state in offices for a long period with a short time step.65

The originality of the study presented in this paper is due to the following features: it is based66

on a long-term monitoring campaign in real conditions; parameters are monitored with a short67

time step; it contributes to indoor source identification taking into account the occupancy and the68

window opening state.69

The objective of this work is to get a better understanding of the temporal variability of PM’s and70

their determinants, i.e. the influencing factors, as well as their relative contribution to PM indoor71

concentrations. The measurement campaign was carried out in an occupied open-plan office.72

By retracing pollutants to their origins, emission sources variability can be characterized. The73

source identification and the assessment of their relative contribution to total indoor exposures can74

provide valuable information for reducing their emission with the aim to protect human health.75

The practice of deriving information about pollution sources and the amount they emit is called76

source apportionment [5].77

In principle, there are two basic approaches used in the environmental field to perform a source78

apportionment analysis: source-oriented models (dispersion model) and receptor-oriented models.79

Dispersion models require the knowledge of emission rates and dispersion factors together with local80

topography and meteorology for the estimation of source impacts [16, 22]. It is a direct modeling81

(from sources to receptors). By contrast, receptor modeling, which is an inverse one (from receptor82

to sources), is based on the mass conservation and it can be used to identify and apportion sources83

of contaminants in the air [23]. The main idea in the latter is to solve a mass balance equation84

using multivariate factor analysis. Thus, the receptor models are used to estimate the contribution85

of different sources to ambient PM concentrations based on PM measurements and subsequent86

chemical analysis [49]. Exogenous variables can be used for interpretation.87
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Indoor environments are modeled sometimes by means of experimental chambers, where climatic88

parameters are controlled. In this case, physical models can be developed easier than for the real89

environments. Indeed, in the case of the real buildings the development of such models is more90

complicated for the following reasons: difficulty in measuring source emissions [58]; unknown or91

changing airflow patterns [33, 10]; difficulty to model room configuration and lack of information92

about occupancy and its impact on the indoor environment.93

The advantage of receptor models in occupied spaces is that this type of models doesn’t require all94

the information mentioned previously, as input. They are based on the decomposition of measured95

concentration signals without predetermining the pollutant transformation, transportation, and96

sink processes [63].97

In recent years, there have been tremendous advances in the development of source apportionment98

techniques based on statistical analysis, particularly the use of Factor Analysis (FA) for temporally99

varying constituent concentrations [5, 22, 23, 67]. All these techniques are based on the factor-100

ization of the initial matrix (database of concentrations in our case) in two matrices: matrix of101

source profiles and matrix of source contributions, under the constraint of the RMSE minimiza-102

tion and by imposing different constraints, such as: decorrelation (Principal Component Analysis),103

statistical independence (Independent Component Analysis), non-negativity (Non-negative Matrix104

Factorization and Positive Matrix Factorization).105

Positive Matrix Factorization (PMF), developed by Paatero et al. 1994 [47] is widely used for source106

apportionment in environmental applications such as atmospheric pollution. This method imposes107

positivity constraints in the factor computational process by calculating dominant positive factors108

based on measurements. The factorization is achieved without detailed prior knowledge of source109

profiles or chemical fingerprints. In contrast to many other linear factorizations such as (PCA)110

and Independent Component Analysis (ICA), Non-negative Matrix Factorization (NMF) [31, 32],111

as well as PMF, makes positive latent structure explicit.112

The Principal Component Analysis (PCA) method is one of the most used tools in factorial methods.113

In indoor environment, we can find hybridization with other linear methods (regressions, ...) to114
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quantify the factors [3].115

In the same vein, we have used NMF and simulated several factorizations, which are obtained by116

a group of initialization-computation algorithms. For this reason, the different extensions on NMF117

comprising the PMF method which is considered as a special case [59].118

The NMF factors were analyzed and connected with their influencing parameters, such as opening119

windows and occupancy rate of the open-plan office. In other words, we identify patterns that120

shared by several sources. To date, few research studies have been conducted to identify temporal121

patterns of different sources. Most of them focus on the chemical fingerprint. The contribution of122

this study lies in the characterization of the time variability of the most frequent source-patterns123

in an occupied open office. The interpretation of NMF factors and time variability patterns were124

supported by correlation analysis as well as by temporal variation visualization.125

2. Materials and Methods126

2.1. Materials127

2.1.1. PN concentration monitoring128

Particle Number concentrations (PN) were acquired continuously using an optical particle counter,129

a GRIMM 1.108 Dust Monitor (Grimm Technologies, Inc., Douglasville, GA, USA). This monitor130

counts the number of particles with a diameter within the range of 0.3 to 20 µm, and more in131

detail in 15 different size channels limited by: 0.3, 0.4, 0.5, 0.65, 0.8, 1.0, 1.6, 2.0, 3.0, 4.0, 5.0,132

7.5, 10, 15 and 20 µm diameters (Figure 1, sensor’s location). The flow rate of the instrument is133

1.2 L/min−1. It can count particles up to 2000 particles.cm−3 without coincidence effects with a134

sensitivity of 0.001 particles.cm3 and a reproducibility of 2%. The optical counter uses two laser135

powers to perform its measurements. Between 0.3 and 2 µm, the high laser power is used. Between136

2 and 20 µm, the lowest laser power is used. The measurement at 2 µm is carried out twice at high137

and low laser power, the final measurement is the average of the two values obtained. During the138
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calibration of each device, the maximum error tolerated is 10% between 0.3 and 2 µm and 20%139

between 2 and 20 µm.140

The period of investigation covers 6 months with a measurement interval of 1 minute. The indoor141

PN concentrations were monitored in an open-plan office occupied by 6-8 persons. Outdoor PN con-142

centrations were collected with the same type of instrument,which housed in a dedicated enclosure143

outdoors on the roof of the building. Particle number concentrations are recorded every minute in144

a memory card with an autonomy of more than 45 days and the data is recovered (approximately)145

every 15 days.146

The monitoring period runs from January, 1st, 2015, to June, 30th, 2015 representing 4 344 hours.147

In our experiment, the database called later raw data matrix X, consists of the number of particles148

for the 15 fractions (size ranges) (15 variables #.cm−3) and 260580 rows (minutes). In the case of149

this study, there are 485 missing values scattered (randomly). So, about 0.0018% of missing values150

have been detected. The missing data are imputed using interpolation of the available data or by151

simple calculation of the medians if there are less than 5 consecutive missing values. For particle152

measurements, we rarely find more than 30 consecutive minutes of missing values.153

2.1.2. Climatic data, occupancy and window opening state154

Meteorological, windows opening states and occupancy parameters were collected simultaneously155

in the same open-plan office.156

The presence of occupants is estimated using motion detectors, while the state (opened/closed)157

of the windows and doors are recorded by contactors. The measuring device has three motion158

detectors, two contactors on two doors, and five contactors on windows facing exterior environment.159

Motion detectors are infrared passive sensors able to detect motion in a half-spherical field (cf.160

section 2.1.3). The door and windows contactors are soft-leaf switches that record a binary signal161

at each state change: opened→ closed or closed→ opened. We retrieve the amount of movement162

which tells us about occupancy, but we do not measure the number of occupants per minute. More163

specifically, when no movement of occupants is detected, no data is transmitted to the CSTBox164
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(Telemonitoring Box manufactured by CSTB). As soon as motion (of occupants) is detected, the165

information quantity is recorded during 10 seconds and a frame containing an array of 10 samples166

is sent to the CSTBox. From the recorded raw data of the motion quantity variations, data is167

transformed and re-coded to binary time series with 1-minute time step.168

It should be noted that motion detection greatly underestimates the actual occupancy of the office169

space. The situation where the occupant is static is considered to be a vacancy state. This would170

reflect a high vacancy rate over the measurement period (≈ 94%).171

2.1.3. The open-plan environment172

The concentration of indoor particles is highly variable and indoor-specific. The measurements173

were performed in a building (Scientific and Technical Center for Building (CSTB), cf. Figure A.1174

in supplementary material) located in a suburban area, at 30 km East of Paris. The measurement175

campaign was conducted in an open-plan office space with a total area of 132m2 and a volume of176

364m3. Figure 1 shows the plan of the open space located at the 2nd floor. A virtual tour of the177

open space office is given in the supplementary material of this article.178
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Figure 1: Plan of the office space (132 m2, 364 m3). The configuration of the tables varies with the number of
occupants. An example of motion detection is materialized by two pink half spheres.

179

This office has a permanent mechanical exhaust ventilation. A single flow ventilation system pro-180

vides a constant air extraction rate of 228 m3.h−1) (measured in 2014 at ± 6%). The six extract181

units are located by a black cross on the Figure 1. On the opposite side, 10 air inlets are attached182

to the joinery of the 5 sliding windows. as described in [43]. In addition, natural ventilation is183

possible due to the windows. Consequently, the effective ventilation rate greatly depends on the184

opening state of the windows. The actions made by the occupants on the windows (opening /185

closing) depend on the indoor comfort as well as on the individual sensitivity of the occupants186

[62, 21]. These actions on windows together with the other environmental factors provide different187

time-scale variations that are difficult to model by pure physical laws.188

The indoor materials were carpets on the floor, painted walls, and ceiling tiles. The furniture189

comprises typical L-shaped desks melamine-faced particleboard and aluminium closets. A laser190
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multi-function copier was in use in the office plan. No specific major sources of particles, such as191

combustion, were identified in the office.192

2.2. Methods193

2.2.1. Related work194

The number of existing receptor models applied to the environmental field is relatively large and195

it includes methods such as Principal Component Analysis [60, 20], Positive Matrix Factorization196

(PMF) [48, 47], Independent Component Analysis (ICA) [4] and recently Non-negative Matrix197

Factorization (NMF) in outdoor [17, 59, 27, 28, 37] and indoor [55, 46, 44, 45] environment.198

Compared to the PCA and ICA, the PMF and NMF methods have the advantage of more realistic199

non-negative constraint on factor profiles and contributions. Following this criterion, this study200

used non-negativity for indoor source apportionment and particularly employed NMF that offers a201

wide range of algorithms and extensions compared to PMF.202

NMF and its generalizations have been used for different purposes such as dimensionality reduction,203

feature extraction, clustering, blind source separation (BSS), and classification. In this paper, NMF204

was used only for BSS purposes.205

In the environmental field, NMF is a new method of a wide range of receptor modeling. It is used206

to analyze the series of chemical concentration measurements and to find underlying explanatory207

sources [59, 28]. Some research papers proposed an extension of the standard NMF form to incor-208

porate some physical proprieties. Limem et al. (2013) proposed an informed NMF with a specific209

parametrization which involves constraints about some known components of the factorization [35].210

Plouvin et al. (2014) extended the latter work by adding some information provided by a phys-211

ical dispersion model [50]. Limem et al. (2014) introduced the use of basic equality constraints212

and have derived theoretical expressions of constrained Weighted NMF (WNMF) to characterize213

industrial source apportionment of PM10 [34]. To take into consideration both constraints simul-214

taneously, in the previous works [35, 34] a new parametrization was proposed by incorporating a215

new unconstrained matrix [13]. The update rules in [13] are based on the framework of the Split216
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Gradient Method of Lantéri et al. [29]. To identify distinctive PM10 patterns across Europe on the217

airborne data obtained from 1097 monitoring stations for 3 years, Žibert et.al [70] used NMF and218

the autocorrelation function (ACF) to enhance the interpretation of factors features. In the indoor219

air quality (IAQ) field, the positive (non-negative) matrix factorization is not such popular as for220

outdoor air quality. We find only one study assessing the use of NMF in IAQ, which is conducted by221

Rösch et al. in 2014 [55]. Also in the aircraft cabins context, PMF coupled with information related222

to VOC sources have been applied to identify the major VOC sources [65]. The study pointed out223

the importance of service and humans as major source (29%) of the total VOC emissions. Overall,224

there is not sufficient research to provide meaningful information on indoor source time variability.225

As the IAQ continues to face the realities of climate change [40], our understanding of temporal226

patterns of exposure is crucial and this research gap requires further investigation. Therefore, this227

study aims to address the elements of the research gap in indoor source identification. This paper228

is an extended version of the works presented in [44], [46] as well as in [45].229

2.2.2. Non-negative Matrix Factorization230

Non-negative matrix factorization (NMF) is a multivariate data analysis technique which is aimed231

to estimate physically meaningful latent components from non-negative data. Mathematically, the232

factorization is carried out by a linear superposition of non-negative basis components and non-233

negative weights.234

NMF was initially introduced by Paatero’s works [48, 47], which refer to the problem as Positive235

Matrix Factorization (PMF) that corresponds to the mass-balance model. The NMF has gained236

popularity by the works of Lee and Seung who presented multiplicative update algorithms for com-237

puting the NMF to optimize a cost function based on either a Euclidean distance measure or a238

generalized Kullback–Leibler divergence [30, 31, 32]. A multitude of NMF variants and generaliza-239

tions is summarised in Cichocki’s concise lecture note [15].240

In this paper, a matrix is denoted with an uppercase bold letter, e.g., X, its elements with the241

corresponding lowercase letter, e.g., xit, and a column vector in lowercase boldface, e.g., xi.242
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Given an input non-negative raw data matrix X = [x1, . . . ,xT ] ∈ RI×T+ and a positive integer243

reduced rank J, (J ≤ min (I, T )), the non-negative matrix factorization problem consists in finding244

two non-negative matrices W = [w1, . . . ,wJ ] ∈ RI×J+ and an encoding matrix H = hjt ∈ RJ×T+245

that approximate X, i.e.246

X ≈W H = xt ≈
J∑
j=1

wjhjt. (1)

Depending on the application field, these factors W and H are interpreted differently. In environ-247

mental source apportionment, H plays the role of mixing matrix (weights) which represents the248

source contributions, while W expresses temporal factor profiles (time series, see Appendix C).249

Thus, if a weight hjt in a column of H is high, then the corresponding basis vector wj is very250

important in approximating xt. Geometrically the basis vectors generate a simplicial cone and the251

columns of the matrix W are basis vectors spanning a subspace in J ≤ I. Once estimated, the H252

and W matrices will be presented in sections 3.2.1 and 3.2.2, respectively. Indeed, the H matrix253

will allow us to analyze the contribution of the factors and the W matrix to visualize the diurnal254

profiles of the factors (time series).255

The time series of the sources and their weights are calculated iteratively by minimizing a suitable256

measure f for the divergence between W and H:257

arg min
W ,H≥0

f (W ,H) = arg min
W ,H≥0

[D (X ‖W H) + R (W ,H)] , (2)

where D : RI×J+ × RJ×T+ → R+ is a loss function and R is an optional regularization function that258

enforce desirable properties (e.g. smoothness, sparsity, ...) on matrices W and H [15]. In this259

study, only arg min
W ,H≥0

[D (X ‖W H)] is optimized. The simplest loss function measure is based on260

the Frobenius norm:261

DF (X ‖W H) = 1
2 ‖X −W H‖2

F = 1
2

I∑
i

T∑
t

(Xit − (W H)it)
2
. (3)
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The Frobenius similarity measure is a special case of the so-called β−divergence [15]. In this study262

we will consider only Kullback-Leibler divergence in case of Brunet algorithm [8] as follows:263

DKL (X ‖W H) =
I∑
i

T∑
t

Xit ln
(

Xit

(W H)it

)
−Xit + (W H)it . (4)

2.2.3. Algorithms for solving the NMF problem264

Many numerical algorithms have been developed to solve the NMF problem expressed in the equa-265

tion (2). They can be divided into three general classes: (i) Alternating Least Squares (ALS)266

algorithms, (ii) multiplicative update algorithms, and (iii) gradient descent algorithms [6, 15]. The267

ALS algorithm computes the optimal solution of the unconstrained least squares problem, then it268

optimizes alternatively over one of the two factors W or H while keeping the other fixed. This269

subproblem is then reduced to one-factor convex.270

By minimizing two criteria the squared Euclidean distance (or equivalently the squared Frobenius271

norm DF ) and the generalized Kullback-Leibler divergence DKL, Lee and Seung [32] proposed the272

multiplicative update algorithm to solve the equation (1). Simple multiplicative update formulas273

based on DF are given by274

wij ← wij

[
XH>

]
ij[

XHH>
]
ij

+ ε
, (5)

hjt ← hjt

[
W>X

]
jt[

W>W H
]
jt

+ ε
. (6)

For the implementation purpose, a small positive constant ε is added to the denominator in each275

update rule to avoid division by zero. Lee and Seung claimed that the above algorithm converges276

to a local minimum [32], which was later shown to be incorrect (see for example [14, 6, 36]): the277

above algorithm 5, 6 can only keep the non-increasing property of the objective.278
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Based on the Kullback-Leibler divergence, Brunet et al. [8] used modified versions of Lee and279

Seung’s (2001) [32] simple multiplicative updates to avoid numerical underflow. At each step, W280

and H are updated by using the coupled divergence equations:281

W ia ← W ia

∑
µ

[
HaµXiµ

(W H)iµ

]
∑
ν Haν

, (7)

Haµ ← Haµ

∑
i

[
W iaXiµ

(W H)iµ

]
∑
j W ja

. (8)

The stopping criterion for Lee and for Burnet optimization is the variance of the connectivity282

matrix.283

2.2.4. Initialization of NMF284

Most NMF objectives are not convex and they are sensitive to the initialization of matrices W and285

H. A good initialization can then sidestep some of the convergence problems, especially for a large286

input dataset. If the starting values for the algorithm are chosen randomly, every run of the NMF287

algorithm may find a different local minimum of the objective function. Therefore a reasonable288

initialization of matrix W and H is necessary and helps the physical interpretation of the obtained289

patterns [59, 50]. Particular emphasis has to be placed on the initialization of NMF because of its290

local convergence. Several approaches have then been proposed to choose the appropriate NMF291

initialization (see [2] for a review). Thiem et al. [59] suggested the use of Non-Negative Double292

Singular Value Decomposition (NNDSVD, developed in [7]) for PM source apportionment and did293

not recommend random initialization. Meanwhile, Hutchins et al. [24] claim that performing 30-50294

runs for random initialization is considered sufficient to get a robust estimate of the factorization.295

We tested three different kinds of initialization techniques for the two different NMF algorithms296

described above. In the first seeding method, a random starting point has been used, where the297

entries of W and H are drawn from a uniform distribution, within the same range as the X matrix’s298

entries. That is the entries of each factor are drawn from a uniform distribution over [0,max {x}],299
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where x is the column vector of X. We used a maximum of 100 runs for each algorithm to300

achieve stability. The second initialization method that we tested consists in using the results of301

the Independent Component Analysis (ICA) (FastICA algorithm [25]) where only the positive part302

is used to initialize the factors. The last tested initialization algorithm is the Non-Negative Double303

Singular Value Decomposition (NNSVD) [7].304

2.2.5. Determining the number of components305

One of the critical parameters in NMF is the number of components J to select for the factorization306

in equation 1. An appropriate decision on the value of J is critical in practice, but it is usually307

chosen such that J � min (I, T ) in which case W H represents a compressed form of the initial308

matrix X. The factorization rank parameter can be estimated by computing the Residual Sum of309

Squares (RSS) or by the explained variance (EVAR) between a target matrix X and its estimate310

X̂:311

RSS =
∑
i

∑
t

(
Xit − X̂it

)2
(9)

EVAR = 1− RSS∑
i,t X̂it

(10)

The “optimal” rank is chosen using the graph of the EVAR (or RSS); it corresponds to the first312

point where the graph shows an inflection point, as Hutchins et al. [24] did with the algorithm of313

Lee et al. [31].314

3. Results and discussion315

In the following, a preliminary analysis of the original data is conducted (section 3.1). Then, the316

choice of the number of factors and their profiles are discussed in the section 3.2. Finally, for317

interpretation purposes, theses factors are analyzed and related to different other parameters such318

as occupancy and windows state.319
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In this paper, the terms factor, component and patterns are equivalent. The results and analyses320

were conducted in R [54] using the NMF R package [19] and figures were produced using the ggplot2321

package [66].322

Since particles in the fine range (<2.5 µm) dominate the total particle number, the obtained NMF323

patterns emphasize this range. As the range variation of the number of particles can be very324

different from one bin to another, we considered very carefully the standardization need of the raw325

data matrix as input for NMF. This standardization procedure produces negative values that should326

be avoided due to the non-negativity constraint. For this reason we have made a translation of the327

standardized values by adding a constant equal to 2 particles.cm−3 to each one. This constant shift328

does not impact the factorization results.329

3.1. Data description and preliminary analysis330

During the sampling campaign, the indoor temperature values varied from 15°C to 40°C and relative331

humidity ranged between 18 % and 65%. The highest humidity values were recorded during May332

and June.333

Fifteen size bins were collected, but only five representative fractions are described in this paper:334

PN0.35 = PN[0.30−0.40], PN0.9 = PN[8−10], PN2.5 = PN[2−3], PN8.75 = PN[6.25−12.25] and PN17.5 =335

PN[15.5−19.5]. The indoor PN0.35 varied from 1 to 263 #.cm−3 (#.cm−3 for number per cm3) with336

a median of 16 #.cm−3 and 90 % (percentile P90) of the values are less than 18 #.cm−3. There is337

no significant difference in the monthly levels excepting for March. The range variations for PN0.9,338

PN8.75 and PN17.5 are 2611, 119 and 26 #.L−1, respectively.339

The variability expressed by means of the coefficient of variation (CV = StandardDeviation/Mean)340

depends on the size of the particle. Indeed, the CV values are: 113% for PN0.35, 80% for PN0.9,341

92% for PN2.5, 250% for PN8.75 and 750% for PN17.5.342

Descriptive statistics for the five size bins concentrations according to occupancy and windows343

opening state are shown in Table 1. The mean values show very large variations; mean values are344
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Table 1: Descriptive statistics of the selected indoor PN size bins (#.cm−3 for number per cm3) according to
occupancy (Occup. or Non Occup.) and windows opening state (Open or Close). The percentile P corresponds to
percentage of the total values are the same as or below the measurement concentrations: the 25th percentile (P50),
the 50th percentile corresponds to the median and the 75th percentile (P75). n represents the number of samples
(minutes).

PN Group n Mean(SD) Min Max P10 P25 P50 P75 P90

PN0.35
Close 230266 28(32.1) 0.68 262.8 5.73 8.76 16.1 34.83 63.6
Open 29765 20.4(16.4) 3.16 125 7 9.46 14.6 26 41.8

PN0.9
Close 230266 0.33(0.27) 0 2.6 0.1 0.15 0.2 0.42 0.64
Open 29764 0.32(0.19) 0.025 1.4 0.12 0.18 0.2 0.41 0.57

PN2.5
Close 230266 0.031(0.02) 0 0.6 0.006 0.013 0.02 0.042 0.06
Open 29764 0.081(0.05) 0 0.6 0.029 0.04 0.06 0.11 0.15

PN8.75
Close 230266 3 × 10−4(0.001) 0 0.11 0 0 0 0 0.001
Open 29764 0.001(0.002) 0 0.03 0 0 0 0.002 0.004

PN17.5
Close 230266 3 × 10−5(0.0002) 0 0.02 0 0 0 0 0
Open 29764 1 × 10−4(0.0004) 0 0.006 0 0 0 0 0

PN0.35
Non Occup 245326 27.25(31) 0.68 262.8 5.9 8.8 16 34 60.8

Occup 14705 25.54(28.5) 2.74 188.1 6 8.7 14.8 30.15 57.93

PN0.9
Non Occup 245326 0.32(0.26) 0 2.6 0.1 0.16 0.26 0.41 0.63

Occup 14704 0.36(0.29) 0.02 2.4 0.12 0.17 0.28 0.44 0.72

PN2.5
Non Occup 245326 0.036(0.03) 0 0.67 0.006 0.01 0.027 0.05 0.073

Occup 14704 0.061(0.04) 0 0.6 0.02 0.03 0.049 0.08 0.121

PN8.75
Non Occup 245326 0.0004(0.001) 0 0.07 0 0 0 0 0.001

Occup 14704 0.002(0.002) 0 0.11 0 0 0.001 0.002 0.004

PN17.5
Non Occup 245326 0.00003(0.0002) 0 0.02 0 0 0 0 0

Occup 14704 0.0002(0.001) 0 0.02 0 0 0 0 0.001

higher than the median ones. As the data distribution was positively skewed, the median (P50) was345

preferred for interpretation purposes instead of the arithmetic mean.346

For most of the particle sizes, the median values of PN are very similar regardless the windows state,347

while the 10th and 90th percentile values are different. For instance, 90 % of PN0.35 concentrations348

are less than 64 #.cm−3 in the case of closed windows state and 42 #.cm−3 when at least one349

window is opened. These observations are related to the total number of minutes in each opening350

state. On average, windows remain closed around 85% of the total time throughout the study351

period (24/7), week-end and holidays included.352

353

Indoor particles can originate from outdoor sources and also from various indoor sources. Thus, it is354
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possible that the levels of indoor particles exceed outdoor ones. Table 2 shows the Indoor/Outdoor355

(I/O) ratio for the selected five size bins levels in different configurations. Diurnal time variability356

of the ratio (I/O) is provided in the supplementary material of this paper (cf. Figure B.1).357

Median I/O ratios are less than 1 for smaller range (≤ 2.5 µm) regardless the windows state or358

indoor occupancy.359

It is worth noting that median I/O ratios of PN during the non-occupancy are very similar to those360

observed for closed windows. In the absence of known indoor sources, the reported median I/O361

ratios have been ranged from 0.37 to 0.53 in the case of opening windows.362

Table 2: Descriptive statistics of I/O PN ratios for the selected size ranges according to occupancy (Occup. and Non
Occup.) and opening windows state (Open and Close). n represents the number of samples (minutes) and P the
percentile values.

I/O ratio Group n Mean(sd) min. max. P25 P50 P75 P90

PN0.35
Close 104393 0.49(0.2) 0.008 4.318 0.363 0.47 0.59 0.71
Open 496 0.73(0.21) 0.347 1.476 0.601 0.7 0.88 1

PN0.9
Close 104393 0.57(0.25) 0.002 7.436 0.425 0.53 0.65 0.81
Open 496 0.76(0.18) 0.36 1.378 0.643 0.76 0.87 1

PN2.5
Close 104393 0.59(4.57) 0.0003 611 0.243 0.37 0.57 0.91
Open 496 0.62(0.33) 0.1 2.212 0.376 0.57 0.83 1.07

PN8.75
Close 104393 2.29(6.22) 0.0004 311 1 1 1 1.91
Open 496 6(11.33) 0.012 71 0.524 1 3.72 21

PN17.5
Close 104393 1.17(1.9) 0.002 201 1 1 1 1
Open 496 2.43(5.2) 0.032 51 1 1 1 11

PN0.35
Non Occup. 99902 0.49(0.2) 0.043 4.318 0.365 0.47 0.56 0.71

Occup. 4987 0.51(0.26) 0.008 4.143 0.342 0.47 0.63 0.8

PN0.9
Non Occup. 99902 0.57(0.25) 0.002 7.436 0.424 0.53 0.65 0.8

Occup. 4987 0.62(0.27) 0.075 3.849 0.448 0.58 0.73 0.9

PN2.5
Non Occup. 99902 0.6(4.6) 0.0003 611 0.239 0.36 0.56 0.8

Occup. 4987 0.9(4.25) 0.008 291 0.398 0.59 0.2 1.4

PN8.75
Non Occup. 99902 2.1(5.67) 0.0004 301 1 1 1 1

Occup. 4987 6.6(12.7) 0.001 311 0.524 1 11 21

PN17.5
Non Occup 99902 1.15(1.7) 0.002 201 1 1 1 1

Occup 4987 2(3.8) 0.009 71 1 1 1 1

363

The Figure 2 shows the diurnal variability of the median value of indoor PN concentrations according364

to occupancy and windows states for the following bins: PN0.35, PN0.9, PN2.5 and PN17.5. The365
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diurnal pattern for PN0.35 shows a convex shape when all the windows are closed and no occupancy366

detected. The I/O ratio of the corresponding bin is always less than 0.6 for closed windows and it367

ranges between 0.6 and 1 in the case of opened windows. The variation profile can be explained368

by the fact that the outdoor particles penetrate inside by mechanical ventilation and infiltration369

through the gaps in the building, given that the windows are closed. These fine particles come370

mostly from outdoor sources, such as traffic which is higher during the rush hours. The diurnal371

profile of the PN of size 0.9 µm when the windows are opened is characterized by a significant peak372

between 8:00 and 9:30 a.m. (when usually work starts) and then it decreases until 7:00 p.m. On373

the other hand, the same variation is observed when a movement of occupants is detected, even374

when the windows are closed. For PN2.5, there is a significant difference between the case when375

the windows are opened or closed, regardless the occupancy. The values are higher for PN2.5 when376

windows are opened showing the importance of outdoor sources for these size bins. By contrast,377

for the coarse particles (PN17.5), the occupancy variable discriminates the profiles revealing that378

these particles are generated indoors (occupants’ activities, such as walking).379

To summarize, opening the windows results in similar trends in PN for both occupation and non-380

occupation conditions (except for PN17.5 due to less contribution of coarse particles in the air).381

Mostly, PN concentrations with occupancy are higher than PN concentrations without occupancy.382

However, real contribution of occupation is marked when the windows are closed.383

The particulate number concentration decrease in the indoor environment occurs mainly by two384

mechanisms: ventilation and deposition. In general, ventilation could play a positive role in the385

loss of particles from indoor air, but sometimes it may cause entering the outdoor pollutants via386

the supplied air coming indoors.387
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Figure 2: Diurnal variability of the median value of indoor PN concentrations for the following size ranges:
0.35 µm, 0.9 µm 2.5 µm and 17.5 µm. PN0.35 = PN[0.30−0.40], PN0.9 = PN[8−10] , PN2.5 = PN[2−3] and
PN17.5 = PN[15.5−19.5].
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3.2. NMF results389

As presented in the subsection 2.2.4 and 2.2.5, the method should be initialized and an optimal390

number of components should be determined.391

Values in the range J = 2, . . . , 10 were tested based on 20 000 randomly sampled 1-minute dataset392

using three different initialization algorithms: ICA, NNSVD and Random for the two optimization393

methods proposed by Brunet [8] and Lee [31, 32].394
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Figure 3: Explained Variance (EVAR) variations of Brunet [8] or Lee [31, 32] algorithms according to different
initializations.
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Figure 3 shows the evolution of the explained variance according to initialization algorithms (ICA,396

NNSVD, and Random) according to the rank number. Unexpectedly, for each initialization method,397

NMF generated extremely resembling results for Lee’s algorithm. A similar observation is observed398

for the first 5 rank factors in Brunet’s algorithm. Note that random initialization may make the399

experiments unrepeatable because of their local minima property. Several studies have revealed400

that methods with non-random seeding demonstrate their superiority either in the fast convergence401

in prophase or the structure preservation [69, 7]. This is yet another reason for not choosing random402

initialization in our experiments.403

The interpretability of the factors can be a selection criterion for the rank choice. The use of expert404

insight in the case of indoor air quality was taken into account. It can be observed that using405

the interpretability criterion of the value of J by increasing or decreasing by 1, either the new406

NMF-factor shows a mixture of parts of existing factors or contains completely new environmental407

patterns. To represent as many different patterns as possible and taking into account the explained408

variance variation, we found for the considered dataset that J should be about 4-6. To draw409

comparisons between different results, the best physical interpretation and factorization error at410

the same time were obtained for J = 5. With this rank corresponding thus to 5 factors, the411

explained variance corresponds to 96% and 97.5% for Brunet’s and Lee’s algorithms, respectively.412

3.2.1. Factors contributions413

The time series of the factors obtained by NMF are provided in the supplementary material of this414

article (cf. Figure C.1). The relative contribution of factors to each particle size is shown in Figure415

4. The relative contributions of the five components are distributive i.e. all the fractions can be416

found in at least one factor.417

For the fine size fractions (0.3 µm, 0.45 µm, 0.57 µm), the contribution of the component 2 obtained418

by NMF is nearly 75 % of the total contributions. By contrast, this component contributes the419

least for larger sizes of particles, so it is specific to the fine size.420

The fourth component is related to coarse fraction, which represents 80 % of all the other contri-421
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butions. For fractions between 1.3 µm and 4.5 µm, the components 3 and 5 share over 50 % of all422

contributions. The first component is involved in about 20% for particles smaller than 2.5 µm and423

can reach 80% for particles with a size of 12.5 µm.424

To facilitate the interpretation of each component, we compute the correlations between the orig-425

inal data (the monitored time series corresponding to each fraction) and each NMF component.426

The interpretation of the NMF components is based on finding which PN time series are the most427

strongly correlated with each component. Figure 5 shows the correlation values between the com-428

ponents time series and fraction variables time series. The color variations express the strength and429

direction of the correlation relationship.430
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Figure 4: Relative contributions of the factors to temporal variability of the 15 fractions.
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Figure 5: Pearson correlation coefficient between NMF factors (H matrix) and the PN concentrations time series of
each fraction.

Note that all the significant correlations, i.e. greater than 0.6, are positive. The first NMF compo-432

nent is strongly correlated with particles ranging from 6.25 µm to 12.5 µm, the correlation coefficients433

vary form +0.6 and +0.82. The contribution of this component to the variability of the of particles434

of sizes between 3.5 µm and 4.5 µm is not negligible (∼ 40%) although their correlations are not435

very strong (+0.45, +0.51).436

The 2nd factor is associated with particle size ranges below 0.8 µm with a strong positive correlation437

coefficient (> 0.8). Its contribution is higher than 63% for particles of sizes 0.575 µm, 0.45 µm and438

0.35 µm.439

Factor 3 contributes (up to 50%) to sizes between 0.9 µm and 2.5 µm, with a correlation varying440

between +0.58 and +0.95. We notice that the diurnal profiles of the F3 and PN0.9−1.8 are very441

similar (cf. Figure 2); both of them are characterized by a significant peak between 8:00 a.m. and442

9:30 a.m. followed by a decreases until 7:00 p.m.443

444

Note that for particles of size 2.5 µm, two factors contribute simultaneously to its variation: F3445

(correlation = 0.58) and F5 (correlation =0.78). The same observation can be made for the particles446

of size 6.25 µm: two factors contribute to its variation (F1 and F5). Coarse particles (>17.5 µm)447

are associated with the 4th factor with a correlation of +0.73. The latter does not contribute to any448
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of the other particle ranges. In Figure 3, there is a peak of contribution of about 80% for particle449

sizes 17.5 µm and > 20 µm. Particles in the intermediate size range (between 2.5 and 6.25 µm) are450

associated to F5 with correlations ranging from +0.74 to +0.85. The contribution of F5 to the451

variability of particles of 3.5 µm size, is close to 50%.452

3.2.2. Time variation of the factors453

Having examined the overall contributions of NMF components, we now take a closer look to454

interpretate them. This section sheds light on the nature of the hidden components obtained using455

NMF. To do so, we combine three sources of information: (i) diurnal variation of different time456

series (NMF factores and CO2), (ii) windows states and (iii) indoor occupancy. According to the457

states of the windows (i.e. open/closed) and to the occupancy (occupied/ unoccupied), we further458

subset the factor’s time series and plotted the diurnal variation in Figure 6. More specifically, two459

figures are presented for each component corresponding to the window states (closed or open) and460

in each figure, two curves (red dot and green triangle) are associated with the occupancy status.461

To facilitate the interpretation, diurnal variations in CO2 concentrations have been added in the462

same Figure. The CO2 variations are used here as a fingerprint of occupant presence in order to463

allow identification of similar factors with this type of variation.464

465
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Figure 6: Diurnal variation of the five NMF factors and CO2 concentrations according to windows state and occupancy.
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Table 3 shows statistical tests performed to determine whether the differences between the average466

values of all the NMF factors are significant in two situations: (i) when all windows are closed467

vs. when at least one window is open, and (ii) in the case of occupancy vs. non-occupancy. For468

a p-value <0.05, the null hypothesis ”H0 : No difference in mean” is rejected. For example, for469

the first factor, we can say that there is no significant difference when all the windows are closed470

or at least one window is open (p-value >0.05, gray cells in the table 3). Whereas occupancy is471

an important parameter for component 1 (F1): the variability of the two profiles (occupancy vs.472

non-occupancy) are different (p-value <0.05).473

Table 3: Significant differences between diurnal profiles to discriminate the role of windows and occupancy parameters
using statistical tests.

p− value Windows Occupancy
t− test Wilcoxon t− test Wilcoxon

F1 0.36 0.98 4.69E-06 2.54E-06
F2 0.0003301 0.0006599 0.0005568 0.0009668
F3 0.0001015 3.69E-05 0.00245 0.004618
F4 6.77E-08 1.97E-08 0.1147 0.02706242
F5 0E-10 0E-10 0.02706242 0.002432

474

The diurnal profile of the first factor is very similar to the diurnal variations of indoor CO2 concen-475

trations (cf. Figure 6), suggesting that this component is related to the presence of the occupants,476

who are the main source of CO2. When all the windows are closed, the occupancy curve (red dots)477

is separated (p-value < 0.05) from the non-occupancy one.478

When at least one window is open, the values of component 1 are higher. It is as if another source479

coming from outside is added or the ventilation changes the transport mechanisms of large particles480

(resuspension). Nevertheless, several studies report that the mechanism of resuspension is especially481

related to particles of sizes less than 10 µm [52, 51]. As previously mentioned (Figure 5), the peak482

contribution of the first component is associated with particles of sizes between 8.75and 12.5 µm.483

The diurnal profile of the second component illustrates a decreasing effect during the period from484

6 a.m. to 7 p.m.. For F2, there is no significant difference for the "occupancy" variable, the two485

curves overlap. As shown in previous sections, this component is related to fine particles (less than486

0.75 µm).487

It turns out that the parameter “opening windows” perfectly discriminates the component 5 (p−value488

<0.05), but the importance of occupancy is not conclusive. When at least one window is open, the489
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component 5 levels are high. The diurnal profiles of the two components 1 and 5 have comparable490

patterns, for the case of open windows. As a matter of fact, the relative contribution of F1 and F5491

are important when the open-plan is occupied (7 a.m.-7 p.m.).492

For component 3, a peak at 9 a.m. is observed in the case of open windows and the diurnal profile493

gives a sinusoidal appearance. On the other hand, NOx emissions vary according to the time of494

day: they are very high in the morning and late afternoon (the rush hours). A hypothesis can be495

put forward suggesting that the peak of component 3 is of external origin, related to some sources496

such as road traffic.497

Components F3 and F5 could be attributed to the influence of outdoor sources on the indoor498

environment. The seasonal appearance (of component 3) is mainly due to diurnal variations of499

outdoor sources. This finding provides additional insight into the sources of particles ranging in500

size from 1.8 µm to 6.25 µm. Thus, by combining them with the information provided in Table 2, we501

notice the important influence of outdoor conditions on indoor concentration levels. At this stage,502

one of the major points of interest has been the outdoor source identification i.e. when outdoor503

concentrations and characteristics are the main contributing factors. Overall, outdoor sources have504

been mainly associated with fine particles in accumulation mode (0.1–1 µm), probably because505

these particles can persist in the air since they are too small for inertial deposition and too large for506

diffusion removal processes. These particles are capable of entering in the buildings and remaining507

airborne for longer periods.508

The forth component (F4) is characterized mainly by the coarse particles (> 17.5 µm). Figure 6509

shows a strong variability in the diurnal profile during the occupation period. The profile is very510

random because it is mainly associated with the activities of the occupants. These activities, and in511

particular walking, are responsible of resuspension of the coarse particles. We remind that the office512

is equipped with a carpet covering the entire floor. The statistical tests cannot be used because the513

probability density is bimodal for this profile. We notice that when at least one window is open,514

the profile is further modified. Statistical tests confirm this observation (p-value <5%).515
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3.3. Limitations and future directions516

Firstly, a generic NMF, which is a method to solve a linear system, was employed and the underlying517

model was used as a set of linear Chemical Mass Balance (CMB) to estimate individual source518

components from their mixtures. However, the indoor mixing phenomena are better represented519

by non-linear relationships, such as infiltration, sink, inertial deposition, and diffusive removal520

processes. A research question that remains is how these latter processes can be considered in a521

more general model. In the same vein, future work would include the hybridization of physical522

models with factorial source separation methods.523

Secondly, although NMF has a realistic non-negative constraint on factor profiles and contributions,524

it still does not cover all the indoor environment characteristics. Thus, many parameters as occupant525

behavior and windows opening, which have “random impacts” over the primary determinants of the526

decay rate, have to be incorporated in the NMF optimization problems. Similarly, the including527

time-activity patterns could improve the interpretability of the NMF results.528

One critical question that remains to be answered about the NMF method for indoor air quality529

is: how to integrate inherent indoor specificity and constraints in the NMF formulation?530

Recently the NMF field expanded to multidimensional data arrays, called Non-negative Tensor531

Factorization (NTF) [15], which could offer valuable new insights on IAQ modeling issues. Future532

work also involves validating the performance of the NMF model using data over a much longer533

period and above all including more information about the different activities such as walking,534

cleaning, printing, ....535

From the instrumentation point of view, it is clear that the motion detection has been largely un-536

derestimated by the measurement method. It might be more appropriate to introduce the “number537

of occupants” as a parameter in the data processing as well as in the modeling step.538

3.4. Conclusions539

Evidence continues to mount that indoor particles concentrations are one of the major determinants540

for individual exposure. That is why it is necessary to characterize the source time variability and541
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to assesses the different source impacts on the total personal exposure. Attempts to estimate542

the source of indoor particles concentrations are complicated because indoor air quality is both543

building-specific and occupant-specific. Many researchers are using experimental chambers; however544

quantifying continuous ventilation rates and penetration factors for an occupied building can be545

tedious, time-consuming and expensive. While most receptor-oriented methods use the pollutant546

compositions (chemical fingerprint) to apportion the contribution of individual sources, our work547

focuses on the time variability source characterization, namely “temporal fingerprint”. This study548

outlines the basic temporal characterization and source apportionment using Non-negative Matrix549

Factorization (NMF).550

This study has shown that continuous measurements of indoor particle number concentrations with551

additional information of occupancy and windows opening are useful for the source apportionment552

models. The factorization has been successfully employed to study particle number time series553

fluctuations in an occupied open-plan office. Five distribution profiles were resolved using different554

initialization and optimization algorithms. Thanks to NMF and correlation analysis, the impact of555

occupancy and windows states associated with outdoor traffic were identified. The outdoor sources556

are captured by two components (very likely the traffic impact) with major number modes at 1.3 µm.557

Besides, a potential association with primary outdoor pollutants (NOx) has been captured and a558

diurnal pattern similar to traffic can be associated. A common pattern between F1 and PN0.9−1.8559

has been identified, such as diurnal profile which is characterized by a significant peak between560

8:00 a.m. and 9:30 a.m, decreasing until 7:00 p.m.561

Taking into consideration the results presented above, throughout the six-month measurements of562

indoor and outdoor PN concentrations, it can be concluded the followings:563

• This study demonstrates the importance of recording real-time concentrations over a longer564

duration (i.e., several months with a short time step). The exploitation of such data has the565

potential to extract and capture the different patterns of temporal variability and their major566

determinants.567

• These results contribute significantly to the very small data set available in the literature on568
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the time variability source characterization.569

• The NMF technique -and its variants- shows considerable promise for further application to570

the indoor environment and the possibility to identify other sources and their contributions.571

• Continuous monitoring of climatic parameters as well as active instrumentation of the build-572

ing (windows, occupancy) are necessary for the evaluation of the total exposure to indoor573

pollutants.574

To sum up, the results of this study entail that the degree of human’s exposure to different sources575

varies with many parameters (building and occupants specific). These sources could be captured576

using NMF and its variants.577
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