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Abstract:  
 

Tyrosine kinase inhibitors (TKI) have introduced a significant advancement in cancer management. 

These compounds are administered orally, and their absorption holds a pivotal role in determining their 

variable efficacy. They exhibit extensive distribution within the body, binding strongly to both plasma and 

tissue proteins. Often reliant on efflux and influx transporters, TKI undergo primary metabolism by 

intestinal and hepatic cytochrome P450 enzymes, with non-kidney clearance being predominant. Due 

to their limited therapeutic window, many TKI display considerable intra- and interindividual variability. 

This review offers a comprehensive analysis of the clinical pharmacokinetics of TKI, detailing their 

interactions with drug transporters and metabolic enzymes, while discussing potential clinical 

implications. The prevalence of kidney conditions, such as acute kidney injury (AKI) and chronic kidney 

disease (CKD), among cancer patients is explored in terms of their impact on TKI pharmacokinetics. 

Lastly, the potential nephrotoxicity associated with TKI is also examined. 
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Abbreviations 

ABC ATP-binding cassette 

AKI Acute kidney injury 

ALK Anaplastic lymphoma kinase 

ATN Acute tubular necrosis 

AUC Area under the curve of concentrations in time; exposure 

BCR-ABL Breakpoint Cluster Region - Abelson murine Leukemia 

BCRP Breast cancer resistance protein 

CKD Chronic kidney disease 

Cmax Maximal concentration 

c-MET Mesenchimal epithelial transtition factor 

CYP Cytochrome P450 

EGF Epidermal growth factor 

eGFR Estimated glomerular filtration rate 

EGFR Epithelial growth factor receptor 

EMA European medicines agency 

FDA US Food and drug administration 

FGFR Fibroblast growth factor receptor 

FMO Flavin-containing monooxygenase 

GFR Glomerular filtration rate 

GLUT Glucose transporter 

HER human epidermal growth factor receptor 

KDIGO Kidney Disease Improving Global Outcomes 

KRT Kidney replacement therapy 

MATE Multi-antimicrobial extrusion protein 

OAT Organic anion transporter 

OATP Organic anion transporting peptide 

OCT Organic cation transporter 

PDGFR Platelet-derived growth factor receptor 

P-gp P-glycoprotein 

  

SCr Serum creatinine 

SLC Solute carriers 

TKI Tyrosine kinase inhibitor 

TMA Thrombotic microangiopathy  

TRPM6 
transient receptor potential cation channel, subfamily M, 
member 6 

UGT UDP-glycosyltransferase 

VEGFR Vascular endothelial growth factor receptor 
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Introduction 

 

Our understanding of the mechanisms governing tumorigenesis and cancer progression has led to the 

development of targeted therapies. Among these, tyrosine kinase inhibitors (TKI) play a key role in 

disrupting signal transduction pathways triggered by various oncogenes.1 Their targeted actions 

enhance efficacy while limiting toxicity. TKI include both large molecules -like antibodies- and small 

molecules, multikinase inhibitors, which will be discussed in this review. 

TKI are classified into several families, including anti-epithelial growth factor receptor/ human epidermal 

growth factor receptor 1 (EGFR/HER1) (afatinib, erlotinib, gefitinib, lapatinib, osimertinib), anti-HER2 

(lapatinib), anti-anaplastic lymphoma kinase/ROS Proto-Oncogene 1 (ALK) (alectinib, ceritinib, 

crizotinib), anti-vascular endothelial growth factor receptor (VEGFR) (axitinib, cabozantinib, lenvatinib, 

pazopanib, regorafenib, sorafenib, sunitinib and vandetanib),  and anti-BCR-ABL (breakpoint Cluster 

Region - Abelson murine Leukemia) (bosutinib, dasatinib, imatinib, nilotinib). 

TKI are administered orally, improving patient convenience and treatment flexibility. However, this 

represents an extra challenge in terms of therapeutic adherence, as patients exhibit considerable intra-

individual and inter-individual variability due to many pharmacokinetic parameters and a narrow 

therapeutic window.2–4 Unraveling these factors can help control them, improve drug effectiveness and 

minimize toxicity. Indeed, exposure to TKI is strongly affected by drug-drug interactions, genetic 

polymorphisms, associated pathologies and cancer types.5,6 Hence, renal carcinoma  is highly 

associated with pharmacokinetic alterations, since kidneys play a major role in TKI elimination.4 

Here we present (1) a descriptive analysis of the relevant clinical TKI pharmacokinetics, (2) a summary 

of kidney adverse effects observed in oncology, and (3) an overview of the impact of kidney pathologies 

on TKI pharmacokinetics and related dose adjustments. 

 

Clinical TKI pharmacokinetics  

 

(1) Absorption 

Absorption contributes significantly to the inter-individual variability of TKI response. This is due to their 

high liposolubility resulting in slow dissolution in the gastrointestinal tract. This variability is probably 

amplified by individual differences in the extent of enterohepatic circulation.7 The solubility of most TKI 

depends on local pH. Since TKI are weakly basic, there is an equilibrium between the ionized and non-

ionized forms that depends on intragastric pH. At normal acidic intragastric pH (pH range 1-2), the 

equilibrium shifts to the ionized form. Since the latter has better solubility, absorption from the 

gastrointestinal tract is optimal at low intragastric pH; however, when pH is increased, the balance shifts 

towards the non-ionized form. Consequently, bioavailability, maximal concentration (Cmax), and area 

under the curve (AUC), are decreased, potentially resulting in treatment failure.  

Intragastric pH is increased both in the postprandial period and after acid-suppressive drug intake. The 

impact of the latter is minor to moderate. Thus, eight TKI (bosutinib, ceritinib, dasatinib, erlotinib, 

gefitinib, lapatinib, nilotinib, pazopanib) present a mild clinical relevance, scored as AUC changes, when 

administered concomitantly with acid-suppressing drugs.8 In these cases, the general recommendations 
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of US Food and Drug Administration (FDA) and European Medicines Agency (EMA) are: (1) minimizing 

the use of acid-suppressive drugs, and (2) separating their administration from TKI intake by 2 to 4 hours 

before or 3 to 4 hours after. 

TKI absorption is also influenced by meal fat content. Co-administering with a high-fat meal may induce 

significant increases or decreases in Cmax and/or AUC (Table 1). Recommendations include taking 

medication either without food to avoid the effect of quantitative and qualitative variations in meal intake, 

or with a low-fat meal. 

 

(2) Distribution 

Some parameters characterize drug distribution, including exposure (Cmax), volume of distribution and 

protein binding. TKIs are lipophilic, extensively distributed in tissues -including tumors-, and present a 

large volume of distribution after administration.3,9 Another important parameter is their binding to 

plasma and tissue proteins, which may limit their diffusion into tissues. Most TKIs are at least 90% bound 

to plasma proteins such as albumin, α-1-acid glycoprotein and/or lipoproteins.3,4,6,9 In some pathological 

conditions such as cancer, malnutrition, kidney or hepatic failure, or nephrotic syndrome, albumin 

concentration may decrease. Conversely, inflammatory conditions are associated with increased levels 

of α-1-acid glycoprotein from 2- to 5-fold. Both albumin and α-1-acid glycoprotein have high-affinity and 

low-capacity properties for drug binding. When two drugs that bind the same protein are administered, 

they compete for binding sites, which can increase the release of free forms and potentially lead to 

toxicity.  

Finally, tissue distribution of TKIs also depends on their influx or efflux mediated by transporter proteins 

located in cell membranes, as discussed below. 

 

(3) Metabolism 

After reaching the portal vein, TKIs are metabolized in the liver (Figure 1). Phase I enzymes, including 

the cytochrome P450 family (CYP), promote TKI metabolism (Table 2). Conversely, few drugs are 

conjugated by phase II enzymes, such as UDP-glycosyltransferases. The activity of most cytochrome 

enzymes can be modified by certain conditions like age -often enhancing-, and inflammation -reducing-

.10 Therefore, drug concentrations tend to decrease with age and increase with inflammation. 

 

Common foods such as garlic and grapefruit inhibit, whereas St John’s wort strongly induces CYP3A4, 

modulating drug availability and exposure 11 Likewise, smoke, caffeine, and alcohol induce some 

cytochromes, such as CYP1A2. Hence, drug-drug interactions with potent CYP inhibitors and inducers 

must be considered when establishing TKI dosage (Table 3)5. 

Consequently, TKI exposure may decrease over time. This phenomenon is observed when sorafenib is 

administered to hepatocellular carcinoma patients through three potential mechanisms: first, 

autoinduction of CYP3A4/5 metabolism; 12,13 second, intestine overexpression of the ATP-binding 

cassette (ABC) subfamily G member 2 (ABCG2) efflux protein, limiting absorption;13 and third, activation 

of other metabolic pathways, like those modifying liver expression of UDP-glycosyltransferase 1A9.12,14 
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Furthermore, other drug interactions may affect TKI metabolites. For example, sorafenib-glucuronide 

excreted into the gut lumen can be cleaved by microbial enzymes into sorafenib, which is then 

reabsorbed, supporting its persistence in systemic circulation.15 

 

(4) Elimination 

Some parameters characterize drug elimination, notably clearance. In the case of TKIs, which undergo 

hepatic metabolism, non-kidney clearance is preponderant, while kidney clearance is relatively low, 

affecting only TKI metabolites. 

Apparent elimination half-lives are often large except for some TKI, such as dasatinib and axitinib, which 

present a very short apparent period (2 and 3 hours respectively).3,8 

 

(5) Drug transporters 

Drug transporters are widely expressed, especially in gut, bile ducts, kidneys and blood-brain 

barrier (Figure 1).9 Membrane transporters can have clinically relevant effects on drug pharmacokinetics 

and pharmacodynamics by controlling absorption, distribution, and elimination. 

Efflux drug transporters like P-glycoprotein (P-gp),  ABC subfamily B member 1 (ABCB1), and breast 

cancer resistance protein (BCRP; ABCG2), release TKIs into the intestinal lumen.16 Thus, inhibition of 

these efflux transporters at the intestinal level leads to increased absorption and therefore increased 

drug concentrations. 

Other efflux drug transporters contributing to TKI bioavailability are those included in the multidrug 

resistance protein subfamily (ABC subfamily C member 1 to 12, like MRP1) and the multi-antimicrobial 

extrusion protein (MATE; solute carrier family 47) (Figure 1). As efflux transporters, inhibition of their 

activity results in decreased drug levels. 

Several uptake transporters may be involved as well, such as organic ion transporting peptide (OATP, 

SLCO), organic anion transporters (OAT; SLC22), and organic cation transporters (OCT; SLC22). These 

influx proteins promote the entry of TKI into the cll. Therefore, inhibition of their activity results in 

increased drug levels.  

Several TKI also inhibit MATE-1 and OCT2, notably at the basolateral and apical membranes of kidney 

tubular epithelial cells.17,18 These carriers participate in the secretion of certain endogenous analytes, 

such as creatinine. 

Most TKIs (notably afatinib, lapatinib and pazopanib) are substrates of P-gp and BCRP transporters, 

which can interact with other drugs that are either substrates, inducers or inhibitors of these carriers 

(Table 2). Consequently, it is recommended to avoid strong P-gp inducers and BCRP inhibitors and to 

monitor side effects when using P-gp and BCRP substrates. 

Likewise, some TKIs may inhibit several drug transporters. The clinical relevance of drug-drug 

interaction regarding drug transporters is negligible for some TKIs and the combination with inhibitory 

or inducing compounds is well tolerated. Elsewhere, transporters may be implicated in the resistance to 

conventional and target-specific anti-tumor drugs. This condition often involves ABC transporters, which 

could attenuate the potency of chemotherapeutics.15,19,20 Therefore, inhibition of efflux transporters may 
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reverse cancer cell resistance. This could result in increased diffusion of transporter substrates towards 

their site of action.21–26 Nephrotic syndrome can affect the activity of these transporters in kidney, liver, 

and duodenum, leading to decreased absorption, metabolism, and excretion.27 

Finally, substrates of these transporters can interfere with endogenous substances produced in some 

pathological conditions, such as systemic inflammation and chronic kidney failure.28 This interaction 

induces a decrease in drug efflux or influx, with a long-term risk of inefficiency or toxicity.  

 

(6) Pharmacogenomics 

Many polymorphisms in genes encoding metabolism enzymes and drug transporters that may have a 

clinically relevant impact29 .Nevertheless, the FDA only defines a relationship between the risk of drug 

accumulation and genetic polymorphisms of CYP2D6 for gefitinib given its poor metabolism.30 

Conversely, other polymorphisms in CYP encoding genes have minor impact on TKI metabolism.31 

 

From a pharmacodynamic perspective, the FDA also defines some polymorphisms affecting TKI safety. 

This is the case for HLA-DRB1*07:01 and HLA-DQA1*02:01, responsible for lapatinib hepatotoxicity.30 

Likewise, UGT1A1*28/*28 is linked to the hyperbilirubinemia induced by nilotinib and pazopanib, while 

HLA-B*57:01 accounts for liver enzyme rise associated with pazopanib. 

 

Kidney pathologies in oncology 

 

Both acute kidney injury (AKI) and chronic kidney diseases (CKD) are highly prevalent in patients with 

solid tumors.32 Among critically ill cancer patients, AKI is developed in 13 to 54%,33 CKD in 13 to 30 34,35 

and dialysis is required in 8 to 60% of patients.36 Similarly, organ transplant recipients have an increased 

risk of cancer because of immunosuppression. Some cancers with large masses may present tumor 

lysis syndrome,37 causing hyperuricemia, hyperkalemia, hyperphosphatemia, metabolic acidosis and 

AKI.  

Kidney disease increases the risk of nephrotoxicity induced by cancer treatments and may compromise 

their administration. Major AKI risk factors include nephrotoxic anticancer drugs, cancer-related 

metabolic troubles, tissue deposition of paraproteins and nephrotoxic non-chemotherapeutic drug 

treatments.32 Nephrotoxicity is increased with patient’s age, intravascular volume depletion and previous 

AKI or CKD occurrence. 

 

 

Impact of kidney pathologies on TKI pharmacokinetics 

 

In addition to highly fluctuating drug exposure linked to interindividual variability in each pharmacokinetic 

process -as described in the first sections-, kidney pathologies can have an impact on the 

pharmacokinetics of certain drugs, which prompts the development of personalized therapeutic drug 

monitoring.39 A relationship between exposure and response and/or safety has been established and 

therapeutic targets have already been reported for some drugs.40,41  
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Systemic physiologic changes are very dynamic in AKI patients. Drug clearance and distribution vary in 

the short term (some hours and days) and it is difficult to practically quantify the glomerular filtration rate 

(GFR)42 as well as liver metabolism. While absorption may be reduced, the volume of distribution is 

usually unchanged but sometimes increased. In the AKI context, hepatic clearance can be affected 

especially when hepatorenal syndrome and cytokine release syndrome are associated. Hepatorenal 

syndrome, resulting from decompensated cirrhosis, presents splanchnic vasodilatation and arterial 

hypovolemia, resulting in decreased TKI distribution volume. The inflammation observed in hepatorenal 

and cytokine release syndromes leads to increased proinflammatory cytokines. These cytokines 

moderately inhibit CYP3A4, 1A2, 2C9, 2C19, decreasing TKI clearance between 2-fold and 2.6-fold, 

thereby increasing their exposure.43,44 In AKI, kidney drug excretion is diminished, yet this reduction can 

manifest rapid changes.42,45 Furthermore, the high interindividual variability in pharmacokinetics 

represents a considerable challenge, and therapeutic drug monitoring is strongly recommended.40,42,45 

 

Kidney adverse effects in the TKI era 

 

(1) AKI 

In 2021, the Kidney Disease Improving Global Outcomes (KDIGO) clinical guidelines defined AKI as: 

(1) an increase in serum creatinine (SCr) concentration by more than ≧0.3 mg/dL (26,5 mmol/L) within 

48 hours; (2) an increase in SCr by ≥50% within 7 days; or (3) oliguria (urine volume <0.5 mL/kg/h) by 

≥4 hours. Based on creatinine levels, AKI is classified as stage 1 (1.5x< SCr <2x baseline), 2 (2x< SCr 

<3x baseline), or 3 (SCr >3x baseline). 

Two features need to be considered when a TKI is used, regardless of its original target: (1) although 

TKI targets a selective signaling pathway involved in the oncogenic process or in metastasis, whether 

or not its relevant TK receptor displays genetic alteration, it actually acts on multiple signaling pathways 

and therefore displays multikinase activity. (2) Most renal transporters are concentrated on proximal 

renal tubules, at the apical (MATE1 and MATE2-K) and basolateral (OAT2, OCT2, OCT3) sides (Figure 

1). (3) Some TKI are predominantly marketed as anti-angiogenic (on-target effect) but they may inhibit 

kidney transporters (off-target effect). This is the case of cabozantinib, regorafenib and axitinib. 

However, many TKIs (notably cabozantinib, crizotinib, imatinib, ceritinib and alectinib)  interfere with 

active tubular creatinine secretion by kidney transporters, mimicking AKI.17,18,46,47. Among the large TKI 

spectrum, the strong inhibitors of tubular creatinine secretion include members of the ALK-ROS1 family 

(crizotinib). Inhibition of tubular transport is lesser with cabozantinib relatively to crizotinib. Cystatin-C is 

a small molecule (15 kDa) freely filtered by glomeruli and not secreted by tubules. Therefore, Cystatin-

C clearance is a good alternative to serum creatinine to estimate GFR (eGFR) in patients under TKI 

therapy. Thus, a significant increase in SCr without a parallel modification of Cystatin-C suggests false 

AKI by kidney transporter inhibition. Conversely, a severe increase in SCr correlated with a Cystatin-C 

rise is likely not to be due to kidney transporter inhibition and requires eventually a kidney biopsy for 

diagnosis. It must be taken into consideration that, in the presence of an inflammatory syndrome, 

Cystatin-C may significantly increase and result in GFR underestimation. A serious concern is related 

to the use of the antidiabetic drug metformin, which is excreted in urine by active tubular secretion 
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mediated by OCT2 and MATE 1/2-K. In patients under TKI and receiving this medication, a severe 

adverse effect (lactic acidosis) may occur. This should be prevented by either significant reduction of 

doses or cessation. 

TKI may induce AKI through glomerular damage and/or toxic injury to kidney tubules (Figure 2 and Table 

5). Glomerular injuries, including TMA and podocytopathy, are mostly reported in patients under TKI 

targeting predominantly the VEGFR signaling pathway (cabozantinib, lenvatinib, axitinib, sunitinib, 

sorafenib and pazopanib)48–53. According to the FDA, axitinib, dasatinib, gefitinib, sorafenib, sunitinib 

and vandetanib have the highest odds ratio for all nephropathies within TKI. Axitinib and sorafenib 

increase 3-fold to 4-fold the risk of developing glomerulopathy and/or nephrotic syndrome, while 

pazopanib and sunitinib present a relative risk increase of 2-fold for both side effects.32 Several types of 

AKI occur with members of the TKI family acting against the BCR-Abl fusion protein (imatinib, dasatinib), 

consisting of TMA, podocytopathy, acute tubular necrosis (ATN) and electrolyte disorders, most of them 

reversible with TKI cessation.  

ATN, biopsy-proven, was reported in patients treated with ALK-TKI crizotinib and alectinib.54,55 Studies 

on kidney toxicity induced by TKI, histologically documented, are scarce. Electrolyte disorders, mainly 

related to tubular transport inhibition, are frequent and have been reported with several TKI families, 

such as EGFR, ALK and BCR-ABL inhibitors. They include hyponatremia, hypomagnesemia and 

hypokalemia. Hyperkaliemia was reported under axitinib in a patient developing distal tubular 

dysfunction (type 4 renal tubular acidosis),56 while other TKI (imatinib, sunitinib and ceritinib) may induce 

hypophosphatemia, resulting from inhibition of the FGF23/FGFR pathway-mediated proximal tubule 

secretion, while other TKI (imatinib, sunitinib and ceritinib) may induce hypophosphatemia. 

 

 

(2) CKD 

A few studies have focused on patients with CKD, nephrectomy or in hemodialysis (Table 4).57 CKD is 

characterized by a progressive decline in eGFR, such that kidney function is relatively stable over weeks 

or months. While CKD is frequently observed in cancer patients, many oncologic strategies interfere 

with kidney function.45,58,59 CKD induces some changes in drug pharmacokinetics60,61, as drug 

absorption may increase or decrease, though it is poorly quantified. Animal and human studies indicate 

that drug absorption may increase because of impairment of the gut wall barrier function. Additionally, 

enzymatic metabolism and efflux transporter activities are decreased in enterocytes, inducing increased 

bioavailability of lipophilic drugs and thus an increase in serum drug levels. Hence, the volume of 

distribution is either unchanged or increased because of a better diffusion and/or a decrease in efflux 

protein activities. Protein binding may be altered because of lower protein concentration. This effect may 

be increased in cancer patients because of malnutrition or sarcopenia. A decrease in drug clearance by 

several CYPs has been observed, resulting in kidney failure, while extra-kidney elimination is unaltered 

or possibly decreased.38,45 Drug clearance may be altered because of low protein influx activities.62 

Accumulation of uremic toxins is observed concomitantly with the progression of kidney failure.61 These 

toxins act through activation of the aryl hydrocarbon receptor, leading to transcriptional activation of 

some CYP, UGT and transporter genes in hepatocytes and kidney tubular cells.38,45,59Indoxyl sulfate, 
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kynurenine, kynurenic acid, and indole-3-acetic acid are the major uremic toxins and ligands for the aryl 

hydrocarbon receptor. In addition, these toxins can directly inhibit both enzymes and transporters and 

participate in the altered drug clearance in CKD patients.  

Limited data are available about TKI pharmacokinetics in patients with kidney failure (Table 4). For mild 

kidney impairment (60 mL/min < eGFR < 89mL/min), no changes are described except for cabozantinib 

and unbound vandetanib, without clinical relevance. For moderate kidney failure (45 mL/min < eGFR < 

59 mL/min), exposure is increased for afatinib, bosutinib, imatinib and unbound vandetanib, but dose 

reduction is recommended only for imatinib. For severe kidney impairment (30 mL/min < eGFR  <44 

mL/min), exposure to crizotinib is also increased without recommendation, while imatinib, lenvatinib and 

vandetanib exposures are increased, necessitating dose adjustments. 

Likewise, a higher total exposure to imatinib was observed in patients with mild, moderate and severe 

kidney impairment.63 As imatinib excretion in urine is less than 13%, it might be explained by decreased 

activity of hepatic metabolic enzymes, resulting in decreased imatinib clearance. Another possible 

explanation might be the upregulation of acute phase proteins, such as α-1-acid glycoprotein, which has 

been described both in patients with cancer and with kidney impairment.  

Both CKD and cancer lead to hypoalbuminemia. If the latter coexists with impaired drug clearance, 

unbound drug levels increase and induce drug toxicity. In addition, kidney impairment might alter 

patients’ sensitivity to anticancer drugs even if drug exposure is unaffected. An example is the increased 

toxicity of sorafenib in patients with varying degrees of kidney impairment, even if sorafenib exposure is 

not altered.64 In conclusion, kidney impairment not only affects kidney excretion of active compounds 

and metabolites, but can also influence the exposure–toxicity relationship for anticancer drugs. 

 

 

(3) Nephrectomy and renal carcinoma 

TKI treatment handling is complex and requires close monitoring, especially in patients having 

undergone unilateral nephrectomy for metastatic renal carcinoma. In a nephrectomized rat model, 

expression and activity of some metabolizing enzymes and efflux transporters have been found changed 

in intestine and liver.60,61 The clinical impact of these modifications has been studied.57  

Following unilateral nephrectomy, the remaining kidney experiences a rapid compensatory hypertrophy, 

associated with increased kidney blood flow.67 Various mechanisms act together to promote 

compensatory hypertrophy, including activation of the PI3 kinase-mTORC-S6 kinase pathway,68,69 

proliferation of mesangial cells secreting growth factors (hepatocyte growth factor, epidermal growth 

factor, insulin-like growth factor 1), whereas genes involved in growth inhibition are suppressed.70 

Another major metabolic change occurs in the remaining kidney to maintain water and sodium balance. 

Experimental studies suggest that glomerular hemodynamic alterations occur, resulting in hypoxia, 

notably in the tubulointerstitial compartment. Indeed, activation of the hypoxia inducible factor is another 

major determinant of compensatory hypertrophy, through the active transcription of vascular endothelial 

growth factor, platelet-derived growth factor, erythropoietin and GLUT -1. Collectively, these data may 

explain why TKI use in patients with unilateral nephrectomy leads to glomerular alterations and acute 

kidney failure, as TKI inhibit the mechanism involved in compensatory hypertrophy. 
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(4) Kidney replacement therapy (KRT)  

KRT increases elimination of hydrophilic drugs. Drug clearance in patients undergoing hemodialysis is 

determined by drug properties, dialysis conditions, and patient characteristics. Most TKI are highly 

protein-bound and predominantly cleared by liver, and therefore unlikely to be removed by conventional 

hemodialysis. For drugs metabolized above 50% by kidneys, elimination is increased by KRT. 

Intermittent KRT is efficient but usually of short duration, and has a minimal effect when the drug is 

administered after KRT. Conversely, continuous KRT often requires an increase in maintenance dosing. 

Peritoneal dialysis has minimal additional effects on chronic drug therapy. 

Kidney impairment might alter other pharmacokinetic processes and requires dose adjustment.58 No 

pharmacokinetic changes are indicated except for sunitinib and dasatinib (Table 4).65,66 Indeed, no 

clinically relevant differences in sunitinib and its active metabolite exposure have been observed in CKD 

patients. Yet, in patients requiring hemodialysis, a 47% reduction of sunitinib and metabolite exposure 

was observed.65 Since sunitinib is not removed by hemodialysis, the decreased exposure was probably 

a result of lower drug absorption. In our experience, no change in the minimal concentration of 

cabozantinib was observed before and after hemodialysis (personal data). 

 

 

Conclusion 

 

Owing to the high complexity of TKI pharmacokinetics, their therapeutic drug monitoring is highly 

recommended, as well as the control of their interactions with other drugs. 

Given the current gaps in data and mechanistic understanding, there is a pressing need for 

comprehensive studies involving patients with CKD, under periodic dialysis, and transplanted , treated 

with TKI.
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Figures 

 

Figure 1: Overview of drug transporters and metabolizing enzymes for the main organs involved in the 

pharmacokinetics of TKI. 

BCRP: Breast cancer resistance protein; CYP: cytochrome P450; MATE: multi-antimicrobial extrusion 

protein; MRP: multidrug resistance protein; OAT: organic anion transporter; OATP: organic anion 

transporting peptide; OCT: organic cation transporter; P-gp: P-glycoprotein; UGT: UDP-

glycosyltransferase. 
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Figure 2. Glomerular damages and/or renal tubule injuries induced by TKI depending on their selective 

mechanism of action (ATN: acute tubular necrosis, EGFR: epithelial growth factor receptor, FGFR: 

fibroblast growth factor receptor; PDGFR: platelet-derived growth factor receptor, VEGFR: vascular 

endothelial growth factor receptor, c-MET: mesenchymal epithelial transition factor). 

  



15 
 

 

Tables 

 

Table 1: Clinically significant modifications of maximal concentration (Cmax) and/or area under the curve 

of concentrations in time (AUC) of TKI with due to US Food and Drug Administration (FDA) and 

European Medicines Agency (EMA) recommendations. 

 Change in Cmax Change in AUC FDA/EMA recommendations Reference 

Afatinib -50 % -39 % Take without food 71 

Alectinib +170 % +192 % Take with food 72 

Axitinib 

High-fat, high-calorie 
meal 

+11 % 

Moderate-fat, 
standard-calorie meal 

-16 % 

High-fat, high-calorie 
meal 

+19 % 

Moderate-fat, 
standard-calorie meal 

-10 % 

Take with or without food 73 

Bosutinib +128 % +152 % Take with food 74 

Cabozantinib +41 % +57 % Take without food 75 

Ceritinib +41 to +58 % +39 to +73 % Take with food 76 

Crizotinib -14 % -14 % Take with or without food 77 

Dasatinib N/A +14 % Take with or without food 11 

Erlotinib +64 % +109 % Take without food 78 

Gefitinib +32 % +37 % Take with or without food 79 

Imatinib -11 % -7 % Take without food 80 

Lapatinib +90 to 166 % +80 to 160 % Take without food 81 

Lenvatinib -2 to +6 % -5 to 0 % Take with or without food 82 

Nilotinib +33 to +112 % +15 to +82 % Take without food 83 

Osimertinib -8 % +6 % Take with or without food 84 

Pazopanib +108 to +110 % +92 to +134 % Take without food 85 

Regorafenib +54 to +73 % +36 to +48 % Take with food or low-fat meal 11 

Sorafenib N/A -30 % Take without food 11 

Sunitinib 
+4 % 

(-23 % for SU12662) 

+12 % 

(-8 % for SU12662) 
Take with or without food 86 

Vandetanib -11 % 0 % Take with or without food 87 

N/A: Not available. 
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Table 2: Major and minor metabolism enzymes of TKI, interaction with drug transporters and indication of their inhibitory or inducing activity on CYPs and 

transporters. 

 Major CYP Minor CYPs and others Drug transporters CYPs and transporters inhibitory activity CYPs inducing activity 

Afatinib N/A N/A P-gp, BCRP In vitro P-gp, BCRP N/A 

Alectinib CYP3A4 N/A  In vitro P-gp, BCRP N/A 

Axitinib CYP3A4 CYP3A5, 1A2, 2C19, UGT1A1 P-gp, BCRP UGT1A4,7,9, CYP1A2, in vitro P-gp N/A 

Bosutinib CYP3A4 FMO P-gp, BCRP N/A N/A 

Cabozantinib CYP3A4 CYP2C9 MRP2 CYP2C9, 3A4, 2C19, in vitro P-gp, BCRP, MATE1, MATE2 N/A 

Ceritinib CYP3A4 N/A P-gp CYP3A4, 2C9, 2A6, 2E1 CYP3A4 

Crizotinib CYP3A4 CYP3A5, 2C8, 2C19, 2D6 P-gp CYP3A4, 2B6, UGT1A1, 2B7, P-gp, OCT1, OCT2 UGT1A1, CYP2B6, 2C8, 2C9 

Dasatinib CYP3A4 FMO, UGT P-gp CYP2C8, 3A4, MATE1, MATE2, OCT2, OATP1B1, OATP1B3 N/A 

Erlotinib CYP3A4 CYP1A2, 1B1, 3A5 P-gp, BCRP CYP1A1, 3A4, 2C8, UGT1A1, in vitro OCT2, OAT3 N/A 

Gefitinib CYP3A4 CYP3A5, 2C19, 2D6 P-gp, BCRP, MRP7 CYP2D6, 2C19, in vitro P-gp, BCRP UGT1A1, UGT1A7, UGT1A9, UGT2B7 

Imatinib CYP3A4 CYP3A5, 1A2, 2D6, 2C9, 2C19 P-gp, BCRP, OCT1, OATP1A2, OATP1B3 CYP2C9, 3A4 N/A 

Lapatinib CYP3A4 CYP3A5, 1A2, 2D6, 2C8, 2C9, 2C19 P-gp, BCRP CYP3A4, 2C8, in vitro P-gp, BCRP, OATP1B1 N/A 

Lenvatinib CYP3A4 N/A P-gp, BCRP CYP2C8, 1A2, 2B6, 2C9, 2C19, 2D6, 3A4, UGT1A1 CYP3A4 

Nilotinib CYP3A4 CYP2C8, 1A1, 1A2, 1B1 P-gp, BCRP CYP2D6, 2C9, 3A4, 2C8, UGT1A1, P-gp, BCRP CYP2D6, 2C8, 2C9 

Osimertinib CYP3A4 CYP3A5, 1A2, 2A6, 2C9, 2E1 P-gp, BCRP CYP1A2, 2C8, 3A4, UGT1A1, P-gp, BCRP CYP3A4, 1A2 

Pazopanib CYP3A4 CYP1A2, 2C8 P-gp, BCRP CYP3A4, 2D6, 2C8, UGT1A1, in vitro P-gp, BCRP, OATP1B1  

Regorafenib CYP3A4 UGT1A9 P-gp, BCRP UGT1A1, 1A9, CYP2C8, 2B6, 2C9, 2C19, 3A4, in vitro BCRP N/A 

Sorafenib CYP3A4 UGT1A9 P-gp, OATP1B1, OATP1B3, MRP2-3 CYP2B6, 2C8, 2C9, UGT1A1, P-gp  

Sunitinib CYP3A4 CYP1A1, 1A2 P-gp, BCRP P-gp, BCRP N/A 

Vandetanib CYP3A4 FMO  In vitro P-gp, BCRP, OCT2 N/A 

BCRP: Breast cancer resistance protein; CYP: cytochrome; FMO: Flavin-containing monooxygenase; MATE1: multi-antimicrobial extrusion protein 1; MATE2: multi-antimicrobial extrusion protein 2; MRP2: multidrug resistance 
associated protein 2; OAT3: organic anion transporter 3; OATP1B1: organic anion transporting peptide B1; OATP1B3: organic anion transporting peptide B3; OCT1: organic cation transporter 1; OCT2: organic cation 
transporter 2; P-gp: P glycoprotein; UGT: UDP-glycosyltransferase; N/A: Not available. 
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Table 3: Inducers and inhibitors of major cytochromes and phase II enzymes. 

 Inhibitors Inducers 

CYP1A2 
amiodarone, ciprofloxacin, fluvoxamine, 

norfloxacine, phenylpropanolamine 
rifampicin, smoke 

CYP3A4 

amiodarone, amprenavir/fosamprenavir, 
aprepitant, atazanavir, boceprevir, 

ciprofloxacin, clarythromycin, diltiazem, 
erythromycin, fluconazole, indinavir, 

itraconazole, ketoconazole, nelfinavir, 
posaconazole, ritonavir, saquinavir, telaprevir, 

telithromycine, verapamil, voriconazole 

bosentan, carbamazepine, efavirenz, 
modafenil, oxybutynin, phenobarbital, 

phenytoin, primidone, rifabutin, rifampicin 

CYP2B6 clopidogrel, sertraline, voriconazole 

carbamazepine, cyclophosphamide, 
dexamethasone, efavirenz, modafinil, 
nevirapine, phenobarbital, phenytoin, 

rifampicin, ritonavir 

CYP2C8 
clopidogrel (metabolite), dasatinib, gemfibrozil, 

imatinib, nilotinib, sorafenib, trimehtoprim 
dexamethasone, rifampicin 

CYP2C9 

amiodarone, atazanavir, clopidogrel, etravirine, 
fluconazole, fluoxetine, fluvastatin, 

fluvoxamine, gemfibrozil, imatinib, irbesartan, 
losartan, metronidazole, miconazole, 
quetiapine, sorafenib, valproic acid, 

voriconazole 

bosentan, carbamazepine, dexamethasone, 
efavirenz, phenobarbital, phenytoin, primidone, 

rifampicin, ritonavir 

CYP2C19 

clobazam, esomeprazole/omeprazole, 
felbamate, fluconazole, fluoxetine, 

fluvoxamine, gefitinib, isoniazide, lansoprazole, 
moclobemide, modafinil, quetiapine, 

ticlopidine, voriconazole 

dexamethasone, phenobarbital, phenytoin, 
primidone, rifampicin, ritonavir 

CYP2D6 

amiodarone, bupropion, chlorpromazine, 
citalopram, clomipramine, duloxetine, 

flecainide, fluoxetine, imatinib, 
levomepromazine, melperone, 

metoclopramide, moclobemide, nilotinib, 
paroxetine, promethazine, quetiapine, 

quinidine, risperidone, ritonavir, sertraline, 
sorafenib, terbinafine, venlafaxine 

 

CYP2E1 clomethiazole, disulfiram ethanol, isoniazide, tobacco, cannabis 

UGT  
carbamazepine, lamotrigine, phenobarbital, 

phenytoin 
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Table 4: Impact of chronic kidney disease (CKD) and kidney replacement therapy (KRT) on 

pharmacokinetics of TKI. 

 Kidney failure KRT References 

 
Mild 

(60 mL/min 
<eGFR<89 mL/min) 

Moderate 
(45 mL/min 

<eGFR<59 mL/min) 

Severe 
(30 mL/min 

<eGFR<44 mL/min) 
  

Afatinib  
Increased AUC 

22-39 % 
Increased AUC 

34-42 % 
No change 88–90 

Alectinib No change No change 91–93 

Axitinib No change No change 51,94,95 

Bosutinib No change 
Increased AUC 

35 % 
Increased AUC 

60 % 
No data 96 

Cabozantinib 
Increase AUC 

30 % 
No change No data No data 75 

Ceritinib No change No data No data 97 

Crizotinib No change 
Increased AUC 

79 % 
No data 98,99 

Dasatinib No data 
Increased 

concentration 
66,100 

Erlotinib No change No change 101 

Gefitinib No change Not dialyzable 88,102 

Imatinib No change 
Increased AUC 

50 % 
Increased AUC 

100 % 
No data 103,104 

Lapatinib No change No change 105 

Lenvatinib No change No change 
Dose reduction 

change 
No data 106 

Nilotinib No data No data 107 

Osimertinib No change No change 108,109 

Pazopanib No change No data 50 

Regorafenib No change No data 110 

Sorafenib No change No change 48,111 

Sunitinib No change 
Not dialyzable but 
decreased AUC 

49,65 

Vandetanib 
Increased unbound 

AUC 
46 % 

Increased unbound 
AUC 
62 % 

Increased unbound 
AUC 
79 % 

No data 112,113 

AUC: Area under the curve of concentrations in time; CYP: cytochrome, FMO: flavin-containing monooxygenase, UGT: UDP-
glycosyltransferase 
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Table 5: Kidney adverse effects of TKIs. 

 

Therapeutic 
class 

Drug Main kidney 
toxicities 

Mechanisms 

VEGFR inhibitors axitinib, cabozantinib, 
lenvatinib, pazopanib, 
regorafenib, sorafenib, 
sunitinib, vandetanib 

Arterial Hypertension 

(11-43%) 

AKI (7-33%) 

Proteinuria (7-49%) 

Nephrotic syndrome 

(1-15%) 

TMA 
Electrolyte disorders 

 

Inhibition of the 
VEGF/VEGFR axis-

mediated 
angiogenesis 

EGFR/HER1 
inhibitors 

afatinib, erlotinib, gefitinib, 
lapatinib, osimertinib 

Electrolyte disorders 
(Hypomagnesia 

Hypokaliemia 

Hyponatremia 

Hypophosphatemia) 

 

Inhibition of epithelial 
Mg2+  channel 
TRPM6 
(most frequent with 
EGFR-targeting 
antibodies)   

ALK inhibitors alectinib, ceritinib, 
crizotinib 

AKI (acute tubular 

necrosis) 

Podocytopathy 

Electrolyte disorders 
Cystic disease 

(Crizotinib) 

Inhibition of MET/HGF 
axis 
inhibition de IGF-1R  

BCR-ABL inhibitors bosutinib, dasatinib, 
imatinib, nilotinib 

AKI 
TMA 

Electrolyte disorders 
Proteinuria 

Inhibition of c-Kit, 
PDGFR 
Inhibition of Src 
kinases 

 
VEGFR: anti-vascular endothelial growth factor receptor, EGFR: anti-epithelial growth factor receptor, 

ALK: anti-anaplastic lymphoma kinase, BCR-ABL: Breakpoint Cluster Region - Abelson murine 

Leukemia. TMA: thrombotic microangiopathy TRPM6:  transient receptor potential cation channel, 

subfamily M, member 6. 
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