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Abstract 

Purpose of review:  

The periosteum, the outer layer of bone, is a major source of skeletal stem/progenitor cells (SSPCs) for 

bone repair. Here, we discuss recent findings on the characterization, role, and regulation of periosteal 

SSPCs (pSSPCs) during bone regeneration. 

Recent findings: 

Several markers have been described for pSSPCs but lack tissue specificity. In vivo lineage tracing and 

transcriptomics analyses have improved our understanding of SSPC functions during bone regeneration. 

Bone injury activates pSSPCs that migrate, proliferate, and have the unique potential to form both bone 

and cartilage.  The injury response of pSSPCs is controlled by many signaling pathways including BMP, 

FGF, Notch and Wnt, their metabolic state, and their interactions with the blood clot, nerve fibers, blood 

vessels and macrophages in the fracture environment.  

Summary:  

Periosteal SSPCs are essential for bone regeneration. Despite recent advances, further studies are 

required to elucidate pSSPC heterogeneity and plasticity that make them a central component of the 

fracture healing process and a prime target for clinical applications. 
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Introduction 

The periosteum is a thin fibrous membrane covering the outer surface of bones. It is organized in 2 

layers: the outer fibrous layer, mostly composed of fibroblasts and extracellular matrix and the inner 

cambium layer, composed of osteoblasts and skeletal stem/progenitor cells (SSPCs). The periosteum is 

highly vascularized and innervated by sensory and sympathetic fibers, and hosts resident and osteal 

macrophages (osteomacs) [1–3]. In long bones, the periosteum is derived from the limb mesenchyme 

that forms the cartilage template and the surrounding perichondrium during development [4, 5]. The 
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periosteum plays crucial roles in bone physiology during development, growth and remodeling. 

Periosteal cells directly contribute to cortical bone formation and control bone growth by secreting 

paracrine factors such as osteocrin [6, 7]. Extrinsic factors such as mechanical loading stimulate bone 

formation in the periosteum during bone growth and remodeling [8–10]. 

 

The capacity of the periosteum to form bone after a fracture was first described in 1845 by Watson [11]. 

The periosteum displays a remarkable ability to regenerate bone and is indispensable to achieve bone 

healing [12]. Periosteum removal or damage at the time of fracture can cause altered healing and non-

union in experimental models [13–17]. The periosteum is a key source of SSPCs for bone repair in 

addition to SSPCs localized within the bone marrow compartment and the adjacent skeletal muscle [18–

25]. Following a bone injury, SSPCs are activated during the inflammatory phase of repair and 

differentiate into osteoblasts and chondrocytes. SSPC differentiation is regionalized in the fracture 

callus. Osteogenesis leading to intramembranous ossification occurs primarily at the periphery of the 

callus while chondrogenesis leading to endochondral ossification occurs in the center of the callus. The 

mechanical environment also influences cell differentiation as fracture stability favors intramembranous 

ossification while fracture instability favors endochondral ossification. The role of periosteal SSPCs in 

coordinating these events is still poorly understood. 

 

In this review, we summarize recent findings on the characterization of periosteal skeletal 

stem/progenitor cells (pSSPCs) and their contribution to bone repair. We describe the current knowledge 

on pSSPC molecular regulation and interactions with the fracture environment following bone injury. 

Finally, we discuss the role of pSSPCs in bone repair defects and the relevance of pSSPCs in cell-based 

therapies. 

Isolation and characterization of periosteal stem and progenitor cells 
 
Studying periosteum and pSSPCs is challenging due to the inaccessibility and thinness of the 

periosteum. Human pSSPCs have been isolated by scrapping or peeling away the periosteum from the 

cortex, followed by enzymatic digestion or explant culture [26]. In animal models, similar techniques 

have been employed. In addition, protocols have been developed to directly isolate cells by enzymatic 

digestion of the bone surface or by whole bone explant culture [27–30]. Isolated pSSPCs are adherent 

to plastic and can be cultured in vitro for several passages. 

 

SSPCs were first described in the bone marrow compartment and defined as mesenchymal stem cells 

based on stem/progenitor marker expression, multipotency and self-renewal capacity [31, 32]. The 

periosteum contains cells displaying SSPC criteria. Analysis of cell surface markers showed that 

pSSPCs are negative for hematopoietic and endothelial markers and express canonical mesenchymal 



markers such as CD90, CD105, CD51, CD29 and Sca1 in mice and CD90, CD105, CD73 in human [20, 

27, 33–35]. In 2015, Chan et al. identified a population of mouse skeletal stem cells from whole digested 

bone based on a combination of cell surface markers  (CD45- TER119- TIE2- CD51+ THY1- 6C3- CD105-

) [36]. The SSPC populations defined by these markers were also identified in freshly isolated and 

primary periosteal cells from mouse and human bones [24, 25, 37, 38]. Periosteal SSPCs exhibit 

multipotency in vitro with tri-lineage differentiation capacity towards osteogenesis, chondrogenesis and 

adipogenesis [34, 39]. The multipotency and differentiation potential of pSSPCs was confirmed by in 

vivo ectopic transplantation experiments [40, 41]. A key feature of stem cells is their ability to self-

renew, and both mouse and human pSSPCs display self-renewal potential in serial CFU or ectopic 

transplantation assays [22, 42].  

Fate of periosteal stem and progenitor cells during bone repair 
 
The direct contribution of periosteum to bone regeneration is well established. The periosteal response 

to bone fracture is characterized by periosteum thickening near the site of injury within few days after 

fracture. Activated periosteal SSPCs proliferate and migrate at the fracture site, and participate in both 

intramembranous and endochondral ossification [18, 20, 25]. This ability of pSSPCs to form cartilage 

and bone after fracture is unique to the periosteum as SSPCs from bone marrow mostly contribute to 

bone and SSPCs from skeletal muscle contribute to cartilage [18, 20–23].  It remains unclear how cell 

fate decision of pSSPCs towards osteogenesis or chondrogenesis is regulated. Using single-cell RNAseq 

(scRNAseq) analyses of primary periosteal cells at steady state and 3 days post-fracture, Julien et al. 

described the steps of pSSPC activation towards the chondrogenic lineage [25]. After bone injury, 

periosteal SSPCs transition from a stem/progenitor state to a fibrogenic state, marked by an active 

extracellular matrix production and the expression of cell migration related genes. Following this 

transient activation step, cells undergo chondrogenic differentiation and proliferate. A recent study by 

Van Gastel et al. showed that pSSPCs can be directed towards chondrogenesis after fracture by blocking 

vascular ingrowth to prevent nutrient availability [43]. Activated pSSPCs with sufficient lipid intake 

can maintain sufficient levels of fatty acid oxidation and differentiate into osteoblasts. However, in 

regions with low lipid availability, reduced fatty oxidation leads to FOXO activation, SOX9 expression 

and chondrogenic differentiation [43]. Further studies are needed to determine how cell fate decisions 

in the periosteum are controlled by environmental factors, and whether distinct cell populations in the 

periosteum respond differently to signals in the fracture environment to undergo either osteogenesis or 

chondrogenesis.  

 

Periosteal SSPCs orchestrate another crucial step of bone repair via endochondral ossification. In the 

center of the callus, a site of active replacement of cartilage by bone, transdifferentiation of hypertrophic 

chondrocytes into osteoblasts appears to be an important source of newly formed osteoblasts [44, 45]. 



Through lineage tracing, Julien et al. showed that periosteal SSPCs exhibit a strong potential to 

participate in this transdifferentiation process required for bone bridging [37]. Finally, during the late 

stages of repair, pSSPCs can self-renew to reconstitute a new periosteum at the periphery of the callus. 

The in vivo self-renewal capacity of pSSPCs during bone repair was revealed using periosteum graft 

and serial fractures, showing that the periosteum maintains a pool of pSSPCs able to contribute to a 

subsequent injury [20]. 

 

Genetic lineage tracing of pSSPCs during bone repair 
 

Additional in vivo approaches, based on the Cre/LoxP system for genetic lineage tracing, have been 

instrumental to understand the endogenous role and fate of pSSPCs during bone regeneration (Table 1). 

Due to their mesenchymal origin, pSSPCs in long bones can be tracked from developmental stages using 

the limb bud mesenchymal marker PRX1. The non-inducible Prrx1Cre model labels not only SSPCs in 

the periosteum but also in bone marrow and skeletal muscle [20, 21]. In adult bone, pSSPCs still express 

Prrx1 but the inducible Prrx1CreERT model does not allow efficient labeling of pSSPCs [20, 37, 46]. The 

platelet-derived growth factor α (PDGFRα) has been described as a marker of mesenchymal cells from 

various tissue origins. Studies using the PdgfraCreERT model showed that PDGFRα marks pSSPCs with 

osteochondral potential during bone healing but is not restricted to the periosteum [24, 25, 47–49]. 

 

Debnath and colleagues combined the markers described by Chan et al. with the marker Cathepsin K 

(CTSK) and identified a population of pSSPCs involved in intramembranous ossification [22]. CTSK+ 

pSSPCs, labelled by the non-inducible CtskCre model, display self-renewing capacity and osteochondral 

potential in calvarial or femoral injury models. scRNAseq analysis of sorted CTSK+ pSSPCs showed 

heterogeneity within this population, with clusters expressing chondrogenic genes (Col2a1, Sox9), 

osteogenic markers (Kera, Alpl),, stemness markers (Ly6a, Cd34), and Acta2 [22]. CTSK+ and CD200+ 

periosteal cells were also detected in human periosteum [22]. 

 

The protein alpha-Smooth Muscle Actin (αSMA), encoded by the Acta2 gene, labels cells in the 

periosteum [24, 50]. αSMA+ periosteal cells, traced using the Acta2CreERTmouse line, are an heterogenous 

population of osteochondroprogenitors, with self-renewing potential and required for efficient bone 

healing [24]. Ortinau and colleagues described a sub-population of αSMA+ cells, using the pIpC 

inducible Mx1Cre line [51]. αSMA+ Mx1+ pSSPCs display self-renewal potential and are required for 

callus formation after tibial and calvarial injury [51]. 

 

Several other markers have been identified, such as the Wnt signaling downstream target AXIN2, the 

receptor PDGFRβ and HOX11 [52–54]. Markers, such as Leptin receptor and Nestin, used to 



characterize bone marrow self-renewing SSPCs also label cells in the periosteum [42, 55]. Tournaire et 

al. reported that Nestin-GFP+ periosteal cells in Nestin-GFP transgenic mice correspond to unipotent 

osteoprogenitors, with limited contribution to callus formation and no stemness properties. Lineage 

tracing in the NesCreERT model revealed an osteogenic and self-renewing potential of Nestin+ periosteal 

cells [42, 55]. GLI1 labels populations of SSPCs, including in the periosteum, forming chondrocytes 

and osteoblasts after fracture [56, 57]. Osteochondrogenic markers such as SOX9 (Sox9CreERT model) 

and Osterix (OsxCre model) both label populations of periosteal progenitors contributing to cartilage and 

bone formation after fracture [53, 58].  

 

Overall, periosteal SSPCs populations defined by these various CRE models exhibit similar proprieties, 

such as the expression of stem/progenitor markers, osteochondral fate after fracture and self-renewing 

capacity.  It remains unclear how these populations overlap and differ in their identity and potential, and 

whether the periosteum encompasses several populations of SSPCs. Moreover, no marker currently used 

to characterize pSSPC is fully specific to the periosteum as most of them are expressed also by cells 

localized in the bone marrow, skeletal muscle or by stromal cells in other tissues [21, 25, 49, 59]. Thus, 

marker expression is not sufficient to specifically trace periosteum-derived SSPCs and exclude the 

contribution of traced cells from other bone compartments during bone repair. Specifying the tissue of 

origin and using protocols to isolate periosteal cells without contamination from other tissues remain 

essential to identify pSSPCs and investigate their role in bone repair.  

Molecular regulation of periosteal stem and progenitor cells 
 

During bone repair, pSSPC proliferation, migration and differentiation are governed by several signaling 

pathways including Bone Morphogenic Protein (BMP), Wnt, Notch, Fibroblast Growth Factor (FGF), 

Platelet-Derived Growth Factor (PDGF), Transforming Growth Factor β (TGFβ) and Hedgehog (HH) 

signaling (Figure 1). Bone Morphogenetic protein (BMP) signaling is one of the earliest pathway 

upregulated after fracture [25]. Increased BMP ligand and receptor expression as well as activated 

downstream SMAD effectors are observed in the activated periosteum at day 3 post-fracture [25, 60]. 

The role of BMP signaling during the early stage of bone healing was evaluated by inactivating Bmpr1a 

using the PdgfraCreERT model. Bmpr1a-deficient periosteal SSPCs display reduced proliferation, 

migration and osteochondrogenic differentiation after fracture [25]. While endogenous BMP2 is 

required for bone healing, BMP4 and BMP7 are dispensable [61–63]. BMP2 plays a role in pSSPC fate 

decision, and Bmp2 gene inactivation prevents periosteal activation and bone healing [64–66].  

 

Notch signaling also plays a role in the early steps of bone healing before pSSPCs commit to the 

chondrogenic or osteogenic lineage. Notch inactivation in Prx1-derived cells, using Prx1Cre mice,  

causes bone non-union but Notch inactivation in chondrocytes using AcanCre mice,  or osteoblasts, using 



Col1.1Cre mice, does not impact healing [67]. The crosstalk between Notch and Wnt signaling pathways 

is essential for the progression of the bone healing process. Whereas Notch signaling is active early to 

promote pSSPC activation and proliferation, the expression of Wnt pathway and target genes peaks 

between 5 and 10 days post-fracture [68, 69]. Inhibition of Notch signaling by Wnt signaling marks the 

end of the pSSPC activation phase and the initiation of osteogenic differentiation [67, 70, 71]. Wnt 

regulates the differentiation of SSPCs by promoting osteogenic differentiation over chondrogenesis 

through SOX9 repression [72]. Wnt overactivation, in Sostdc1 knock-out mice causes premature 

activation of periosteal cells and overmineralized callus formation [73]. The factors regulating Wnt 

expression and activation remain poorly understood. 

 

FGFs are expressed not only during pSSPCs activation (FGF2, FGF5, FGF9), but also during cartilage 

formation and maturation (FGF16, FGF18), and during ossification (FGF1, FGF17), suggesting their 

involvement through all stages of repair [74]. FGF2 promotes the proliferation and chondrogenic 

differentiation of pSSPCs through BMP2 signaling [75, 76]. By over activating FGF receptor 3 (FGFR3) 

signaling in Prx1Cre mice, Julien et al showed that FGFR3 is crucial for the differentiation of periosteum-

derived chondrocytes and their ability to support cartilage-to-bone transformation during endochondral 

ossification [37].  

 

In addition, PDGF-BB, TGFβ and Hedgehog are required for pSSPC proliferation and differentiation 

[57, 77–81]. PDGF-BB  stimulates pSSPCs migration and angiotropism while inhibiting apoptosis [42, 

82]. Cyclooxygenase 2 (COX2) is essential for the initiation of the periosteal response to cortical bone 

injury by modulating several key pathways such as HIF, PI3K-Akt and Wnt [83–85]. In sum, many 

signaling pathways and growth factors must act in coordination to control pSSPC activation and 

subsequent steps of differentiation. Whether several pSSPCs subpopulations respond to distinct 

molecular signals and whether regulatory networks specific to pSSPCs define their unique 

osteochondral potential after fracture remains to be investigated. 

Influence of the fracture environment on periosteal stem and progenitor 

cells 

 
Bone fracture creates a major perturbation of bone tissue homeostasis with the rupture of blood vessels 

and nerve fibers initiating an acute inflammatory response shortly after fracture. This complex 

multicellular environment influences the activation and fate of pSSPCs (Figure 1). The disruption of 

blood vessels causes immediate bleeding and subsequent blood clot formation. The blood clot is then 

progressively degraded by the action of enzymes such as plasminogen (Plg) [86, 87]. Plg knock-out 

mice display impaired bone healing, with reduced callus, cartilage, and bone formation. Plg plays a 

paracrine role in the activation of pSSPCs. By cleaving the inactivated form of the matrix associated 

growth factor Cyr61 secreted by pSSPCs, Plg can stimulate pSSPC proliferation and migration [87]. 



Periosteum is essential for the revascularization of the fracture site as periosteum removal reduces blood 

vessel density [43]. Vascular disruption at the fracture site also causes hypoxia in the first days after 

injury [88]. The hypoxic environment stimulates HIF1α expression by pSSPCs and the secretion of the 

proangiogenic factors VEGF and TSP-4 required for angiogenesis and bone healing [27, 89–91]. More 

research is needed to elucidate the role of the periosteum and the interplay between blood vessels and 

pSSPCs during fracture revascularization.   

 

During the inflammatory phase of bone repair, immune cells are recruited at the injury site. The 

periosteum becomes invaded with osteomacs and activated macrophages [3]. Macrophages play a 

critical role in bone healing, and their depletion, using the Mafia inducible system, reduces periosteal 

callus formation [92]. Macrophages remove necrotic tissue at the fracture site and secrete factors 

involved in the recruitment and activation of pSSPCs. Gao et al showed that TRAP+ periosteal 

macrophages secrete PDGF-BB, that binds to PDGFRβ expressed by pSSPCs to activate the Pi3K-Akt-

CREB pathway and stimulate Periostin expression [42]. Periostin is a critical regulator of pSSPC 

response to injury and self-renewal [20]. Periosteal SSPCs are responsive to different chemokines. 

Chemokine ligand 2 (CCL2 / MCP-1) is expressed in the periosteum during the first 3 days following 

fracture [93]. Inactivation or inhibition of CCL2 and his receptor CCR2 delays fracture healing [93, 94]. 

The CCL5-CCR5 axis is necessary to induce the migration of murine and human pSSPCs [51]. In vitro 

osteogenic induction of periosteal cells can modulate macrophage polarization and promote M2 

phenotype by secreting chemokines suggesting a crosstalk between macrophages and pSSPCs [95, 96]. 

 

The disruption of nerve fibers in the periosteum triggers rapid nerve sprouting from both sympathetic 

and sensory fibers in the first day post-bone injury. Nerve sprouting is concomitant with NGF expression 

in periosteal cells and macrophages, and occurs prior to revascularization [97]. Nerves subsequently 

regulate pSSPC activation by releasing neuropeptide calcitonin gene related peptide (CGRP), that binds 

to the CALCRL-RAMP1 receptor and stimulates Osterix expression [98]. Overall, the perturbations in 

the micro-environment of the periosteum following bone injury generates unique cell-cell interactions 

and specific signals. This environment can vary depending on the type of injury, the mechanical stimuli 

and additional interactions with the adjacent skeletal muscle, bone marrow and systemic factors. How 

changes in this complex tissue environment influence the fate of pSSPCs remains to be explored. 

 

Clinical applications of periosteal stem and progenitor cells for bone repair 
 
As the periosteum is an essential actor of bone healing, pSSPC deficiencies can have direct 

consequences on repair. Metabolic dysregulation in mice with induced type 1 diabetes reduces callus 

formation, correlated with decreased pSSPC proliferation and osteogenic differentiation [99]. Mice with 

diet-induced obesity (DIO) and subsequent type 2 diabetes also exhibit impaired fracture healing [100, 



101]. Periosteal SSPCs isolated from DIO mice show reduced osteochondral and adipogenic 

differentiation potential in vitro [100]. Aging is a long-known factor affecting bone repair in human and 

animal models partially due to a reduction of pSSPC potential and number [102, 103]. Two reports 

indicate abnormal extracellular matrix deposition and proliferation of periosteal cells isolated from 1-

year-old mice and reduced chondrogenic potential when isolated from 2-year-old mice [104, 105].  

Aging is frequently linked to osteoporosis [106]. Mice with estrogen or glucocorticoid-induced 

osteoporosis display an abnormal periosteal response to scratch injury, with reduced cartilage formation 

and maturation [107].  Overall, dysfunctions of pSSPCs are still poorly described, but could be of major 

interest to understand bone healing impairment.  

 

Periosteum flap or allograft are frequently used in orthopedic surgery to promote bone repair with 

convincing results in animal models and in human [108–110]. Periosteal SSPCs are therefore considered 

for cell-based therapies. Transplanted pSSPCs can improve bone healing in aged mice, genetically 

induced pseudarthrosis and critical size defects [37, 108, 111]. Bone tissue engineering aims to replace 

autograft approaches, by using cultured SSPCs embedded in a 3D matrix containing growth factors. The 

choice of the optimal cell source is key for successful bone tissue engineering and the periosteum rise 

as a promising source of cells. Compared to other cell sources, such as bone marrow, adipose, or dental 

pulp derived cells, pSSPCs display higher clonogenicity, proliferation, osteogenic and chondrogenic 

differentiation [20, 112, 113]. Moreover, the potential of pSSPCs can be increased depending on the 

harvesting site and by using pre-treatment with BMP2 or FGF2 [38, 114, 115]. The development of 

periosteum-like matrix, that mimics the structural organization and cellular composition of the 

periosteum is also explored with encouraging results [116]. Growth factors can be added to the scaffold 

in order to stimulate endogenous pSSPCs or promote angiogenesis of the grafted bioengineered tissue 

(VEGF) [113, 117]. To exploit pSSPCs as an alternative source of cells for orthopedic cell-based 

therapies, a better understanding of their identity and the factors regulating their fate is needed. 

Conclusions 

 
The first studies describing periosteal SSPCs in vitro provided limited relevance for endogenous pSSPCs 

functions. In vivo lineage tracing, using transgenic mouse models, is a valuable tool to characterize 

pSSPCs in their periosteal niche and study their behavior in the complex fracture environment. Different 

subpopulations of pSSPCs have been identified using markers such as PRX1, CTSK, and αSMA. These 

pSSPCs share common features, including multipotency after fracture and self-renewal. It remains to be 

elucidated whether distinct sub-populations differ in their identity and potency or if they overlap and 

exhibit great plasticity based on their tissue localization and environmental signals in the fracture 

vicinity. Additionally, the absence of a specific marker to distinguish pSSPCs from the other SSPC 

sources remains a challenge. While SSPCs from the bone marrow and skeletal muscle are mostly 



unipotent in vivo, pSSPCs are bi-potent differentiating into osteoblasts or chondrocytes. The origin of 

this bi-potentiality is unknown. The heterogeneity of pSSPCs populations with distinct osteochondral 

potential is one hypothesis. pSSPCs also evolve in a unique fracture environment at the interface of bone 

and skeletal muscle, exposing them to numerous biological and mechanical stimuli. Advances in single 

cell transcriptomics will provide new insights in the heterogeneity of pSSPCs and their responses to 

bone injury. The complementarity of in vitro, in vivo and transcriptomic approaches will enhance our 

understanding of pSSPCs and pave the way for new orthopedic cell-based therapies.  
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Figures: 

 
Figure 1: Fate and regulation of periosteal stem/progenitor cells during bone repair 

After fracture, periosteal stem/progenitor cells (pSSPC), labelled by several markers (orange box) 

migrate to the site of injury, proliferate and differentiate into chondrocytes or osteoblasts. These steps 

are controlled by several signaling pathways (activation in green and inhibition in red). The fate of 

pSSPCs is also influenced by their interactions with the fracture environment, including the blood clot, 

nerve fibers, blood vessels and macrophages (left box).  

 



Table 1.: Markers and mouse lines labeling pSSPCs 

 

  

Markers Mouse model Injury model Contribution Comment Used in

Prx1
Cre Non stabilized tibial fracture Cartilage / Bone Labels all SSPCs Duchamp et al. 

20

Prx1
CreERT Non stabilized ulna fracture Cartilage / Bone Low cell labelling Kawanami et al. 

46

Non stabilized tibial fracture Bone / Cartilage Julien et al. 
25

Non stabilized forelimb fracture Bone / Cartilage Xu et al. 
47

Semi stabilized femoral fracture Bone / Cartilage

Calvarial cortical defect Bone

aSMA
CreERT Semi stabilized tibial fracture Bone / Cartilage Matthews et al. 

24

aSMA-GFP Calvarial cortical defect Bone Ortinau et al. 
51

Non stabilized tibial fracture Bone / Cartilage

Tibial periosteal defect Bone

Tibial cortical defect Bone

Calvarial cortical defect Bone

Axin2 Axin2 CreERT Tibial cortical defect Bone Ransom et al. 52

PDGFRβ Pdgfrb
Cre Semi stabilized femoral fracture Bone / Cartilage Bohm et al.

 53

HOX11 Hoxa11 CreERT2 Non stabilized ulnar fracture Bone / Cartilage Restricted to zeugopod bone Pineault et al. 54

Semi stabilized femoral fracture Bone / Cartilage Shi et al. 56

Semi stabilized tibial fracture Bone / Cartilage Xia et al. 
57

Nes-GFP Semi stabilized tibial fracture Bone Marks bone marrow SSPCs Tournaire et al.
 55

Nes
CreERT Tibial cortical defect Bone Marks bone marrow SSPCs Gao et al. 

42

LEPR Lepr Cre Tibial cortical defect Bone Marks bone marrow SSPCs Gao et al. 42

Semi stabilized femoral fracture Bone / Cartilage He et al. 58

Rib bone resection Bone / Cartilage Labelling is increased when induced after fracture Kuwahara et al. 
17

OSX Osx
Cre Semi stabilized tibial fracture Bone / Cartilage Labels osteogenic progenitors Bohm et al. 

53

Debnath et al. 22

MX1 Mx1
Cre Requires pIpC injection to induce Cre recombination Ortinau  et al. 

51

Marks a subpopulation of pSSPCs and osteoclasts

SOX9

Nestin

CTSK Ctsk Cre

Sox9 CreERT

Gli1
CreERT1GLI1 Marks bone marrow SSPCs

PRX1

αSMA

PDGFRα Pdgfra
CreERT Labels mesenchymal cells from various tissues
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