Further results about L ∞ /L 1 duality and applications to the SIR epidemiological model - Université Paris-Est-Créteil-Val-de-Marne Access content directly
Conference Papers Year : 2024

Further results about L ∞ /L 1 duality and applications to the SIR epidemiological model

Abstract

The L∞/L1 duality in optimal control problems consists in studying how to link solutions minimizing the L∞ norm of an output function under an upper L1 constraint on an input function (primal problem), with solutions minimizing the L1 norm of the input function under an upper L∞ constraint on the output function (dual problem). In this work, we bring insights on recent results on L∞/L1 duality in optimal control problems. In particular, we exhibit an example for which duality does not apply, and we revisit the application to the epidemiological SIR problem.
Fichier principal
Vignette du fichier
Further_results_Linfty_L1_duality.pdf (280.46 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04663533 , version 1 (28-07-2024)

Identifiers

  • HAL Id : hal-04663533 , version 1

Cite

Dan Goreac, Alain Rapaport. Further results about L ∞ /L 1 duality and applications to the SIR epidemiological model. 63rd IEEE Conference on Decision and Control (CDC 2024), IEEE Control Systems Society, Dec 2024, Milan, Italy. ⟨hal-04663533⟩
8 View
5 Download

Share

Gmail Mastodon Facebook X LinkedIn More