

The road to sustainable sludge management The French experience

Régis Moilleron & Julien Le Roux

LEESU

18-20. Septembar 2024. Novi Sad

Wastewater management

WWTPs in France

Sludge management – evolution with time

Situation in France 1998 - 2004

Main uses of sludge in french regions (2004)

Source : Ifen-Scees, enquête Eau 2004.

Sludge management – evolution with time

Situation in France 2022

- No more landfill (down from 20 to <1%)
- Sludge spreading increased (from 60 to 84%)
- Regulations evolved
 - ✓ Circular economy

1 028 905 t.dw for France

15 kg.dw/capita

Composting

Sludge management

Situation in Paris conurbation (2022)

Methanization (3%)

Why use sludge on soil or crops?

- Agronomic benefits (soil amendment or fertilizer)
- *Economic interests* (low-cost processes)
- Environmental benefits (waste recycling)

However this practice must be supervised!

... and *started to be regulated in 1998* to reassure consumer associations, who were concerned about the transfer of pollutants.

Sludge management in France - Regulation

Main regulations

- European regulations
 - Directive 86/278/EEC on the protection of the environment when sewage sludge is used in agriculture

 Directive 91/271/EEC concerning urban wastewater treatment (Proposal for a Directive of the European Parliament and of the Council concerning urban wastewater treatment (recast) – Provisional political agreement between the Council and the European Parliament (03/2024))

○ French regulations

- The Environment Code
- Decree no. 93-742 on the authorization and declaration procedures provided for in article 10 of law no. 92-3 of January 3, 1992 on water
- Decree of November 22, 1993 on the code of good agricultural practices
- Order of 08/01/98 on the technical requirements applicable to the spreading of sludge on agricultural land, in application of Decree no. 97-1133 of 08/12/97 on the spreading of sludge from wastewater treatment
- Ministerial circular of April 18, 2005, urban wastewater treatment plant sludge spreading, recommendations for monitoring compliance with regulations and informing the public
- Decree no. 2021-1179 (14/09/2021) on the composting of sewage sludge and sewage sludge digestates with structuring agents

French regulations

- Order of 08/01/98 on the technical requirements applicable to the spreading of sludge on agricultural land, in application of Decree no. 97-1133 of 08/12/97 on the spreading of sludge from wastewater treatment
- Circular DE/GE no. 357 of 16/03/99 on regulations governing the spreading of sludge from urban wastewater treatment plants
- The Environment Code (articles R 211-25 to R 211-47)

A multi-stage procedure

1st stage: pre-study

- carrying out a study
- ...
- choice of spreading method

2nd stage: WWTP development

- construction of sludge storage
- construction of thickening system

3rd stage: spreading planification

- organization of spreading operations
- signature of agreements with farmers and the organization responsible for agronomic monitoring
- submission of administrative declaration or authorization file

4th stage: spreading monitoring

- land application monitoring
- agronomic and sludge quality monitoring
- annual review of sludge application campaigns and projected annual sludge application program

Stakeholders

- Community (WWTP owner)
- WWTP manager

Source: https://symbols.getvecta.com/stencil 310/131 water-drinking-water-tr plant-1.0bfc74aa07.sv

- Land application monitoring service provider
- Transport supplierSpreading contractor
- Landfill contractor
- Accredited analysis laboratory
- List of farmers involved in spreading campaigns

Sludge characterization

Sludge spreading Source: TSM n°3 (202) p. 19

General scheme

Specific recommendations for sludge use based on:

• A spreading program to define:

- ✓ Plots & their surfaces return period between 2 sludge applications on the same plot
- ✓ Cropping systems (before and after sludge application)
- \checkmark Other fertilizer inputs
- ✓ 10 years (30 t.dw/ha of sludge)

Soil features:

Sludge

- ✓ Agronomic value (N, P, OM, CEC, Ca, K, etc.)
- \checkmark Trace element contents (x7)

Sludge characterization:

- ✓ Spread quantities
- ✓ Agronomic potential
- \checkmark Contamination by:
 - Trace metals (x7 +1)
 - PCBs (x7)
 - PAHs (x3)

Sludge characterization

$_{\odot}$ Quality requirements for sludge to be spread (Order of 08/01/98)

Agronomic value	Trace metal contents	Organic micropollutants	cofr
Dry matter (%)	• Cd 10	 Σ 7PCBs (28, 52, 101, 118, 138, 	
Organic matter (%)	• Cr 1000	153, 180) 0.8	
рН	• Cu 1000		
TKN*	• Hg 10	Fluoranthene 5	AT
Organic Nitrogen*	• Ni 200	4	TS
NH ₄ +*	• Pb 800		
C/N	• Zn 3000	 Benzo[b]fluoranthene 2.5 	1702
Total Phosphorous (P ₂ O ₅)*	• $\Sigma(Cu + Ni + Zn + Cr)$ 4000		
Potassium (K ₂ O)*	• Se 25	• Benz[<i>a</i>]pyrene 2	
Calcium (CaO)*		1.5	
Magnesium (MgO)*			
Micronutrients :	in mg/kg.dw	in mg/kg.dw	
B, Co, Cu, Fe, Mn, Mo, Zn (in			99.
mg/kg.dw)	[threshold in mg/kg.dw]	[threshold in mg/kg.dw]	
* in kg/t.dw	if spread on meadow	if spread on meadow	

Soil features

Not all soils can be amended with sewage sludge

o Features to be respected

- Agronomic features
- Trace metal contents

Parameters	Agronomi Units	Trace metal contents Parameters Threshold			
Grain size	% or g/kg	Exch Calcium (CaO)	a /ka	Cd	[2]
Organic matter	% %	Exch. Dotassium	5/ \S a/ka	Cr	[4]
	/0	$(K \cap)$	8/ r 8		[100]
μι	a /ka	$(\mathbb{N}_2 \mathbb{O})$	a /ka		[100]
	g/кg	Nd ₂ O	g/кg		
				NI	[50]
Iotal limestone				PD	[100]
(CaCO ₃)	g/kg	Micronutrients		Zn	[300]
Active limestone		В	mg/kg		
(CaCO ₃)	g/kg	Со	mg/kg	in mg/kg.dw	in mg/kg.dw
CEC	cmol/kg	Cu	mg/kg		
Exch. Phosphorous		Fe	mg/kg		
(P_2O_5)	g/kg	Mn	mg/kg		- alls
Exch. Magnesium		Мо	mg/kg		50.
(MgO)	g/kg	Zn	mg/kg		

Cumulated flows provided to soils

 $_{\odot}$ Maximum cumulative flow of sludge within 10 years (Order of 08/01/98)

Trace metal maximum cumulative flo	s w in 10 years)	Organic micropollutants (maximum cumulative flow in 10 years)						
• Cd	0.015 g/m²	• Σ 7PCBs (28, 52, 101, 118, 138, 153, 180)	1.2 mg/m ²					
• Cr	1.5 g/m²							
• Cu	1.5 g/m²	Fluoranthene	7.5 mg/m ²					
• Hg	0.015 g/m ²		6.0 mg/m 🤇	112				
• Ni	0.3 g/m ²		3					
• Pb	1.5 g/m²	 Benzo[b]fluoranthene 	4.0 mg/m ²					
• Zn	4.5 g/m ²							
• $\Sigma(Cu + Ni + Zn + Cr)$	6.0 g/m ²	• Benz[<i>a</i>]pyrene	3.0 mg/m ²	\land				
			2.0 mg/m ²	-0				
• Se	0.12 g/m ²		CIUD	19-				
if spread on meadow		if spread on meadow	510					

Crop fertilization

- $_{\odot}$ Doses of N, P_2O_5, K_2O to be applied per crop
- Depend on the type of crop (wheat, maize, barley...), the sludge quality & the expected yield
 - For N : Dose = Requirements Supplies
 - For **P** and **K** according to COMIFER (2009)

Culture	Expected yield q/ha	Sludge t.RS/ha	Sludge t.dw/ha	Dose to be applied over the crop cycle kg/ha		Projected dose of fertilizing elements <i>kg/ha</i>					Complementary inputs kg/ha 3 = 1 - 2				
				N	1 P2O5	K ₂ O	N	Total P₂O₅	K ₂ O	Effe N	ctives P ₂ O ₅	2 K ₂ O	N	P ₂ O ₅	K₂O
Wheat	50 q/ha	12,5	2,5	190	60	60	204	92	14	102	64	14	190-102 = 88	0	60 - 14 = 46

Somet Water TAL

Methodological guides (in French)

Preliminary spreading study

• Agronomic assessment of spreading

• Pre-spreading program

Composting

o Sludge-based compost

- *May 2002*: approval of *AFNOR standard NFU 44-095* relating to composts containing materials of agronomic interest derived from water treatment
- Improving the final quality of products
- Greater social acceptability
- Diversifying outlets

NF U44-095 (2022) Organic amendments - Composts containing materials of agronomic interest, derived from water treatment (French regulation)

Typical sewage sludge composting process in France

Source: TSM n°3 (202) p. 19

Composting

○ Sludge-based compost → vegetable gardening

Trace metal contentsTrace metal contentsSLUDGENFU 44095		Organic micropollutants SLUDGE	Organic micropollutants NFU 44095	
 Cd 10 Cr 1000 Cu 1000 Hg 10 Ni 200 Pb 800 Zn 3000 	 Cd 3 Cr 120 Cu 300 Hg 2 Ni 60 Pb 180 Zn 600 	 Σ 7PCBs 0.8 Fluo 5.0 BbF 2.5 BaP 2.0 in mg/kg.dw [threshold in mg/kg.dw] 	 Σ 7PCB 0.8 Fluo 4.0 BbF 2.5 sludge s sludge	election

Thresholds for pathogens & treatment indicator agents (E. coli, Enterococcus, Clostridium perfringens)

Composting

- NF U44-095 requirements
 - **Result requirements**: on the final composition of the product, in terms of quality and safety.
 - ➔ Plant structuring is mandatory
 - ➔ The mixture must undergo an aerobic fermentation stage
 - Monitoring requirements: batch-by-batch traceability, from raw materials to finished products
 - Labelling requirements: composition, instructions for use

Methanization

o General principle

Methanization

In France 105 WWTPs (> 30 000 p.e.) equipped with a methanizer facility (2022)

Conclusion

Sludge management

- $\,\circ\,$ A constantly evolving process
- Over the last 40 years, sludge management has evolved in line with the regulatory changes brought about by Europe and France
 - landfilling has virtually disappeared
 - compost production is expanding rapidly
 - management methods linked to a circular economy approach have been favored (e.g., methanization)
- $\,\circ\,$ UWW Directive recast worries WWTP managers
 - due to the *introduction of new parameters for sludge characterization*, such as dioxins
 - with more stringent thresholds for metals

For the Paris region, 50% of the sludge can no longer be spread (dioxins: 20 ng/kg.dw)

Thank you for your attention!

Hvala vam na pažnji! Хвала на пажњи!

Waste management in France - Figures

Sludge management (2016)

Waste management in France - Regulation

Fate of sludge

- $_{\odot}$ Article 14 (Directive 91/271/EEC)
 - 1. Sludge arising from waste water treatment shall be *re-used whenever appropriate*. Disposal routes shall minimize the adverse effects on the environment.
 - 2. Competent authorities or appropriate bodies shall ensure that before 31 December 1998 the disposal of *sludge from urban WWTPs* is subject to general rules *or registration or authorization*.
 - 3. Member States shall ensure that by 31 December 1998 *the disposal of sludge to surface waters* by dumping from ships, by discharge from pipelines or by other means is *phased out*.
 - Until the elimination of the forms of disposal mentioned in paragraph 3, Member States shall ensure that *the total amount of toxic, persistent or bioaccumulable materials* in sludge disposed of to surface waters *is* licensed for disposal and *progressively reduced*.