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Abstract—The introduction of the 3D-HEVC encoding stan-
dard has revolutionized the field of 3D and multi-view video
by effectively synthesizing 3D video with adequate depth effects
using depth map sequences. However, achieving this involves
computationally intensive operations, such as the quad-tree
partitioning of Intra Coding Units (CUs). Researchers used
multiple approaches including heuristic, machine learning and
deep learning to address this complexity. We opted to train
a Multi-Deep Convolutional Neural Network (MD-CNN) model
specifically for depth maps and integrated it into the 3D-HEVC
encoder. This modified encoder uses the independent views as a
reference to encode the dependent depth map views. This strategy
reduces the complexity of the 3D-HEVC video encoder by 70.12%
while slightly reducing video compression efficiency by 0.02% and
a small Peak signal-to-noise ratio (PSNR) penalty of -0.80 dB.

Index Terms—3D-HEVC, Video Encoding, Multi-Deep Convo-
lutional Neural Network

I. INTRODUCTION

The advent of 3D technology has revolutionized visual
experiences in entertainment, even though special glasses
are still required. Two primary methods for presenting 3D
videos are the multiview video with depth (MVD) format by
the Moving Picture Experts Group (MPEG) and the widely
adopted auto-stereoscopic mode. MVD utilizes depth maps
and 2D textures to generate virtual views using view synthesis
and depth-image-based rendering (DIBR). To meet the in-
creasing need for MVD coding technologies, the International
Organization for Standardization (ISO) and the International
Telecommunication Union (ITU) created the Joint Collabora-
tive Team on 3D Video Coding Extension Development (JCT-
3V). This team extended the HEVC standard to create three-
dimensional high-efficiency video coding (3D-HEVC) [1], a
compression technique for 3D videos with depth and multi-
view texture data. In 3D-HEVC, texture and depth map videos
are compressed by employing inter-view prediction to exploit
correlations between different views and a tailored quadtree
structure. It further improves compression efficiency by capi-

talizing on redundancy within the texture and depth map data
through sophisticated inter-component coding techniques.

The fundamental framework of 3D-HEVC is illustrated in
Figure 1, which shows that texture and depth map videos
for a predetermined camera position are represented by a
view identifier (”Viewid”). This identifier also dictates the
coding sequence. The view marked with ”Viewid” 0 is called
the independent or base view and is encoded independently
using a standard HEVC encoder [2]. Other views, known as
dependent views, utilize additional inter-view prediction tools
beyond those defined in the HEVC standard for rate-distortion
optimization (RDO) [3].

The 3D-HEVC architecture, shown in Figure 1, identifies
every texture and depth map video using a Viewid. The main
view (Viewid 0) is independently encoded with a standard
HEVC encoder [2], while dependent views are encoded using
inter-view prediction and rate distortion (RD). The quad-tree
coding block partitioning structure of HEVC enables the use
of small and large prediction blocks. In the HEVC reference
encoder (HM), images are structured into tree blocks, which
are then divided into coding units (CUs). These CUs can range
in size from the full dimensions of the tree block down to the
minimum prediction block size of 8x8 pixels. HEVC supports
four levels of coding unit (CU) depths: 64x64, 32x32, 16x16,
and 8x8, each subdivided into two or four prediction units
(PUs). Intra-coded CUs use PU sizes such as 2Nx2N and
NxN, while inter-coded CUs offer a broader range of PU sizes,
leading to different inter-frame prediction modes, including
SKIP mode, Merge mode, Intra 2Nx2N, Intra NxN, Inter
2Nx2N, Inter 2NxN, Inter 2NxnU, Inter 2NxnD, Inter nLx2N,
Inter nRx2N, and Inter NxN (for the smallest CU). SKIP
and Merge modes utilize previously coded data for motion
vectors, eliminating the need to encode additional motion data.
The mode decision process of the 3D-HEVC encoder’s coding
unit selection module assesses all possible prediction modes
and CU depth levels to choose the best one. This is done



Fig. 1. 3D-HEVC view encoding framework.

by establishing a rate-distortion cost (RD cost) list where the
values are compared to determine the combination with the
lowest RD cost. The selection process of the optimal prediction
mode and CU depth level might require a significant amount of
computational resources, especially for real-time encoding of
high-definition videos (4K and 8K). This complexity is com-
pounded by the inter-view prediction, which involves variable-
sized motion estimation (ME) and disparity estimation (DE)
for every dependent view, making it the most demanding part
of a 3D-HEVC system [3]. Consequently, this complexity
stands as an obstacle to practical implementation and real-time
applications. Depth maps often contain high spatial resolution
and have varying levels of fine detail and texture, especially
in complex scenes. This demands an extremely flexible and
adaptive partitioning scheme to effectively capture the details
with minimal data. The 3D-HEVC encoder involves a hierar-
chical structure where each CU can be recursively divided
into smaller units. This critical process adaptively decides
the size of each CU based on local content characteristics,
which involves complex decision algorithms and adds to the
computational burden. The recursive nature of CU division
and the need to evaluate multiple partitioning schemes to
find the optimal balance make it computationally demanding.
This is often the most time-consuming part of the depth map
coding process [3], This poses a significant obstacle to the
widespread adoption of 3D-HEVC in real-world applications.
By addressing the complexity of CU division, depth map cod-
ing can be made more efficient, leading to better performance
in various real-time applications like streaming or interactive
environments. Facing the new challenges, we are motivated
to accelerate depth map coding module in order to solve the
above problems. Ongoing research focuses on improving the
algorithms for CU division, including heuristic-based methods
like [7] and [8], machine learning-based methods like [9] and
[10], and deep learning-based methods [11] that can predict
optimal partitions more efficiently.

Our contribution focuses on mitigating the aforementioned

complexity by modifying the standard 3D-HEVC encoder
and integrating a multi-level convolutional neural network
(CNN) for coding tree unit (CTU) partitioning and using the
independent depth view as a reference and for encoding the
dependent views.

The remainder of this paper is organized as follows, starting
with describing the intricacies of the coding structure of 3D-
HEVC with diving deeper into the intra-frame coding process
and the CTU partitioning process using quad-tree structure.
Next, we discuss the proposed method for CTU partitioning
based on deep learning where we explain the proposed model
MD-CNN architecture and establish a database. Then we
move to the experimental results where analyse our findings
concerning compression, quality and time reduction, and com-
pare these results to other works. Finally, we end with the
conclusion where we summarise our work.

II. 3D-HEVC ENCODING FRAMEWORK

A. 3D-HEVC ENCODING FRAMEWORK

3D-HEVC (High-Efficiency Video Coding) extends the
H.265/HEVC standard to support stereoscopic and multiview
video coding. While it retains the basic HEVC framework,
including the use of coding tree units (CTUs) as the funda-
mental coding blocks, 3D-HEVC incorporates unique features
to handle multiple views and depth information. Each CTU
in 3D-HEVC is composed of multiple slices, with each slice
representing a different view. These slices are encoded inde-
pendently, which facilitates efficient parallel processing.

Besides the previously mentioned modes (intra and inter),
3D-HEVC incorporates an inter-view prediction mode, en-
abling one view to be predicted from another, a feature partic-
ularly beneficial for stereoscopic and multiview videos where
views are often similar. To accommodate depth information,
a new and modified mode for depth coding was added to 3D-
HEVC, encoding separate depth maps for each view. These
depth maps enable advanced compression techniques like view
synthesis and depth-based view interpolation.



B. 3D-HEVC intra-frame encoding framework

The intra-frame coding framework in 3D-HEVC parallels
that of HEVC, starting with the segmentation of the frame
into coding tree units (CTUs), which are 64x64 pixel blocks.
Each CTU is further divided into coding units (CUs) of varying
sizes and shapes, which are fundamental for intra-prediction
and transform coding. In 3D-HEVC, intra-prediction is per-
formed using neighboring pixels within the same slice or view,
and also supports inter-view prediction through the use of
corresponding CUs from different views. The residual signal,
derived by subtracting the predicted signal from the original,
is transformed using the discrete cosine transform (DCT) to
convert spatial domain coefficients into the frequency domain.
These coefficients are then quantized and encoded through
methods such as context-adaptive binary arithmetic coding
(CABAC), introducing a degree of lossy compression. The
encoded data is subsequently stored or transmitted. During
the decoding process, the data undergoes entropy decoding,
inverse quantization, and inverse transformation to reconstruct
the residual signal, which is then combined with the predicted
signal to recreate the original frame.

C. CTU partitioning process using quad-tree structure

Fig. 2. Partitionning structure of 3D-HEVC.

The CTU division in 3D-HEVC is based on the original
encoder HEVC, which means that every frame is segmented
into several non-overlapping Coding Tree Units (CTUs). It is
shown in figure 2 that each CTU can consist of a single CU
with a size of 64x64 or be subdivided into smaller CUs of sizes
32x32, 16x16 and 8x8. These sizes are referred to as depth as
they describe how deep is the subdivision from depth 0 being
the whole CTU down to depth 3 being the smallest at 8x8. It’s
important to note that the optimal partition structure of a CTU
is determined through iterative computation. The quadtree
partitioning process of a CTU involves both a top-down RD-
cost calculation and a bottom-up RD-cost comparison.

As illustrated in Figure 2 the RD-cost for each coding
unit at the current depth is calculated during the top-down
calculation process in the following order: depth=0 depth=1
depth=2 depth=3. The bottom-up comparison procedure is

then carried out. In the event that RD-cost(depth=n) RD-
cost(depth=n+1) n=0 1 2 further division of the coding unit at
depth=n is not required. Based on statistics more than 90% of
the total complexity of depth map coding is accounted for by
the intricacy of the coding unit division. Full traversal mode
encoding for a 64×64 CTU necessitates at least 2623 RD-cost
calculations, 1935 Sum of Absolute Transformed Difference
(SATD) cost calculations and 85 CU calculations. Thus it is
essential to simplify the depth map coding unit division in
3D-HEVC.

III. PROPOSED FAST CTU PARTITIONING USING MULTI
DEEP CONVOLUTIONAL NEURAL NETWORK(MD-CNN)

A. Proposed model architecture

In our approach, we developed a partitioning prediction
model using a Multi-Deep Convolutional Neural Network
MD-CNN to enhance the efficiency of Coding Tree Unit
(CTU) partitioning for depth maps within the 3D-HEVC
framework. According to [13], MD-CNN is multiple con-
volutional neural networks with different inputs as needed
for the application and concatenated in one single model.
It was applied in [14] for drawing a partitioning map for
HEVC. As seen in Figure 3, the first convolutional layers
are responsible for extracting the features for depth 0 64×64
partitioning if not the next depth of convolutional layers is
used to extract features for the smaller partitioning at depth
1 and depth 2. If the model determines that any of the 3
partitioning sizes (64×64, 32×32 and 16×16) are not suitable it
automatically assigns depth 3 (8×8). This model eliminates the
need for time-consuming recursive rate-distortion cost (RD-
Cost) calculations by directly predicting split decisions.

The inputs to our model are independent viewpoints that
match CTUs in the 64×64 depth map. Each channel starts
by loading the respective block size as an array of pixel
values. The initial layer of each channel extracts low-level
features such as edges and orientations using 2×2 convolutions
with a stride of 4. To capture higher-level features, we apply
additional convolutional layers with 2×2 kernels, utilizing 24
filters in the second layer and 32 filters in the third layer.

The vectorized features from these convolutional layers are
subsequently passed through three fully connected layers. The
first two hidden layers generate feature vectors, and the final
output layer produces three sets of outputs: Output1, Output2,
and Output3, containing 1, 4, and 16 binary elements, respec-
tively. We use the Rectified Linear Unit (ReLU) activation
function in the convolutional layers to introduce non-linearity,
which enhances the model’s ability to learn complex patterns
found in the depth map. This activation function is described
in the following equation:

(1)
Here, Cm represents the convolutional layers following the

preprocessing module, where M signifies the total number



Fig. 3. Multi deep convolutional neural network architecture used for 3D-HEVC CTU partitioning.

of convolutional layers, m represents the current layer being
processed, and n represents the current CTU being processed.
Wm represents the weight matrix, and Bm represents the
bias. Taking into consideration the model’s output as binary
classification (indicating division or not of the CU with 0 and
1), the sigmoid activation function is employed in the final
layer of the proposed model.

During MD-CNN training, the three channels are trained
simultaneously as part of an end-to-end model. The collabo-
rative MD-CNN model utilizes the binary cross-entropy loss
function, defined as

(2)

In this context, ln ∈ {0, 1} indicates if the current CU is
divided, N is the total number of samples, n denotes the current
sample being processed, and Yn represents the model’s output.

By integrating reference view partitioning data, our Multi-
Deep Convolutional Neural Network (MD-CNN) method op-
timizes the prediction of Coding Tree Unit (CTU) partitioning
for depth maps within the 3D-HEVC framework. This integra-
tion is pivotal as it allows the MD-CNN to capitalize on spatial
correlations between different views seen in Figure 1, as the
independent views are merely the same as the dependent view
but with a few degrees of a shift in perspective to the left and
right corresponding to the camera setup. These correlations

enable the network to make informed decisions about how
best to partition CTUs, thereby reducing redundancies in
partitioning and reducing complexity by accurately predicting
partitioning based on learned patterns from reference views.

B. Database establishment

Fig. 4. Distribution of dataset samples: Split and Non-Split samples for each
depth.

The efficiency of our MD-CNN model in predicting CTU
partitioning is influenced by the selection of data. The number
and type of dataset items can significantly influence its per-
formance. We choose to utilize high-resolution texture images
[12] instead of evaluating sequence segments, as done in
previous studies, due to the absence of a depth image database.
Our judgment is further supported by the utilization of the
HM16.18 [5] encoder throughout the encoding process. The
HTM16.3 [6] encoder, also known as the texture 2D encoder,



is referred to as the CTU partitioning process in the 3D-
HEVC encoder. The HEVC reference program HM16.18 is
utilized to encode a set of 2500 pictures with different resolu-
tions (4928×3264, 2880×1920, 1536×1024, 1792×1024, and
768×512) at different quantization parameters (34, 39, 42, 48)
to obtain the matching 64x64 split decision map. This is done
to guarantee optimal precision and performance. The dataset
is divided into three folders: training (2125 shots), validation
(125 images), and test (250 images). Each folder has all CU
sizes, along with the corresponding binary labels for various
QPs. The photographs used for training, validation, and testing
are mutually exclusive and do not have any overlap. 6758040
tagged samples are gathered in total, as indicated in Figure 4.
In order to assure the stability of our database, the fraction of
split CU samples is almost equal to that of non-split samples.

IV. EXPERIMENTAL RESULTS

TABLE I
SEQUENCES AND ITS RELATED INFORMATION GROUPED BY CLASS

To assess the performance of the proposed methods,
experiments were carried out using the 3D-HEVC ref-
erence software version HTM16.3 [6], which includes
depth and texture encoders derived from HEVC reference
software version HM16.18 [5]. To simplify the HEVC
intra-coding process, we utilized the configuration file
baseCfg 3view+depth AllIntra.cfg. Testing was conducted on
seven video sequences specified in Table I.

For evaluating coding efficiency, video quality, and com-
plexity reduction, we employed metrics such as the Bitrate-
Distortion Bound Rate (BDBR), Bjontegaard Delta Peak
Signal-to-Noise Ratio (BDPSNR), and time reduction (TR)
as defined in eq. 3.

TR =
TProposed − TOriginal

TOriginal
× 100 (3)

TABLE II
EXPERIMENTAL ENVIRONMENT

The tests were conducted on the setup seen in II. The CNNs
were implemented using the TensorFlow [4] framework and
trained with three classifiers across four QP values (34, 39, 42,
48). For benchmarking purposes, we utilized well-established
video sequences listed in Table I, featuring synchronized
texture and depth images from three cameras (one main view
and two auxiliary views). We processed 100 frames from each
sequence with both the standard 3D-HEVC reference software

version HTM16.3 and our custom-integrated CNN model,
applying four different QP pairings for encoding texture and
depth (25-34, 30-39, 35-42, 40-48).

According to the observed results, there is a significant
reduction in encoding time with an average of -70.12% across
all QP pairs compared to the reference encoding time. This
reduction indicates the efficiency of the proposed method in
decreasing computational complexity.

Analyzing the correlation between QP pairs and time re-
duction, we observe that QP 25-34 averaged a time reduction
of -67.40%, while QP 40-45 averaged -71.13%. This slight
variation suggests that higher QP pairs tend to achieve more
time reduction, which may be due to the CU size distribution
favouring larger CUs at higher QPs.

Bitrate fluctuations are minor across different sequences.
The worst-case scenario shows a bitrate decrease of -1.66% for
the Ghost Town Fly sequence at QP 25-34, while the best-case
scenario indicates a bitrate increase of 1.58% for the Balloons
sequence at QP 35-42. Overall, the average bitrate change
across all sequences and QP pairs is just 0.02%, suggesting a
negligible impact on compression efficiency.

When looking at the relationship between QP pairs and
bitrate, a slight improvement is evident with higher QP pairs.
The average bitrate change for QP 25-34 is -0.80%, whereas
for QP 40-45, there is a minor increase of 0.07%. This trend,
combined with the observed time reduction, suggests that the
proposed model is more effective at reducing computational
complexity and maintaining bitrate at higher QPs.

Regarding video quality, there is negligible degradation
across the sequences. The average Y-PSNR change for QP
25-34 and QP 30-39 is -1.55 dB and -0.78 dB, respectively.
For the other QP pairs, the average Y-PSNR change is -0.65
dB and -0.33 dB. This indicates that the proposed method
maintains video quality reasonably despite the significant
reductions in encoding time.

When comparing the performance metrics (BDBR% and
TR%) of different methods across various sequences (Bal-
loons, Newspaper, Shark, Ghost town fly, Poznan hall, Undo
dancer), several observations can be made. The proposed work
consistently shows higher BDBR values and greater time
reduction compared to other methods across most sequences.
For instance, the Balloons sequence achieves a bitrate of
0.91% and a time reduction of -72.33%, which are higher
than, respectively, those of Chen2021 (0.19%, -45.29%) and
Lin 2021 (0.12%, -34.31%). Similar trends are observed in
other sequences such as Newspaper, where the proposed work
reports a BDBR of 1.11% and a TR% of -73.81%. Looking
at the average performance across all sequences, the proposed
work maintains an average BDBR of 0.02%, which indicates
a lesser compression penalty compared to Chen2021 (0.32%),
Chang2019 (0.12%), Lin 2021 (0.15%), but fall behind com-
pared to our previous work Omran 2023 (-0.15%). However,
its average TR% is notably lower at -70.12%, compared
to Chen2021 (-56.08%), Chang2019 (-59.21%), Lin 2021 (-
45.35%), and Omran 2023 (-48.46%). Overall, these results
suggest that the proposed work demonstrates competitive



TABLE III
BITRATE, PSNR, AND TIME REDUCTION RESULTS FOR EACH QP PAIR USING OUR CUSTOM 3D-HEVC INTEGRATED WITH MD-CNN

TABLE IV
COMPARISON OF BITRATE AND TIME REDUCTION WITH OTHER WORKS

bitrate performance and considerable improvement in time
reduction of -70.12%. However, we fall behind our previous
work from -0.09 dB to -0.8 dB in terms of BD-PSNR which
indicates a a slight degradation in video quality. This trade-off
between encoding speed and compression quality should be
taken into consideration and improved in later work to close
the gap between the two metrics.

V. CONCLUSION

This work presents a novel method that reduces the major
complexity related to the quadtree division of depth map intra-
coding units in 3D-HEVC. Using reference view partitioning
data, it suggests an effective method for depth map intra-
coding unit division based on MD-CNN. This integration is
essential because it allows the MD-CNN to make use of spatial
correlations between various perspectives, which improves
its capacity to efficiently forecast Coding Tree Unit (CTU)
partitioning. By directly predicting CTU division topologies,
the technique seeks to do away with the necessity for com-
putationally demanding rate-distortion cost computations. A
3D-CNN can be trained on a large dataset to teach it how
to automatically examine input CTUs and anticipate the best
division structures. The MD-CNN, when included in the 3D-
HEVC encoder, slightly reduces coding efficiency by 0.02%
and reduces coding complexity by an average of 70.12% with
only a penalty of -0.8dB to DB-PSNR.
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