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Abstract 

Age-related macular degeneration (AMD) is a leading cause 

of vision impairment and blindness among elderly people. AMD 

disease has different severity grades requiring different 

treatment procedures. Many studies proposed automated 

methods grading AMD using color fundus images, but none 

achieved optimal performance. 

In this study we aim to develop an automated method to 

detect the severity of AMD from color fundus images. The main 

contribution consists of a stacking ensemble learning approach, 

which combines the knowledge of five CNN models in order to 

perform accurate AMD severity grading. Experimental results 

show that the ensemble method achieves a classification 

accuracy of 95.2%, a precision of 95.27, a sensitivity of 95.25%, 

a specificity of 96.68% and an F1-score of 95.11% which 

outperforms several existing methods. 

Keywords: AMD, ensemble learning, deep learning, fundus 

images. 

I. INTRODUCTION 

Age-related macular degeneration (AMD) is a significant 
cause of vision impairment and blindness, particularly among 
the elderly population [1], [2]. AMD primarily affects the 
macula, the central part of the retina responsible for daily life 
tasks such as reading and driving. The disease manifests in 
two forms: dry AMD, characterized by gradual thinning of the 
macula, and wet AMD, which involves the growth of 
abnormal blood vessels that leak fluid, causing rapid and 
severe vision loss. 

Early diagnosis of AMD is crucial as different stages of 
the disease require different treatments [3]. Early-stage AMD 
can be managed through lifestyle modifications, such as 
dietary changes and smoking cessation, which can slow its 
progression. In contrast, advanced stages require intensive 
treatments, including supplements and injections. Some 
treatments might be less effective depending on how far the 
disease progressed [4]. Therefore, accurate grading of AMD 
severity is essential to ensure appropriate and timely 
interventions at each stage of the disease. For that, different 
modalities [5] are used. Color fundus photography (CFP) is a 
common modality for AMD diagnosis due to its simplicity, 
non-invasiveness, and effectiveness in highlighting early 
signs such as drusen and pigmentary changes [5].  

Many studies suggested methods to automate the process 
of detecting AMD from fundus images using machine 
learning and deep learning. Methods targeting the detection 

the detection of AMD has shown good performance. 
However, existing methods focusing on grading AMD 
severity failed to achieve higher performance due to the small 
nuances in symptoms in the retina. 

In this study, we propose an advanced automated method 
for classifying different stages of AMD using ensemble 
learning techniques for color fundus images. Our approach 
involves the use of multiple CNN models as descriptors, 
having different convolutional processing principles. Their 
feature vectors are through a stacking ensemble model [6] in 
order to leverage the strengths of individual classifiers.  

 The paper is organized as follows. Section 2 presents a 
literature review of existing methods. The proposed method is 
detailed in section 3. The experimental evaluation is presented 
in section 4, followed by the conclusion in the last section. 

II. LITERATURE REVIEW 

Age-related macular degeneration (AMD) manifests in 

different types and stages with distinct symptoms [2]. The 

existing automated methods vary in terms of preprocessing 

principles and objectives, either for AMD detection or 

grading. 

 

Several studies targeting the AMD detection achieved 

optimal performances. For instance, the method proposed in 

[7] developed a CNN for classifying fundus images into 

healthy and AMD-positive images. The approach included 

preprocessing phase based on the use of Gaussian Blur and 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) for noise removal and contrast enhancement. Then, 

the use of morphology and contour-based techniques, along 

with Canny edge detection to locate drusen lesions. Accuracy 

values of 95.24% on the ARIA dataset and 96.47% on the 

STARE have been achieved. Another study referenced in [8] 

combined deep learning feature extraction using VGG16 with 

handcrafted features such as Discrete Wavelet Transform 

(DWT), Local Binary Patterns (LBP), and Pyramid 

Histogram of Oriented Gradients (PHOG) descriptors. This 

hybrid approach achieved 97.08% accuracy. A study 

referenced in [9] developed a lightweight CNN with batch 

normalization and dropout along with basic preprocessing 

consisting of only noise removal. This method achieved 

97.39% accuracy on the STARE dataset and 98.97% on the 

RFMiD dataset. A study referenced in [10] used a SVM 

classifier and focused more on applying preprocessing 

techniques like CLAHE for contrast enhancement and 

extracting lesions within the image. This approach achieved 



an accuracy of 88.23% detecting AMD. In summary, it is safe 

to say that methods based on deep learning achieved optimal 

performances for detecting AMD. 

 

There are several studies that focused on grading AMD 

severity. For instance, a study referenced in [11] used 

OverFeat along with SVM classifier with a preprocessing 

phase consisting of cropping the image to the boundaries of 

the retina. This method scored 79.4% and 81.5% accuracy 

values for 4-class and 3-class severity scale classifications, 

respectively. Another study referenced in [12] leveraged an 

ensemble of deep learning models using a Random Forrest 

classifier along with a light preprocessing to remove noise 

and data augmentation. Their model scored 63.3% accuracy 

on the AREDS data targeting 13 classes excluding patients 

over 55 years of age and using the KORA dataset, and 84.2% 

accuracy for classifying early or late AMD images.  

Similarly, the referenced study [13] built a Random Forrest 

ensemble of two different deep learning architectures and 

used progressive resizing techniques. An accuracy of 82.55% 

has been achieved for 4-class AMD classification. We also 

see this trend of using ensemble learning to tackle a 

multiclassification problem in the two iteration of the same 

study referenced in [14] and [15], which focused on 

classifying fundus images into 4-class severity scale using 

single model and then using an ensemble of couple deep 

learning models namely Inception-ResNet-V2 and Xception 

in the second study which saw an increase in performance 

achieving an accuracy of 86.13% compared to 83.0% using 

the single VGG16 model. An unsupervised learning method, 

proposed by the study referenced in [16] scored 65% and 25% 

accuracy values for the 4-class and the 12-class AMD 

severity classification respectively. However, it did not 

perform as good as supervised deep learning approaches and 

performs significantly worse for higher number of classes.  

 

In summary, existing automated methods for detecting 

and classifying different stages of AMD still fall short in 

terms of achieved performance, with deep learning 

performing better than machine learning approaches even 

when using ensemble methods. Additionally, some reported 

metrics may be misleading due to potential overfitting and 

insufficient dataset diversity as small or biased datasets likely 

overestimate model performance as these data may 

underrepresent the different stages of the disease. 

 

III. ENSEMBLE LEARNING METHOD FOR AMD CLASSIFICATION 

The core objective of our study is to detect and classify 

different stages of AMD from color fundus images. The main 

contribution of this study is to leverage the power of stacking 

ensemble learning to enhance the performance of severity 

scales grading of the disease. The proposed method consists 

firstly to preprocessing input image and data augmentation, 

secondly train each of the deep learning models individually 

and assess their performance, then build an ensemble using 

the most optimal meta classifier trained the stacked features 

from the base models. 

 

A. Data preprocessing & augmentation 

Fundus images in publicly available datasets are 

inconsistent as they are collected from different sources and 

captured using different supports. For that, we need to 

standardise and enhance these images as shown in Fig.  1. The 

very first needed step is to resize all the image to a standard 

input size that would fit all the input of the different DL 

models that we will implement, in our case 299 x 299 sized 

images would fit. To further reduce the noise caused by 

unrelated features, we are keeping only the green channel of 

the image which showcases the drusen deposits and 

pigmentations more clearly as drusen appears as a yellow 

deposit [17]. The collected images have varying contrast 

which is caused by the variation in lighting conditions in 

which the images were taken. For that, we normalized the 

light intensity across all images and applied Contrast Limited 

Adaptive Histogram Equalization (CLAHE) to enhance the 

contrast of the images without amplifying noise [18]. Finally, 

we applied a Top-Hat filter which enhances bright spots on 

an image on a darker background, in our case making the 

drusen and pigmentations pop more. 

 

Publicly available datasets are often unbalanced, with 

healthy images being much more prevalent. To address this 

issue, we apply data augmentation to artificially generate 

images for the underrepresented classes especially AMD 

positive fundus images. For each image we apply a 

combination of transformations including horizontal and 

vertical flips, random rotations up to 40°, and random 

adjustments in brightness and contrast up to 0.2. The number 

of generated images for each original image is set depending 

on how underrepresented a class is. Samples of images result 

after the transformations are shown in Fig 2. 

 

 
 
Fig.  1. (A) Preprocessing pipeline: (1) Original image, (2) Extracted green 

channel and noise removal, (3) Application of CLAHE filter, (4) 

Application of Tophat filter. 

 

 
 

Fig.  2. (A) original image, (B) horizontal flip and random rotation, (C) 
Vertical flip and random rotation (D, E, F) Random brightness contrast and 

rotation 



B. Deep learning models selection 

 An important step in our approach involves selecting a set 
of deep learning models as feature extractors for the ensemble. 
According to Ganaie et al. [19], the success of ensemble 
learning relies heavily on the diversity of its base classifiers. 
This diversity can be achieved through methods [6] such as 
bagging, which creates varied base classifiers by generating 
multiple datasets from the original data, or by using different 
architectures in the case of stacking. The fundamental 
principle is that varying outputs from base classifiers enhance 
the ensemble's overall performance compared to individual 
models. 

 Based on this principle, we utilize models with varying 
complexities. Deeper networks excel at identifying complex 
patterns, making them suitable for distinguishing similar 
image classes, but they are prone to overfitting [20]. In the 
other hand, shallower networks with fewer layers and 
parameters focus on more general features, reducing the risk 
of overfitting. This blend ensures that the ensemble is neither 
too simplistic nor overly tailored to the training data, allowing 
it to perform effectively across different severities of AMD. 
For example, if a deeper model misclassifies an image due to 
overfitting, a shallower model might still correctly identify it 
based on simpler features and if a shallower model 
misclassifies an image with small features, such as tiny drusen 
pigmentations, the deeper model might correctly identify it as 
early-stage AMD. 

 For the shallow networks, we selected Xception and 
ResNet50V2, models known for their high top-5 accuracy and 
fewer layers, as provided by Keras [21]. For deeper models, 
we chose EfficientNetB5, which offers a balance between 
efficiency and performance, unlike EfficientNetB6 or 
EfficientNetB7, which, despite slightly better performance in 
the ImageNet challenge [22], are more prone to overfitting on 
smaller datasets. InceptionV3 is another popular choice, as its 
use of different kernel sizes in the same layer allows it to 
capture information at various scales, making it effective for 
identifying both large simple features and complex ones [23].  

C. Transfer learning and fine-tuning 

 Transfer learning leverages pre-trained deep learning 
models, which have already learned features from large 
datasets, and fine-tunes them on smaller, domain-specific 
datasets. This approach is helpful when dealing with smaller 
set of data, as in our case, as it mitigates the risk of overfitting 
and reduces the computational resources and time required for 
training from scratch [24]. For that matter all the five deep 
learning models come pre-initialized with the ImageNet 
weights [25]. 

 For each base classifier, we added three layers for feature 
extraction and one for classification, which we later remove 
when creating an ensemble as we are using the features 
extracted by each model instead of the final prediction. The 
first layer is a 2D pooling layer that simplifies the data by 
transforming the output of the base model into a 2D feature 
vector, followed by a dropout layer which takes the simplified 
feature vector and randomly set some neurons to zero during 
training to help prevent overfitting, for that we set the 
probability value to 0.2 based on experimenting with different 
values. Following this is a dense layer outputs a 1D vector of 
size 1024, with a ReLU activation function which allows 
faster training and less errors during backpropagation. The 
activation function is shown in Equation 1. 

 For individual models, we add an extra dense layer with a 
SoftMax activation function producing a probability 
distribution for the 3 targeted classes, in our case: healthy, 
early and late AMD based on the feature vector outputted by 
the previous layer. The activation function is shown in 
Equation 2. Later when building the ensemble we discard it 
and train the meta classifier using the stacked features. The 
values of the hyperparameters used in the training of each of 
the base models is summarised in TABLE I. For each 
parameter we picked the values that yields the best result. 

  𝑓(𝑥) = max⁡(0, 𝑥) () 

  𝜎(𝑧) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

 () 

D. Ensemble learning framework 

A stacking ensemble learning framework combines the 

predictions of different base classifiers in order to make a 

more accurate final prediction [6]. For our experiment, we 

selected 6 different meta-classifiers namely SVC, Random 

Forrest, KNN, Gradient Boosting classifier, XGBoost and 

MLP to make predictions based on the stacked features 

extracted from the base classifiers then optimized and 

validated each of the ensembles using grid search method 

[26] to find the best parameters. Our main purpose of an 

ensemble is to outperform the base classifiers while being 

able to generalize better and overfit less compared to the 

single model solution. Fig.  3 showcases the overall 

architecture of the ensemble. 

IV. EXPERIMENTS AND RESULTS 

A. Dataset 

The collected images are selected from the publicly 

available RFMiD dataset [27] totaling to 1135 images 

including 669 healthy fundus images and 466 diagnosed with 

age-related macular degeneration out of which 402 images 

account for the eark AMD and 64 representing late-stage 

AMD. 

 

In the case of this dataset and many other publicly 

available datasets, data augmentation is important to make 

sure the models do not turn out to be biased towards a certain 

class as the healthy images account for more than half the 

total data. To address such issue, we used an open source tool 

named Albumentations [28] to artificially generate new 

images by applying transformations to the original images.  

 
TABLE I: Hyperparameters of training DL models 

Parameter Value 

Optimizer Adam 

Batch size 8 

Learning rate 0.0001 

Epochs 40 

Early stopping patience 3 

Start from epoch 3 

Activation function SoftMax 

Loss function Categorical cross-entropy 

Dropout 0.2 



 
 

Fig.  3. Pipeline for ensemble method for AMD classification 

 The total count of images for each class before and after 

augmentation is shown in TABLE II. To further evaluate the 

generalizability of the models and the ensemble, we split the 

data into five subsets. One subset is designated for testing, 

another for validation, and the remaining three for training. 

We performed a four-fold cross-validation experiment, with 

the subsets assigned differently for each fold, to thoroughly 

see how well our model performs for different unseen data as 

shown in Fig.  4. 

B. Evaluation metrics 

The training and testing experiments are conducted using 

a combination of different tools, notably Keras and SciKit-

Learn which provide a variety of metrics to evaluate the 

performance of our models such as accuracy, sensitivity, 

precision, specificity and f1-score. The different metrics are 

calculated from the confusion values as shown in the 

equations 3,4,5,6 and 7. 

 
TABLE II. Image count before and after data augmentation 

Total original images 

Healthy Early Late 

535 321 51 

Total images after augmentation 

Healthy Early Late 

535 642 459 

 

 

 
Fig.  4. Data splitting for each of the four folds 

 Accuracy⁡ = ⁡
T⁡P⁡+⁡T⁡N⁡

T⁡P⁡+⁡F⁡P⁡+⁡T⁡N⁡+⁡F⁡N
 (3)

 Sensitivity = ⁡
T⁡P⁡

T⁡P⁡+⁡F⁡N
 (4) 

 Precision = ⁡
TP

T⁡P⁡+⁡F⁡P
   (5) 

 Specificity = ⁡
T⁡N

T⁡N⁡+⁡F⁡P
   (6) 

 F1 = ⁡2 ×
Precision×Recall

Precision+Recall
   (7) 

C. Ensemble method evaluation and results 

Each base classifier is trained and validated first for 

optimization and later for comparison with EL method. We 

then used the five trained models for feature extraction to 

create a new dataset consisting of stacked features and their 

corresponding true labels. This new dataset is used in six 

sperate experiments each time with a different meta-

classifier. Each time, the selected meta-classifier is trained, 

validated and optimized using the grid search method [26]. 

 

The metrics achieved by the different ensembles are 

presented in TABLE III. Both KNN and SVC performed 

better than every single individual model with KNN scoring 

the best metrics out of the six different ensembles achieving 

an accuracy of 95.25%, a precision of 95.27%, a sensitivity 

of 95.25%, a specificity of 96.68% and an F1-score of 

95.11%.  The cross-validation results for the KNN ensemble, 

as indicated in TABLE IV, demonstrate robust and reliable 

results, characterized by high accuracy, precision, sensitivity, 

specificity, and F1-score for all subsets of the data. Moreover, 

the deviation range of each metric is between ±0.76 ±1.01 

indicating slight variability between the achieved metrics for 

each validation. This guarantees a consistent performance for 

any data used for training and testing. For a better analysis of 

the achieved result by the best meta-classifier, we illustrate it 

in box plots as shown in Fig.  5. 

 
TABLE III. Evaluation metrics achieved by each of the meta-classifiers 

Classifier ACC PRE SEN SPE F1 

XGB 93.53 93.41 93.53 95.75 93.34 

GB 93.96 93.96 93.96 95.90 93.83 

RF 94.39 94.59 94.39 96.18 93.96 

MLP 93.96 94.18 93.96 95.84 93.54 

SVC 94.82 94.76 94.82 96.52 94.70 

KNN 95.25 95.27 95.25 96.68 95.11 

 
TABLE IV. AMD classification performance for four-fold cross validation 

Fold ACC PRE SEN SPE F1 

1 95.25 95.27 95.25 96.68 95.11 

2 93.96 94.22 93.96 95.72 93.52 

3 92.67 92.85 92.67 94.76 92.51 

4 93.53 93.91 93.53 95.13 93.38 

TABLE V. Performance comparison between the ensemble method and the 

base classifiers 

Model ACC PRE SEN SPE F1 

EfficientNetB5 88.8 87.5 82.0 87.5 83.9 

InceptionV3 90.1 89.0 82.3 89.0 85.1 

Xception 91.4 92.1 85.2 92.1 88.1 

ResNet50V2 91.8 94.9 91.2 94.9 92.7 

DenseNet201 94.4 96.6 84.5 96.6 88.9 

Ensemble 95.2 95.2 95.2 96.6 95.1 



 
Fig.  5. Performance evaluation by the KNN ensemble method using 

box plots 

D. Proposed method comparison with existing studies 

Numerous studies have focused on classifying AMD into 

three or four severity steps. For example, Burlina et al. [11] 

achieved accuracies of 81.5% and 79.4% for the three step 

and four step severity scale respectively using SVM, as 

shown in Table VI. Domínguez et al. [13] and Govindaiah et 

al. [15] both utilized ensemble learning to classify images 

into 4 classes, achieving accuracies of 82.55% and 83.0% 

respectively. Similarly, Grassman et al. [12] employed an 

ensemble learning approach for the three step severity scale, 

reaching an accuracy of 84.2%. Yellapragada et al. [13] with 

their unsupervised learning method attained a lower accuracy 

of 65% on the four-step severity scale. In contrast, our study 

achieved a higher accuracy of 95.2% higher than the above 

results. 

V. CONCLUSION 

The stacking ensemble learning method utilizing a 

KNN classifier has demonstrated excellent performance on 

the RFMiD dataset. As highlighted in the results section, this 

ensemble method achieves a 95.25% accuracy in correctly 

classifying color fundus images, surpassing the base 

classifiers. It also consistently performs well across all data 

subsets, in contrast to single model approaches which fall 

short in terms of generalizability and effectiveness. 

 
Table VI: Comparative analysis with existing methods 

Study Classes Method ACC 

Yellapragada et al.[16] 4 NPID 65.0 

Domínguez et al.[13] 4 EL 82.55 

Govindaiah et al. [15] 4 EL 83.0 

Burlina et al. [11] 4 LSVM 79.4 

Burlina et al. [11] 3 LSVM 81.5 

Grassman et al.[12] 3 EL 84.2 

Our method 3 EL 95.2 
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