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Abstract—The segmentation of the retinal vascular tree 

(RVT) is undoubtedly crucial for visualizing and analyzing 

vessel morphology, which facilitates the detection and diagnosis 

of various pathologies that affect the retina. Therefore, 

segmentation must have high performance with reduced 

complexity and execution time to meet constraints imposed by 

the clinical context. In this context, several classic Deep 

Learning (DL) architectures was proposed for the automatic 

segmentation of the retinal vascular tree, they generate 

suboptimal segmentation performance and significant 

computational complexity.  

In this work, we propose a new method for RVT 

segmentation. The main contribution consists of suggesting a 

new DCNN, inspired from Segnet architecture where standard 

convolution blocks have been substituted by MobileNet 

convolution block. The proposed method enhance segmentation 

performance and reduce the computational complexity. It is 

tested on DRIVE database, and scored an Accuracy of 97.08 %, 

a sensitivity of 82.38 % and a specificity of 98.55%, within an 

architecture of  3.4 M parameters.  

Keywords—Deep Learning, Automatic Segmentation, Retinal 

vascular tree, Segnet, MobileNet. 

I. INTRODUCTION  

The retina is the only part of our body where blood vessels 

can be observed and photographed directly and easily [1], and 

in many cases, they reflect the state of the vascular system of 

the rest of the body. Certain fundus and associated 

pathologies such as age-related macular degeneration 

(AMD), diabetic retinopathy (DR) and cardiovascular 

diseases, affect the retina and his components. Diagnosis and 

early detection are very important since these pathologies are 

dangerous and can lead to blindness. The segmentation of the 

retinal vascular tree  presents a major step in detecting these 

ocular pathologies it helps to analyze the morphology, 

diameter, area, branching pattern, and tortuosity of retinal 

blood vessels which are important indicators of these 

diseases. However, this process is limited by the lack of 

ophthalmologists and retinal imaging devices. Similarly, 

manual segmentation of blood vessels in retinal images is 

both error-prone and time-consuming even for experienced 

doctors. Since the clinical context expects higher 

segmentation performance with lower complexity and 

runtime, various automatic retinal vascular tree segmentation 

methods have been suggested. The most efficient are the 

Deep Learning based methods, they have been always 

belonged to the studies providing higher segmentation 

performances [24], they have provided higher accuracy rates 

that exceed 0.95 when performed with the well-used DRIVE 

database fundus images. In this context, several recent works 

have proposed segmenting the retinal vascular tree using DL 

architectures. However, these architectures generate 

suboptimal segmentation performances and high 

computational complexity, this complexity generates 

significant execution times, which in several cases exceed the 

temporal constraints imposed by the clinical context. These 

problems are due to the standard and classic convolution 

blocks on which these architectures are based. Therefore, 

several works suggest extending these DL architectures, to 

reduce processing complexity while maintaining high 

segmentation performance. In this work, we propose a new 

Deep Learning architecture for the segmentation of the retinal 

vascular tree; we use this architecture in a new method that 

we will describe. The idea is to extend the Segnet architecture 

by replacing classic convolution blocks with new blocks 

called LightWeight Convolution Module (LCM) of the 

MobileNet architecture. These new blocks make it possible 

to extract more efficient features by dividing the convolution 

into two kernels, while reducing complexity and execution 

time dedicated to feature extraction. Therefore, our goal for 

this proposal is to improve segmentation performance while 

reducing complexity. 
The remainder of this paper is organized into four sections. 

In Section 2, a literature review on the classical and extended 
DL method  for RVT segmentation is presented. Section 3, 
present the proposed DL architecture. Section 4, describe the 
segmentation method, Section 5, present the experimental 
results where the segmentation is evaluated in terms of 
performance and complexity. The last section is dedicated for 
conclusion 

II. STANDARD AND EXTENDED DEEP LEARNING METHODE 

 In recent years, Deep Learning has got fast development 
due to strong context feature expression ability [2]. The 
advancements in deep learning models are exploited for 
conducting the analysis and designing the detection methods 
for accurate segmentation of retinal vessel tree (RVT). Several 
standards Convolution Neural Networks (CNN) have been 



 

used for this purpose of  RVT segmentation, such as  U-Net 
network,  that was proposed by Ronneberger et al. [6]. It is 
widely used for medical image segmentation, including 
retinal images[10]. This network is based on the operation of 
a fully convolutional network (FCN) [6], its structure is U-
shaped composed of two paths encoder and decoder, the 
blocks of the two paths are connected  Through the skip 
connections.  Also, Segnet network proposed by 
Badrinarayanan et al. [23] has been used for RVT 
segmentation [11][3]. It is an FCN consists of a network of 
encoders, which is responsible for capturing the hierarchical 
characteristics of the input image, a corresponding network 
of decoders that generates the segmentation map followed by 
a pixel-by-pixel classification layer. The U-shaped form of 
Segnet with both encoder and decoder paths, is widely 
adopted for segmentation and it achieves high performance, 
moreover, it encourages the model to learn more features by 
gradually reducing the feature maps and creating connections 
on both sides. Unlike U-net, SegNet uses a pooling index to 
perform upsampling through the inverse process of pooling 
in the decoder part, meaning that the upsampling process does 
not require learning[9]. 

 These standard Deep Learning models such U-Net and 
Segnet are used for RVT segmentation[10][11], they have a 
better performance than traditional Machine Learning based 
methods, accuracy of U-Net and segnet are respectively 95.54 
%  and 95.54 %,  but they do not achieve the optimal 
performance required by the clinical context. Furthermore, 
these architectures are discriminated by a higher 
computational complexity, proportional to the number of 
parameters [12], the number of parameters recorded by the 
U-Net architecture exceeds 31 million, while the segnet 
architecture recorded a number of parameters of 14.7 million 
respectively. These problems are due to the standards and 
classic convolution blocks on which these architectures are 
based. Indeed, blood vessels in the retina can vary 
considerably in size and shape, however, standard 
convolutions may have difficulty capturing these variety of 
scales effectively and do not allow all the vessels to be 
modeled adequately taking into account all widths, which can 
lead to error segmentation, especially for smaller or thinner 
vessels. Therefore, the performance of the models declines. 
In addition, in standard convolution operation each layer 
performs the convolution in a single step. It consists of 
applying a filter to the entire input image by performing 
multiplications between the values of the pixels in the image 
and the weights of the filter; convolution therefore both filters 
and combines the inputs into a new set of outputs in a single 
step. Which leads to increased processing time and increased 
complexity of the entire architecture. These results can go 
beyond clinical constraints; it generates a significant 
complexity compared to the performance obtained. The 
standards networks still unable to reach the trade-off 
performances, discriminated by an expensive convolution 
blocks having the effect of increasing computation 
requirements. Several of these networks have been extended 
with the aim of performing such clinical needs to maintaining 
high segmentation performance and reducing the 
computational complexity. The modifications are usually 
focused on the convolution layers to make the network wider 
or on the skip connections to guide the decoder to utilize the 
most essential features.  

 In this context, we present some of these extended 
architectures. Guo et al. [13] proposed  SA-UNet network  an 

extension of U-net for retinal vessel segmentation by adding 
a spatial attention block between the last block of the encoder 
and the first block of the decoder to acquire the discriminative 
features about retinal vessels and to guide the decoder to 
utilize the most essential features.  Henda Boudegga et al. 
[12] proposed an architecture named “RV-Net”. It is a variant 
of the convolutional neural network U-Net. The main 
innovation of RV-Net lies in the substitution of large 
standards convolution layers by low complexity modules 
named LCMs, each module consist of a 3×3 depth 
convolution layer followed by a 1×1 convolution layer. This 
method was proposed to refine the U-Net architecture and 
reduce the segmentation complexity and execution time To 
better combine high and low resolution information, K. Ren 
et al. [14] incorporates the Bi-FPN network into the U-net 
network to form a new network structure. The classic skip 
connection is replaced by the Bi-FPN, and the concept of 
weight is proposed to balance the feature information of 
various scales better and improve the efficiency of the model.  
Li et al. [15] propose a combination of U-Net and Dense-Net, 
the convolution blocks of U-Net are replaced by the Dense 
module. Each layer of the dense block is directly connected 
to all the layers before it.  Y. Liu et al. [2] propose to extend  
the classic U-Net network with the incorporation of residual 
blocks. The classic convolution blocks of U-Net are replaced  
with new convolutional blocks called ResDO-conv which are 
inspired by the ResNet architecture, these blocks enable the 
network to better acquire strong contextual features from 
retinal images. A pooling fusion block (PFB) is introduced 
after each Residual DO_Conv block in the encoder to reduce 
the effect of information loss caused by multiple operations 
of pooling.  The skip connections are replaced by the 
attention fusion block (AFB) in order to have features at 
different scales. The M2U-Net network proposed by T. 
Laibacher et al. [16] has a new encoder-decoder architecture 
that is inspired by the U-Net. It adds pretrained components 
of MobileNetV2 in the encoder part and novel contractive 
bottleneck blocks in the decoder part that combined with 
bilinear upsampling, in order to have a fast and efficient 
model for use in embedded and mobile environments. 
V.Sathananthavathi et al. [17] propose a new deep neural 
network, named as ‘Enhanced Encoder Atrous Unet’ (EEA 
Unet) for retinal vessels segmentation. In order to increase 
the receptive field, the classic convolution blocks of U-Net 
are replaced as the atrous convolution.  Renyuan liu et al. [18] 
propose the Dual Attention Res2UNet (DA-Res2UNet) 
network. This model is based on an encoder-decoder U-Net 
structure, replaces the convolutional layers in U-Net with 
Res2block [8] and Dropblock. Res2block effectively obtains 
the multiscale information, and Dropblock avoids overfitting. 
In addition, Spatial Attention and Dual Attention blocks [10] 
are added between the encoder and the decoder, thus this 
model can get global dependency information with less 
amount computation. The work of Y. Liu et al. [19] proposes 
a new lightweight segmentation network for precise retinal 
vessel segmentation, which is called as Wave-Net model. The 
simple skip connections of original U-Net are replaced by the 
block (DED) to improve the segmentation precision on thin 
vessels, in addition, a multi-scale feature fusion block (MFF) 
is proposed to fuse cross-scale contexts. Zhang et al. [20] 
introduce Pyramid-scale aggregation blocks (PSABs) in U-
Net to obtain higher features extraction.  Inception-Like U-
Net (ILU-Net) is proposed by Z. Zhu et al. [21] to segment 
vessels. The simple convolution blocks are replaced by Down-
sampling Inception Blocks (DIB) in encoder and up-sampling 



 

Inception Blocks (UIB) in decoder, in addition, a novel skip 
connection scheme is provided to better connect low-level 
features to high-level features. To obtain refined features of 
retinal blood vessels, Z. CUI et al. [22] combine three cascade 
connected U-Net networks. Skip connections in each Unet are 
replaced by  residual paths, an atrous space pyramid pooling 
(ASPP) module is employed between each encodor and 
decoder, a novel loss function is proposed to minimize the loss 
between predicted images and the ground truth. T. Khan et al. 
[11] introduce RCED-Net a variant of the CNN  network 
Segnet.  The key idea in this architecture is a residual 
connection introduced between first block of the encoder and 
final block of the decoder. The purpose of this connection is 
to include the vessel information directly into the final 
predictions. Table 1. compare these works according to the 
performance metrics Accuracy(Acc), Sensitivity(Se) and 
Specificity(Sp). In addition, to the number of parameters. 

III. PROPOSAL OF A NEW DEEP LEARNING ARCHITECTURE 

A. Principe of our proposed architecture 

 An efficient segmentation of retinal vascular tree is 
indispensable for a reliable diagnosis of ocular pathologies, 
ensure high segmentation performance while saving 
computational complexity is indispensable to be suitable for 
clinical practice. Our main idea consists in proposing a new 
DL network which performs retinal vessel segmentation using 
LCMs. The suggested network is an extension of the Segnet 
network, had a U-shaped form since it achieves high 
performance.  As we said in the previous section, that the 
convolution blocks of Segnet are mainly based on standard 
convolution layers  which does not suitable for multi échelle 
segmentation of rétinal vessel that leads to non-optimal 
performance and an augmented processing complexity, we 
suggest to replace the classic blocks by a new blocks. 
Recently, another form of convolution formed by lighter 
convolution modules called Lightweight Convolution 
Modules (LCMs) was proposed by Howard et al.[4],  who 
used them in the MobileNet architecture[4]. These modules 
are based on  depthwise separable convolution, that provides 
the same convolution as the standard convolution, but with a 
different technique, which consists of dividing the 
convolution operation into two separate successive 
operations, one for filtering and one for combining. Indeed, 
Vessel has different informations among the channels, extract 
features from each channel separately rather than from all 
image channel since, you can capture channel-specific details 
that might be missed when considering all channels together. 
These extracted features can be better highlighted, thus 
segmentation accuracy will be improved.  Also, such 
modification reduces significantly the complexity, feature 
extraction from all channels simultaneously may lead to high- 
dimensional feature vectors, which can increase 
computational complexity and require more resources for 
processing. Extracting features separately from each channel 
can reduce the dimensionality of the feature space, making 
segmentation algorithms more computationally efficient 
while still capturing relevant information.  

 Thus, our main contribution consists of extending the 
Segnet network by using the u-shaped form, which facilitates 
training and allows high segmentation performances to be 
achieved. And by replacing the standard convolution layers 
with the Lightweight Convolution Modules (LCMs) to reduce 
the complexity. A 3x3 depthwise convolution layer followed 
by a 1x1 Pointwise convolution layer forms the module LCM. 

TABLE I.     Performances results of state of the art works 

Works Year Acc(%) Se(%) Sp(%) Parameters 

(M) 

Y.Liu et al. [2] 2023 95.61  79.85  97.91 _ 

R.Liu et al. [18] 2023 97.04  81.50  98.56 0.845 

Y.Liu et al. [19] 2023 95.61 81.64  97.64 _ 

K. Ren et al. [14] 2022 95.51  80.64  97.67 _ 

Z. CUI et al. [22] 2022 97.00  80.13  98.42 _ 

Z. Zhu et al. [21] 2022 97.33  79.19  98.95 2.925 

 Li et al. [15] 2021 96.98  79.31  98.96 _ 

H.boudegga et al.[12] 2021 98.19  84.48  99.00 10.87 

V.Sathananthavathi 
et al. [17] 

2021 95.77  79.18  97.08 _ 

J.Zhang et al. [20] 2021 96.15  82.13  98.07 _ 

C.Guo et al. [13] 2020 96.98  82.12  98.40 _ 

T.KHAN et al. [11] 2020 96.49  82.52  97.87 9.7 

T.Khan et al.[11] 
Segnet 

2020 95.79  79.49  97.38 14.7 

Q. Jin et al.[10]U-Net 2019 95.54  78.49  98.04 31.03 

T.Laibacher et al.[16] 2019 96.30 _ _ 0.55 

 

The depthwise convolution layer takes as input M feature 
maps of size L × H, where L and H represent respectively the 
width and height of feature maps. Each map is extracted 
separately to iteratively apply a convolution kernel of size K 
× K × 1, where K represents the width and height of the kernel. 
Consequently, M feature maps are provided through the first 
layer, having the dimension of L × H × 1. These cards are 
transferred to the second Pointwise convolution layer on 
which a 1 × 1 × N kernel is applied iteratively to create linear 
combinations of output channels from the depthwise 
convolution to generate N feature maps. 

B. Architecture description 

The proposed architecture is formed by an encoder and a 
decoder. The downsampling path of the suggested network is 
composed of five blocks, which are represented with green 
frames in Fig.1. we have an input  image of size 128×128×3 
towards the first block,  that is composed by a convolution 
layer using a 3 × 3 kernels to produce 64 feature maps. Then, 
an LCM is applied where his first layer has convolved 64 
feature maps separately, using 3 × 3 kernels, folloxed by a 
convolution layer with 1 × 1 kernels, to produce 128 feature 
maps. Those three convolution layers are characterized by a 
stride equal to 1 and an activation function RELU. This 
module is followed by a “max pooling” layer parameterized 
with a 2 × 2 kernels and a stride of 2. The second block is 
composed of two LCM layers followed by a max pooling layer 
to produce  256 feature maps. The third block, is composed by 
three LCM layers followed by a 2×2 maxPooling layer. The 
fourth and fifth blocks, each one is composed of 3 successive 
LCM layers, followed by a "max pooling" layer parameterized 
by a 2 × 2 kernels and a stride equal to 2, to produce 512 
feature maps. In the encoder, each convolution block doubles 
the feature map size, and each maxPooling layer reduces the 
image size to half, until we obtain an image size of 8×8×512 
at the end of the encoder.  



 

Similarly, the upsampling path is composed of five blocks. 
which are represented with red frames in Fig.1. Each block 
contains an upsampling layer parameterized with a 2 × 2 
kernel and a stride of 2. For the first and the second block, the 
upsampling layers are followed by three LCMs, their first 
depthwise convolution layers are parameterized with a 3 × 3 
kernel, where their second convolution layers are 
parameterized with 1 × 1 kernels. These convolution layers 
are parameterized with an activation function RELU and a 
stride equal to 1 with number of filters fixed at 512. The 
upsampling layer of the third block is followed by three LCMs 
with 256 karnels. The upsampling layers in the fourth and the 
last blocks, are followed each one by two LCMs.  Contrary to 
the downsampling path, the number of output feature map is 
reduced in each block by half and the output size of the feature 
map is doubled on the length, as well as on the width.  

After the final decoder, the output is sent to a 1x1 
convolution layer with a number of filters equal to 2. This 
layer is followed by a "Sigmoïde" activation function which 
will give the final prediction and which will classify the pixels 
into vessels or non-vessels. At the end, we have an image with 
size 128x128x2. 

IV. PROPOSED METHOD FOR RETINAL VESSEL SEGMENTATION 

The retinal vessel segmentation method essentially relies 
on the training model based on the proposed architecture that 
we describe in the previous section.  The entire method 
illustrated in Fig.2. Composed of two stage training and test. 
Each stage composed of successive steps to have at the end a 
segmented image.   Retinal images are taken with a digital 
fundus camera, despite the controlled conditions, many retinal 
images suffer from non-uniform illumination given by several 
factors: the curved surface of the retina, presence of 
diseases[1]. Similarly, retinal blood vessels have thin, dark, 
elongated structures with variation in thickness, therefore, the 
color of fine vessels can be close to the color of the fundus. 
This explains the need to preprocess retina images in order to 
increase image quality, compensate for lighting variations and 
improve contrast.  We first apply a normalization based on 
Histogram Equalization (HE) [7] which will apply a local 
normalization of each pixel to zero mean and unit variance, 
aims to compensate for lighting variations and improve the 
local contrast. Subsequently, we apply Contrast Limited 
Adaptive Histogram Equalization (CLAHE) [5] in order to 
increase the contrast. At the end, we add a gamma correction, 
which allows the control of the brightness of an image. 
Subsequently, and given that the initial number of retinal 

 

 

 

 

 

 

 

 

 

 

 

images is too small, a data augmentation method is applied in 
order to increase the size and diversity of the training set, we 
applied image transformations like rotation and flipping. First, 
we will flip the fundus images  vertically and then we will do 
a horizontal flip for the original images and the vertically 
flipped images. In a second step, we will apply rotations to the 
images according to the following angles: 30°, 60°, 120°and 
150°. These transformations are performed for all fundus 
images and their corresponding ground truth images in the 
same dataset, to avoid distorting training. Retinal fundus 
images are characterized by a significant number of blood 
vessels that are depicted with different thicknesses, 
orientations and tortuosities, which makes segmentation of an 
entire image difficult and gives inaccurate results thus a step 
of patch extraction is then carried out, it involves taking each 
time a patch of size “µ” from the image and segmenting it 
separately. In the testing phase, the preprocessing and patch 
extraction steps are applied to the test set, these patches will 
then be segmented by the new architecture that we have 
proposed. The set of segmented patches obtained will then go 
through the post-processing stage where this set will be 
merged to obtain the final result of the entire  segmented 
image. 

V. EXPERIMENTAL VALIDATION 

A. Experiment setup 

The training of the proposed network is done using a set 

of parameters chosen experimentally. The experimentation 

consists at varying the parameter value and evaluated the 

results. The parameter providing the higher performances are, 

the ADAM optimizer algorithm with a learning rate value of 

0.001, a batch_size of 16. To minimize the loss between 

predicted images and the ground truth, we use  

“BinaryCrossnetropy” function. The entire code executed 

according to these parameters for 20 epochs. These 

parameters are provided in Table 3. The validation of our 

model is done with the public retinal image database Digital 

Retinal Images for Vessel Extraction ”DRIVE”.  This 

database contains 40 images having sizes of 565 × 584, each 

retinal image is joined with its manual blood vessel 

segmentation. We divided the dataset into two subsets, 30 

images  for training, while 10 images were reserved  for  

testing. The training images were then augmented using 

various combinations of image processing schemes as we 

said in the previous section.  After images augmentation and 

cropping, we were able to generate 192 images for every  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 1.   Proposed DL network for retinal blood vessel segmentation 



 

Fig 2  The process of proposed retinal blood vessel segmentation method. 

 

 

 

available image, a total of 5760 images for training. Out of 

these, 3840 images were used to train the networks with 1920 

images reserved for validation. Table 2 summarizes the 

numbers of images used in each set. 

B. Evaluation metrics 

Evaluation of the segmentation results is necessary to 

analyze the robustness of the architecture. It is based on the 

classification of each pixel as true positive (TP), true negative 

(TN), false positive (FP) and false negative (FN). The TP and 

TN are respectively the number of pixels that are correctly 

classified, while the FP and FN are respectively the number 

of misclassified pixels. Segmentation  performance metrics 

are Accuracy (ACC) that describes classification 

performance. Sensitivity (Se) and Specificity (Sp) which 

reflect the ability to correctly classify pixels. The DICE 

coefficient that represents the similarity between the 

segmented image and the groundtruth image. Precision that 

indicates the proportion of classify pixels correctly. Table 5. 

describes the performance metrics for the evaluation of 

retinal vessel segmentation. 

C. Segmentation Performance 

The obtained results during segmentation with the new 

architecture with DRIVE dataset based on ACC, SE, SP, Dice  

and Precision, in addition, to the number of parameters, are 

computed by referring to the manual segmentation provided 

by the expert. Our model shows a high performance, where 

ACC, Se, Sp, Dice and Precision are respectively in the order 

of  97.08 %, 82.38 %, 98.55 %, 81.12 %, 84.25%. The total 

number of parameters needed in this model is 3.4 M. These 

results are shown in Table 4.  Examples of segmentation 

result are illustrated in Fig 3. 

 

 

 

 

 

 
TABLE II.     Information of the database used in our experiment. 

 

 
 

 

TABLE III.  Training parameters 

D. Comparison of segmentation performances for DRIVE 

Subsequently to evaluate the suggested method, we 

propose to compare our segmentation result with some 

methods like Segnet, U-net, RCED-net an extension of 

Segnet and RV-net an extension of U-Net with LCMs module 

in convolution blocks, for the DRIVE  database, according to 

the following metrics Acc, Se and Sp and the number of 

parameters. The comparison results are presented in Table 6. 

We notice that our model trained by the new convolution 

blocks improves the segmentation performance of Segnet 

network. Indeed, the accuracy value is increased from 95.79 

% to 97.08 %, likewise the sensitivity and specificity values 

which reflect the ability to correctly classify and to have a 

true prediction, are higher in our model. In addition, our 

method achieves better accuracy than RCED-Net and U-net. 

RV_net have a higher performance, an accuracy of  98.19 %. 

The number of parameters provided by our model is 3.4 M. 

We reduce the complexity better then  all methods in table 5. 

The complexity is  reduced more than four times from 14.7M 

to 3.4 M compared to Segnet.   

 
TABLE IV.     Performance and complexity result of our model 

 

 

 

Database Dataset size Training set size Validation set size Test set 

size 

 

Drive 

 

40 

Before augmentation 

and cropping 

After augmentation and 

cropping 

Before augmentation 

and cropping 

After augmentation and 

cropping 
 

10 
20 3840 10 1920 

Parameter Value 
Learning rate 0.001 

Optimizer ADAM 

Loss function BinaryCrossnetropy 

Epoch number 20 

Batch_size 16 

Patch_size 128 

Metrics 
Parameters 

Acc(%) Se(%) Sp(%) Dice(%) Precision(%) 

97.08  82.38  98.55  81.12  84.25 3.4 M 
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TABLE V.   Performance metrics for the evaluation of retinal vessel 

segmentation. 

 

TABLE VI.  Comparison of segmentation performances for DRIVE 

database 

 

 

 

Additionally, we suggest studying the trade-off between 

the segmentation performance and the complexity of  retinal 

segmentation methods. For that purpose, we propose to 

investigate about the evolution of accuracy according to the 

complexity. For that, the retinal vessel segmentation methods 

are depicted into a 2D Cartesian space where horizontal and 

vertical coordinates correspond to the complexity and the 

accuracy rate, respectively, as shown in Fig 4. Our method 

reaches the less complexity with a higher accuracy rate 

among those methods, as represented by the blue point. For 

other work, the growth of the accuracy rate has been always 

associated with the rise in complexity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSION 

Several ocular and associated pathologies affect the retina 

such as hypertensive retinopathy, diabetic retinopathy and 

AMD. These pathologies can cause blindness so, early 

detection is important to prevent advanced stages. The 

diagnosis is made by segmentation of the retinal vascular tree 

(RVT) since these diseases have effects on the vascular 

network and the analysis of this network facilitates the 

diagnosis. Several Deep Learning architectures have been 

proposed for the automatic segmentation of RVT, respecting 

the constraints, the performances that must be improved 

while reducing the complexity. In this context, the objective 

of this work is to propose a new architecture and apply it in a 

new segmentation method, to maintain high performance 

while reducing complexity. Therefore, we proposed an 

architecture inspired by the segnet architecture by replacing 

the standard convolutional blocks with the reduced 

complexity convolutional blocks of the MobileNet 

architecture. The evaluation of this architecture is done with 

the DRIVE database, based on these metrics Accuracy, 

Sensitivity, Specificity, Precision and Dice. The obtained 

results for these metrics are respectively 97.08%, 82.38%, 

98.55%, 81.12% and 84.25%. The total number of parameters 

is 3.4M. As a result, the segmentation performance is 

improved, the accuracy is increased from 95.79% to 97.08%, 

and the complexity is reduced by more than 4 times since the 

total number of parameters is reduced from 14.7M to 3.4M. 

We can therefore say that we have achieved our objectives of 

improving performance and reducing complexity. 
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