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Abstract 

Diabetic retinopathy (DR) causes blindness in young adults 

worldwide. Thanks to early detection, patients with diabetic 

retinopathy can be properly treated in time, and the 

deterioration of diabetic retinopathy can be prevented. Early 

detection is therefore essential for screening the DR disease. To 

perform a supervised DR classification, we need labeled images, 

otherwise we are required to conduct a traditional manual 

diagnosis, with the help of an ophthalmologist, which is time-

consuming and costly expensive. The question here is what we 

can do if we have unlabeled images? We can benefit from the 

knowledge of a pre-trained classifier using a labeled base, but 

the problem is that the images in the datasets may come from 

different domains. To solve all these problems, we propose a 

three-step method: first, train a classifier using a labeled 

dataset; second, adapt the unlabeled dataset (source domain) to 

the labeled dataset (target domain) using Least Squares Cycle-

GAN; and finally, classify these adapted images using the pre-

trained classifier on the target domain. Following this 

procedure, the results show that we succeeded in classifying 

77% of unlabeled images, meaning that the ophthalmologist can 

concentrate on the remaining 23% of cases for diagnosis, which 

is clear time saving. This approach is contribution to the existing 

supervised learning and transfer learning methods that are 

requiring a lot of labeled data, which is always not available in 

DR screening due to the time consuming of image fundus 

annotating. 

Keywords  

Diabetic Retinopathy Grading, Generative Adversarial Network, 

Domain Transfer, Cycle-GAN, Unlabeled Dataset, Retinal image.   

I. INTRODUCTION  

A supervised classification of DR necessitates a labeled 
dataset, which is not always readily available. Domain 

adaptation consists of the transfer a trained model in a source 

domain, where dataset may be limited and unlabeled, to a 

target domain with labeled dataset. 
In the context of this study, a private database will be 

considered for the automatic diagnosis of the RD. However, 

this private dataset, though interpretable by expert 

ophthalmologists, is limited in size and exhibits an imbalance 

in diabetic retinopathy stages, along with a lack of labeling 

for different signs of DR. Consequently, the application of 

supervised machine learning approaches for classifying or 

segmenting these signs is difficult and even practically 

impossible. Domain adaptation will then be helpful to 

classify this dataset and more generally non-labelled datasets. 

 Then, we use our private retinal fundus image dataset [1] as 

the source domain and the IDRiD (Indian Diabetic 
Retinopathy Images Dataset) [2] as the target domain. 

To address this, we propose a Least Squares (LS) Cycle-GAN 

to generate fundus images. This adaptation enhances the 

original Cycle-GAN framework by adopting a least squares 

loss function, which mitigates issues like the Vanishing 

Gradient problem [3] during training and preserves essential 

retinal fundus image characteristics.  

 

 

 

 

 

 

 

 

 
Figure 1 : Retinal Unpaired images from different domain, IDRiD 
dataset is the Source Domain (X) and Private dataset is the Target 

Domain (Y). 
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Before initiating domain adaptation, we first prepared a 

classifier using the IDRiD dataset (Target Domain) to classify 

diabetic retinopathy stages. The IDRiD dataset supports both 

diabetic retinopathy grade classification and segmentation of 

various associated signs.  

To verify the quality of the generated images, the Image 

Spatial Quality Evaluator (BRISQUE) and Shannon Entropy 

were employed to assess each generated image and its 

original. Finally, to validate the effectiveness of our domain 

adaptation approach, we use t-Distributed Stochastic 
Neighbor Embedding (t-SNE) Visualization [4] for domain 

alignment. This visualization will show how closely the 

generated images align with the surface of the target domain 

images.  The remainder of this paper is organized as follows: 

Section II reviews related work, including applications of 

GANs in fundus imaging and transfer learning approaches for 

DR grading. Section III describes our proposed method in 

three steps: DR Grading, LS Cycle-GAN, and classification 

of adapted images. Section IV details our experiments, 

including the framework, datasets, data processing, and 

evaluation metrics. Finally, we present the results and 
conclude the paper. 

II. RELATED WORK  

The definition of a domain for images in the context of 

machine learning and computer vision refers to a specific 

distribution of images along with their corresponding labels 

or characteristics such a set of images and the associated 

features or labels that related to those images. This can 

include various attributes such as pixel values, color 

histograms, texture features, object classes, or any other 

relevant information that characterizes the images within that 

domain. Formally, a domain 𝐷 is represented by a pair (𝑋, 
𝑃(𝑋)) where 𝑋 is the feature space or input space where the 

data points reside, it defines the possible values that the data 

instances can take, and 𝑃(𝑋) is a probability distribution over 

the feature space 𝑋, it specifies the likelihood or probability 

of observing different values or configurations of features 

within the domain [5]. 

The differences between domains can manifest themselves in 

variations in the feature space or in the data distribution [6]. 

The Generative Adversarial Networks (GANs) [7] are 
sophisticated deep learning techniques widely used for 

realistic image generation across several applications. 

 

The architecture of GANs consists of two key components: a 

Generator Network that learns to produce data 

indistinguishable from real data, and a Discriminator 

Network that learns to distinguish between generated data 

and real data. This adversarial setup ensures that the generator 

continually improves its ability to produce realistic outputs, 

guided by the feedback from the discriminator. 

 
The Cycle-GAN [8], a type of generative adversarial 

networks (GANs), is among the recent advancements in 

domain transfer methods. It comprises two paired generator-

discriminator modules, tasked with learning two mappings: 

from domain X to domain Y {G, 𝐷𝑦} and the inverse Y to X 

{F, 𝐷𝑥}. The generators (G, F) translate images between the 

source and target domains, while the discriminators (𝐷x , 𝐷𝑦) 

aim to distinguish the original data from the translated ones. 

The Cycle-GAN is guided by two losses, the adversarial loss 

𝐿𝑎𝑑𝑣 and the cycle-consistency loss 𝐿𝐶𝑦𝑐𝑙𝑒 . 

Adversarial loss enhances the local realism of the translated 

data. If we take the adversarial loss of the translation from 
domain X to domain Y as an example, it can be written as 

follows: 
 

𝐿𝐺𝐴𝑁(G,  𝐷𝑌 , X, Y) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log (1 − 𝐷𝑌(𝐺(𝑥)))] 

+ 𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦)[log 𝐷𝑌  (𝑦)] 

 (1) 

 
The expectation terms 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥)  and 𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦)  denote 

averages over the data distributions 𝑝𝑑𝑎𝑡𝑎 (𝑥) and 𝑝𝑑𝑎𝑡𝑎 (𝑦). 
The loss of cycle consistency overcomes the requirement for 

matched training data. The concept of cycle consistency loss 

is that the converted data from the target domain can be 

transcribed back into the source domain, x → G(x) → F 

(G(x)) ≈ x, which can be noted as follows:  

 

𝐿𝐶𝑦𝑐𝑙𝑒(𝐺, 𝐹) =  𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [‖𝐹(𝐺(𝑥)) − 𝑥‖
1

]

+ 𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦)  [‖𝐺(𝐹(𝑦)) − 𝑦‖
1

] 

 (2) 

 
The ‖ . ‖1  denotes the 𝐿1 norm, measuring the absolute 

difference between two vectors, employed in the cycle-

consistency loss 𝐿𝐶𝑦𝑐𝑙𝑒(𝐺, 𝐹) to ensure consistent mappings 

between X and Y. 

The application of GANs and their various versions, such as 

Cycle-GAN, in ophthalmology imaging has garnered 
significant attention for their effectiveness across various 

facets of medical image analysis as we will explore in the 

next section.  
 

A. Applications of Generative Adversarial Networks in 
fundus image  

 
Various studies have leveraged Generative Adversarial 

Networks (GANs) for diverse applications in medical 

imaging. In reference [9] , researchers applied GANs to 

denoise retinal OCT (Optical Coherence Tomography) 

images, aiming to improve image quality and diagnostic 

accuracy. Another study [10] focused on enhancing the 

resolution of fundus photography using GANs, which is 

crucial for detailed examination of the retina. Research in 

reference [11] explored GAN-based data augmentation 

techniques specifically for OCT chorio-retinal segmentation 
tasks, enhancing the robustness and generalizability of 

segmentation algorithms. Additionally, reference [12] 

investigated GANs for optic disc and cup segmentation in 

fundus photography, demonstrating advancements in 

automated analysis and diagnosis of glaucoma. These studies 

illustrate the versatility of GANs in medical imaging, 

addressing various challenges from denoising and resolution 

enhancement to segmentation and diagnostic support. 

These advancements highlight the potential of GANs, 

opening new avenues for precise and personalized diagnostic 

applications in ophthalmology. For example, researchers in 

Ref. [13] utilized Cycle-GAN to successfully translate 
images from the ultra-widefield fundus photography (UWFP) 
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domain  to the traditional fundus photography (TFP) domain, 

preserving the    essential structural details of the retina and 

optic nerve. Another study [14]. 

Recent advancements in GANs have also been tailored for 

domain adaptation in medical image segmentation. One 

notable example is the Edge-Cycle-GAN [15], designed to 

retain edge details during image translation between domains 

and more recently, the Structure-Preserving Cycle-GAN (SP 

Cycle-GAN) have been introduced  [16] to enhance 

segmentation accuracy in unsupervised medical image 
adaptation.  

B. Transfer learning approaches for Diabetic Retinopathy 
Grading (RD): 

 
Machine learning, deep learning and transfer learning 

technologies have made remarkable progress in the 

automated detection of DR. Several research studies have  

explored to integrate domain adaptation into the 

convolutional neural network [17][18]. To address the 

problem of insufficient labeled data, authors in [17] sought to 

refine the pre-trained InceptionNet-V3 model for 

classification by subsampling a smaller version of the 
EyePACS [19] dataset and testing on a previously unseen 

subset of the data, with an accuracy of 90.9%. In the author 

study [18] the VGG19  model  [20] was trained  using the 

IDRiD dataset and extracted features from retinal images, 

which are then fed into different classifiers such as logistic 

regression (LR), SVM (Support Vector Machine) and KNN 

(K-nearest neighbors). This work has demonstrated that 

transfer learning is potentially effective for retinal image 

classification by distilling useful knowledge from source 

images. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Moreover, a recent innovative study [21] introduced a source-

free transfer learning approach for diabetic retinopathy 

classification using a target generation model. This method 

aims to enhance diabetic retinopathy detection accuracy 

through the benefits of transfer learning for automated retinal 

image analysis. In this paper, we are considering further this 

transfer learning and we will use it to evaluate fundus images 

for the diabetic retinopathy (DR) screening. In fact, we aim 

to solve the problem of images classification from unlabeled 

databases (Source Domain), by classifying images generated 

by the LS Cycle-GAN from the pre-trained source model 

with images from labeled databases (Target Domain).  

III. THE PROPOSED METHOD  

To classify an unlabeled dataset using supervised learning, 

our proposed method involves three sequential steps. Figure 

2 summarizes these steps, with the first step involving the 

preparation of a pre-trained classifier using the IDRiD dataset 

[2]. The second step employs the LS Cycle-GAN to adapt the 

unlabeled datasets (Source Domain) to the domain of the 

labeled dataset (Target Domain). Finally, the third step 

involves classifying these adapted images using the classifier. 

A. Deep Neural Network and RD Grading “STEP 1” 

In the first step we utilizing a pre-trained DenseNet121 model 

[22] (Figure 2, Step 1) on the IDRiD dataset to classify 

generated images. Fine-tuning begins by loading the pre-

trained DenseNet121 model and adapting it for target 

classification. Initially, we remove the last fully-connected 

layer, originally designed for 1000 classes in ImageNet, and 

replace it with three dense layers: the first and second with 
1024 and 512 neurons respectively activated by ReLU, and 

finally an output layer with 2 neurons activated by softmax 

for a binary classification (No RD, RD). 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Identifying the best combination of hyperparameters is 

crucial to achieves optimal performance during both the 

« warm-up » and "deep tuning" phases of training-validation. 

  

The transferred 
unlabeled retinal 

fundus image 
Dataset 

Domaine Transfer based on 
Cycle GAN approach 

 

 

DR Classification of the 
Transferred unlabeled retinal 

fundus images based on trained 

DenseNet121 model with another 
labeled Dataset 

0 : No RD 
1 : RD 

DR diagnosis 

DenseNet121 Architecture  
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Network    Transfer 

Testing 

Training 

Pre-trained 
CNN model 

 
with 1000 
ImageNet 

weight 

Model     
Loading 

unlabeled 
retinal fundus 
image Dataset 

Source Domain  

Labeled retinal 
fundus image 

Dataset 

Target Domain 

Adapted to the 
Target Domain  

Proposed Method: DR screening 
within unlabeled retinal fundus 
image dataset based on Cycle 

GAN approach 

224 *224*64 
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Step 1 

Step 2 

Step 3 

Figure 2 : Framework of our Proposed Approach and its Different Steps in Domain Adaptation for Diabetic Retinopathy Classification of the 

Unlabeled Retinal Fundus Images 
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The model’s weights are initially frozen to retain previously 

learned features. Then, training proceeds using the Adam 

optimizer with a learning rate (LR) set to {10-5, 10-4}, 

employing a binary cross-entropy loss function. To prevent 

overfitting, we implement a 10-fold cross-validation strategy. 

The warm-up phase spans 120 epochs, followed by 80 epochs 

for the fine-tuning phase. Early stopping criteria are applied 

throughout both stages, halting training if validation accuracy 

fails to improve over 20 consecutive epochs. A 

comprehensive summary of hyperparameters is provided in 
Table 1. 

Table 1: Specified Hyperparameters of Classification 

Model. 

Learning 

rate 

Optimizer Batch 

size 

Epochs Early 

stop 

{10-5, 10-4} Adam {12 ;32} {120,80} 20 

After the initial training, the model enters a secondary 

training phase to further enhance its performance. This is 

demonstrated in recent studies [23], which have shown the 

effectiveness of "deep tuning," involving the fine-tuning of 

all model layers under appropriate conditions. The second 

step, based on domain adaptation, involves the use of the 

Least-Square Cycle-GAN framework to adapt the unlabeled 
dataset from the source domain (Private dataset) to the 

labeled dataset in the target domain (IDRiD dataset). That is 

the object of the next section. 

 

 

 

 

 

 

 

 

 

 

 

B. Least Square Cycle-GAN “STEP 2” 

Least Squares Cycle-GAN (LS) Cycle-GAN was 

implemented by updating the original Cycle-GAN loss in 
Equation (2), focusing specifically on GAN losses (1). We 

moved from the standard GAN loss function to LSGAN in 

Equation (3) [3].  

 

This modification aims to mitigate issues such as vanishing 

gradients, which are particularly critical in medical image 

generation tasks like producing retina images.  

The LSGAN-specific loss function replaces the adversarial 

loss between the generators G and F, ensuring better 

preservation of essential structural details in the generated 

images. This update is crucial for improving the fidelity and 

reliability of generated images, thereby supporting accurate 

medical diagnosis and analysis, it can be written as follows: 

𝐿𝐿𝑆𝐺𝐴𝑁(G,  𝐷𝑌  , X, Y) =  
1

2
𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥)[(D(𝑥) − 1)2] 

                                      + 
1

2
𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦) [G(D(𝑦))

2
]  

(3) 

LS Cycle-GAN loss is defined as follows:  

 

𝐿𝐿𝑆𝐶𝑦𝑐𝑙𝑒𝐺𝐴𝑁(𝐺, 𝐹, 𝐷𝑥 , 𝐷𝑦) =  𝐿𝐿𝑆𝐺𝐴𝑁(G,  𝐷𝑦 , X, Y) 

                                                + 𝐿𝐿𝑆𝐺𝐴𝑁(F,  𝐷x , Y, X)  

             + 𝐿𝐶𝑦𝑐𝑙𝑒(𝐺, 𝐹)  

(4) 

 

Our method enables retinal images to be generated by 

adapting unannotated images from a source domain X to an 

annotated target domain Y, overcoming the problem of 
unannotated retinal databases. Figure 3 simply illustrates the 

LS Cycle-GAN-based domain transfer method, which 

utilizes two types of inputs: images from the source domain 

(unlabeled database) and images from the target domain 

(labeled database). 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

After generation, generators G and F produce two adapted 

images for the target and source domains, respectively. To 

assess the quality of the generated images, we employ the 

discriminator and the LSGAN loss function, updating the 

weights of the generators and discriminator to enhance 
generation. 

Subsequently, both cycles are completed to compute the 

cycle loss. This involves reversing the roles of the two 

𝑳𝑪𝒚𝒄𝒍𝒆 (G, F, X) 

𝐆 
F Real x Generated y : G(x) Cyclic x : F(G(x)) 

𝑫𝒚 

𝑳𝑳𝑺𝑮𝑨𝑵(𝑮,  𝑫𝒙 , 𝑿, 𝒀) 

Real y Generated x : F(y) 
Cyclic y : G(F(y)) 

𝑫𝑿 

𝑳𝑳𝑺𝑮𝑨𝑵(𝐅,  𝑫𝐲 , 𝒀, 𝐗)  

𝑳𝑪𝒚𝒄𝒍𝒆 (𝑮, 𝑭, 𝒀) 

Figure 3 : Domaine Transfer based on Least Square Cycle-GAN approach 
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generators and regenerating the input images (real images), a 

process known as "Cyclic image". The transferred unlabeled 

retinal fundus images dataset serves as input for the classifier, 

which has been pretrained on the target domain. This allows 

us to leverage its expertise in this domain. 

C. Classification of Adapted Images “STEP 3”  

 
The third step is the final stage, such as we validate our 

method and achieve our goal of Diabetic Retinopathy 

screening of an unlabeled dataset using LS Cycle-GAN. 
The transferred unlabeled retinal fundus images dataset 

serves as input for the classifier, which has been pretrained 

on the target domain. This allows us to leverage its expertise 

in this domain.  

IV. EXPERIMENTS 

A. Experimental Framework and implementation details 

 
1) Datasets 

The private dataset (1) includes 1,310 fundus images that can 

be interpreted by an ophthalmologist. For each image, the 
ophthalmologist indicated its stage, either “No RD” (no 

diabetic retinopathy) or “RD” (presence of diabetic 

retinopathy). Images were collected and captured using a 

portable, mobile retinal camera called oDocs nun IR. It 

provides high-resolution imaging (2880 x 2160 pixels) for 

precise retinal scanning, featuring a wide field of view (45 to 

55 degrees) and manual focus (-20D to +20D). Compatible 

with Android smartphones, it utilizes a private dataset 

collected by El Mehdi Chakour from Omar Drissi Hospital in 

Fez, Morocco, under the supervision of Pr. Idriss Benatiya 

Andaloussi [1]. 
 

The Indian Diabetic Retinopathy Image Dataset (IDRiD) [2] 

includes information on the severity of diabetic retinopathy. 

Medical specialists evaluated all 516 photos, which included 

a variety of clinical situations related to diabetic retinopathy. 

Diabetic retina photos were divided into four groups, from 0 

(no obvious DR) to 4 (severe DR). This database will provide 

us with the annotations that we need to improve the quality 

and diversity of annotations in our private database. We take 

group 0 for the class without RD and the other 4 groups for 

the RD class. 

 

2) Data Progressing & Augmentation 

 
Preprocessing of retinal images is essential to improve the 

outcomes of any analysis using these images. The 

preprocessing chain [1] consists of three main parts. Firstly, 

noise reduction is performed using a denoising filter such as 

the Gaussian filter (GF). Secondly, contrast enhancement is 

achieved using Contrast-Limited Adaptive Histogram 
Equalization (CLAHE). Lastly, the intensity values of pixels 

in an image are adjusted based on a gamma correction curve 

(GCC). Additionally, the images are cropped around the 

retina to eliminate dark aspects and spatially for IDRiD 

images. The images are then resized to (224×224). Finally, 

image normalization is applied to scale pixel intensities from 

[0,255] to [-1,1].  

 

3) Evaluation Metrics 

 
a) Image Quality Measurements 

 

It is crucial to ensure that the domain adaptation has not 

contributed to degrading the image quality during transfer. To 
this end, we evaluate the quality of images in the private 

database before and after the domain transfer in order to 

measure the influence of the transfer on image quality.  

We use unreferenced image quality measures, such as Image 

Spatial Quality Evaluator (BRISQUE) [24], [25] and Entropy 

H(p) [25], to objectively assess these changes. BRISQUE is 

based on a regression model that relates features extracted 

from the image to predicted human quality scores. A score 

between 0 (best) and 100 (worst) is obtained in each case. 

Entropy quantifies the amount of information in an image, 

ranging from 0 to 8, with higher entropy values indicating a 
greater level of detail. The mathematical equation of Shannon 

Entropy H(p) is given by: 

𝑯(𝒑) = − ∑ 𝑝(𝑗)

𝐿−1

𝑗=0

log 𝑝(𝑗)  

(5) 
 

Where p is the number of normalized histograms and j is the 

number of intensity levels. 

 

b) Performance Metrics for Classification 

 

The classification metrics offer valuable insights into various 

facets of the model's performance. These metrics assess the 

accuracy of data for the two classes, as well as the sensitivity 

of the model. 

 

 Sensitivity: The proportion of correctly predicted 

positive observations in the class to actual positive 

observations. 

 

Sensitivity =
 True Positive

True Negative + False Negative
 

(6) 

 

 Accuracy: It’s the ratio of correctly predicted 

observations to all observations. 

 

Accuracy =
True Negative +  True Positive

Total
  

(7) 

B. Results of our proposed method  

 
Firstly, we verify the quality of images before and after 

domain transfer adaption, using the Image quality 
measurements. Table 2 shows that the application of domain 
transfer preserves image quality. The results show some 
improvement in image quality after the application of domain 
transfer, with a significant reduction in the mean BRISQUE 
scores and a slight increase in mean Entropy for No RD and 
RD images. This suggests that domain transfer is effective in 
improving the clarity and detail of fundus images. 
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Table 2: Impact of Domain Transfer on Image Quality 

 Mean Brisque Mean Entropy 

Images No RD RD No RD RD 

Original 
Images 

53,61162 52,07758 7,05221 7,04966 

Adapted 
Images 

18,35729 20,92824 7,18680 7,17876 

Secondly, the classification employs a pre-trained classifier 

trained on the IDRiD dataset (Table 3). The DenseNet121 

model was chosen for its superior performance during testing, 

achieving a test accuracy of 0.9128 and sensitivity of 0.9199, 

surpassing VGG16 (Test accuracy: 0.8313, Sensitivity: 

0.8325) and Inception-V3 [26] (Test Accuracy: 0.8623, 

Sensitivity: 0.8701).  

Table 3 : Obtained results on model evaluation, according to 

accuracy and sensitivity values. 

 IDRiD database 

Model Accuracy Sensitivity 

DenseNet121 0.9128 0.9199 

Inception-V3 0.8623 0.8701 

VGG16 0.8313 0.8325 

 

The results presented in Table 4 illustrate the effectiveness of 

our domain adaptation approach using the DenseNet121 pre-

trained model on the IDRiD dataset. Initially, the model 

applied to the unannotated private database achieved an 
accuracy of 70.15% and a sensitivity of 71.43%. 

 However, after domain adaptation, the DenseNet121 model's 

performance increased considerably, reaching an accuracy of 

77.41% and a sensitivity of 78.28%. This significant 

improvement confirms the effectiveness of using the pre-

trained model to classify the generated images. 

 

Table 4: Performance of Classification of Images of DR 

Using the DenseNet121 Pre-trained Model on the IDRiD 

Dataset 

 DenseNet121 

Dataset Accuracy Sensitivity 

Original private  0,7015 0,7143 

Adapted private 0,7741 0,7828 

 

The classifier has never seen or trained on the private 
database, so these are directly the test results. We were able 
to classify 77% of the unlabeled images, meaning that the 
ophthalmologist can only focus on the remaining 23% of 
cases for diagnoses. To have a clear idea on the generated 
images, we call the t-Distributed Stochastic Neighbor 
Embedding (t-SNE) [4] which is a powerful nonlinear 
technique to reduce the dimensionality of high-dimensional 
feature representations to a low-dimensional space (typically 
two or three dimensions) for a clear visualization.  

 

 

Figure 4 : t-SNE visualization of image characteristics of source, 
target and generated domain. 

In our context, when the classifier performs effectively, 
features extracted from images belonging to the same category 
tend to cluster closely together in the t-SNE plot. The t-SNE 
visualization is illustrated in Figure 4. The blue dots (source) 
are clearly separated from the red dots (target) and green dots 
(generated), indicating significant differences between the 
source and the target domains. The green dots are mainly 
located between the red and the blue dots, showing that the 
generated images have intermediate characteristics and are 
still closer to the red dots than the blue ones.    

In addition, we can see a visual comparison of the generated 
images in Figure 5. We note that an excellent adaptation of 
these images (B) is ensured and a good similarity to the target 
domain images (C) is obtained. 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 5 : (A) the real images of the private database (source 

domain), (B) the generated images of the private database adapted 
to the IDRID database domain, and (C) the real images of the 

IDRiD database (target domain). 

B C A 
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V. CONCLUSION 

 In this work, we introduce LS-Cycle-GAN, a domain 
adaptation method designed for diabetic retinopathy 

classification using unlabeled images from the source domain 

and a pre-trained classifier on images from the target domain. 

Our approach focuses on maintaining high image quality 

throughout the adaptation process. The obtained results 

illustrate successful adaptation of generated images in the 

target domain. Our proposed method reduces significantly 

the manual diagnosis workload for ophthalmologists. 

Specifically, it reduces the need for manual diagnosis to only 

23% of unconfirmed images, while automatically diagnosing 

the remaining 77%. This streamlined approach not only 
optimizes the diagnostic process but also saves considerable 

time, demonstrating the potential of LS-Cycle-GAN in 

enhancing efficiency and accuracy in medical image analysis. 
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