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Présentation

Le domaine du véhicule autonome a connu un développement rapide au cours
des dernières décennies avec l’essor conjoint des technologies d’apprentissage pro-
fond et du calcul à grande vitesse. Plusieurs niveaux d’automatisation de la
conduite ont été définis pour préparer le déploiement du véhicule autonome (VA)
dans le monde réel. Les derniers avancements considèrent un VA évoluant dans
des scénarios urbains hautement interactifs avec divers usagers de la route sans
supervision humaine. Actuellement, les SDV ne rivalisent avec les conducteurs
humains que sur des scénarios restreints tels que les autoroutes et la conduite
urbaine reste un défi majeur. La plupart des prototypes avancés ont tendance
à être trop prudents en milieu urbain en raison du manque de compréhension
de la dynamique des agents du trafic. En effet, la diversité des comportements
combinée à l’incapacité de communiquer directement avec les autres usagers de
la route pour connaître leur intention rend la prise de décision très compliquée.
En conséquence, cela génère des embouteillages ou des prises de risques des con-
ducteurs humains qui effectuent parfois des dépassements inappropriés. Même
si plus de 2 millions de Km de données de conduite ont déjà été collectées par
la société Waymo, cela reste encore insuffisant pour traiter tous les cas de figure
et atteindre une autonomie complète. De plus, il est difficile de garantir que le
SDV se comporte en toute sécurité même sur une zone géographique délimitée
car le nombre de scénarios à tester est exponentiel en nombre d’agents, topologies
du réseau routier, style de conduite etc. Une couverture complète de l’espace
des scénarios est impossible surtout si la collecte de données réelles est nécessaire
pour chacun d’eux. Toutefois les catégories de scénarios critiques peuvent être
identifiées et plusieurs instances peuvent être générées artificiellement de manière
automatique. La simulation de trafic apparaît comme un outil prometteur pour le
développement incrémental du VA car elle permettrait de tester de façon interac-
tive des modèles sur des scénarios arbitraires à faible coût. La simulation permet
de rejouer des scénarios pour mieux comprendre l’ origine des erreurs de décision
ou d’interprétation, tout en faisant varier les paramètres de la scène. Lors de mise
à jour du système, il est également important de pouvoir relancer un ensemble
exhaustif de tests pour vérifier que les modifications apportées n’aient pas de con-
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séquences indésirables. La simulation apparaît donc essentielle au développement
incrémental d’un système de navigation autonome dont l’utilisation est destinée à
être progressivement étendue une fois sa sûreté garantie. Les garanties de sécurité
peuvent, elles aussi, être apportées de manière quantitative par la simulation, ce
qui permet d’envisager la mise en place de contrat d’assurance. Cependant, les
cas d’utilisation pratiques nécessitent que le simulateur fournisse des interactions
sociales réalistes entre tous les agents du trafic, de sorte que le SDV en cours
d’évaluation puisse être testé comme dans des conditions réelles. Cette exigence
est capitale car l’évaluation des performances en boucle fermée n’a de valeur que
si les agents du trafic simulés se comportent comme le ferait un agent humain. De
plus, le simulateur de trafic devrait également fournir des interactions cohérentes
dans des situations inhabituelles et rares où les bons réflexes doivent être adoptés.
En cas d’urgence, l’agent de conduite est censé s’adapter et éviter les collisions tout
en respectant les règles de circulation. La capacité à extrapoler le comportement
des situations pour lesquelles on ne dispose pas nécessairement de démonstration
de référence est l’un des défis majeurs de la simulation de trafic. Dans ce travail,
nous proposons une approche pour apprendre des politiques de navigation de type
humaine pour la simulation de trafic capable de généraliser des comportements
de conduite sûrs et réalistes pour de nouveaux scénarios interactifs. Nous fon-
dons notre méthode sur la combinaison de l’apprentissage par imitation (AI) et
de l’apprentissage par renforcement (AR) pour tirer parti des données de conduite
expertes ainsi que des connaissances du domaine. Nous développons d’abord une
architecture hiérarchique pour simplifier le processus d’apprentissage de la tâche
de conduite. Notre politique de conduite consiste en la combinaison d’un mod-
ule de routage traditionnel et d’un planificateur de manœuvres implémenté avec
un réseau de neurones qui génère une trajectoire à court terme convertie en une
séquence de commandes par une sous-couche de contrôle. Le module de routage
s’appuie sur le graphe du réseau routier et sur la destination finale pour déter-
miner un chemin de référence indépendant du trafic tandis que le planificateur de
manœuvres génère une trajectoire compatible à la fois avec le chemin de référence
et le contexte local de scène. Afin de guider la prise de décision, nous proposons
un espace d’action en coordonnées curvilignes basé sur le chemin de référence de
sorte que le planificateur de manœuvres puisse spécifier la trajectoire à suivre en
termes de déplacement longitudinal et latéral. Nous proposons également un es-
pace d’observation sous forme vectorielle avec plusieurs types de champs de façon
à accélérer la simulation par rapport à des formats plus conventionnels comme
des images . L’interprétation du contexte de la scène est rendue possible par dif-
férentes architecture de réseau de neurones que nous avons conçu pour encoder
l’observation dans un espace latent que le planificateur de manœuvre peut en-
suite convertir. Nous montrons que ces réseaux peuvent apprendre avec précision
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à planifier des trajectoires à court terme en boucle ouverte de la même manière
qu’un conducteur humain, mais nous remarquons que les performances en boucle
fermée pour de longs horizons de simulation sont limitées. Ce problème est lié au
décalage distributionnel (distributionnal shift) puisqu’en boucle fermée, l’agent,
en prenant des actions, modifie progressivement sa distribution d’état par rapport
à celle de l’expert d’origine ce qui conduit à des erreurs de décisions qui se cu-
mulent sur les nouveaux états visités. Pour limiter la dérive de trajectoire, nous
proposons d’intégrer au planificateur une structure autorégressive, de façon à ce
que chaque action du plan ait une influence sur le futur état latent qui condition-
nera la génération de l’ action suivante. Nous montrons que grâce à l’ ajout de
données synthétiques de simulation, la version auto-régressive du planificateur de
trajectoire permet de suivre plus étroitement la trajectoire de l’ expert en simu-
lation que la première version qui modélise la séquence d’actions du plan comme
une suite de variables aléatoires mutuellement indépendantes. Un autre avantage
notable est que la trajectoire est généralement plus régulière car le modèle est
mieux capable d’intégrer les contraintes de variation d’états entre deux étapes
successives. Toutefois, nous remarquons que notre politique de conduite n’est pas
toujours capable de réagir de façon cohérente lorsqu’elle commence à dévier: des
collisions avec d’autres agents peuvent parfois survenir mais il arrive aussi que
l’ agent sous contrôle en évite certaines en sortant de sa voie. Afin d’enseigner
à l’agent des connaissances a priori sur la tâche, nous avons également proposé
d’entraîner notre politique de conduite par apprentissage par renforcement afin
que l’agent puisse au moins éviter les erreures les plus triviales comme les acci-
dents ou la conduite hors route lorsqu’il fait face à de nouvelles situations. En
effet, les simulations et le processus d’ exploration permettent à l’agent de générer
un ensemble de nouvelles expériences qui viennent compléter la compréhension de
la tâche. Nous développons plusieurs variantes d’algorithmes de type ’actor-critic
policy gradient’ pour apprendre des comportements de conduite sûrs pour de long
horizon de simulation. Nous expliquons en profondeur comment configurer ces al-
gorithmes de façon à stabiliser l’amélioration graduelle des performances : nous
étudions notamment l’influence du processus d’ exploration, celle de la fonction
d’évaluation et enfin l’influence de prétraitement. Nous expliquons ensuite com-
ment améliorer les performances de navigation sur de nouveaux scénarios non
inclus dans la base de scénario d’entraînement. Nous montrons que le décou-
plage de l’entraînement de la fonction d’évaluation et de la politique ainsi que le
partage d’un réseau pour encoder l ‘observation ont un rôle capital dans la capacité
à généraliser de nos politiques de navigation. Il est ainsi possible pour la poli-
tique de généraliser des stratégies de conduite sécurisées sur de nouveaux scénarios
sans accroître la taille de la base d’entraînement .Étant donné que la politique
de conduite apprise avec apprentissage par renforcement ne se comporte pas tou-
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jours comme un conducteur humain, il apparaît néanmoins nécessaire d’intégrer
des démonstrations d ‘expert dans le processus d’apprentissage. Les techniques
standards d’apprentissage par imitation qui se limitent à exploiter un ensemble
restreint de données expert souffre toutefois du décalage distributionnelle induit
par la simulation ce qui se traduit par un dérive progressive qui aboutit souvent
sur des collisions. Nous proposons donc d’adapter l’apprentissage par imitation
de sorte que la politique puisse bénéficier d’ expériences de simulation supplémen-
taires pour compenser le décalage distributionnelle. Ce principe est au cœur de
l’Adversarial Imitation Learning(AIL) qui consiste à apprendre une politique qui
doit constamment induire en erreur un discriminateur entraîné à distinguer les
transitions expertes de celles générées en simulation par la politique. Alors que le
discriminateur maximise une mesure de l’écart entre les trajectoires de l’expert et
de la politique, la politique est entraînée avec de l’apprentissage par renforcement
guidée par une fonction de récompense obtenue à partir du discriminateur. Nous
montrons que les méthodes basées sur l’AIL permettent de réduire largement le
décalage distributionnel ce qui se traduit par une meilleure capacité à imiter l’
expert a long terme. Toutefois, les algorithmes se basant sur le principe de l’AIL
peuvent se révéler extrêmement instable notamment parce que la compétition en-
tre le discriminateur et la politique n’est pas toujours équilibrée. Nous étudions
à travers plusieurs expériences l’influence des différents paramètres qui entrent
en jeu dans la stabilisation de cette compétition et proposons plusieurs méthodes
pour réguler les performances du discriminateurs. Les performances de la poli-
tique sont également fortement liées à la forme du signal de récompense dérivé
à partir du discriminateur. Il arrive que le discriminateur fonde son jugement
sur des caractéristiques non pertinentes de l’environnement ce qui a tendance à
désorienter la politique lorsque celle-ci commence à se rapprocher de l’expert.
Nous proposons ainsi une méthode qui s’appuie sur les GAN Wasserstein pour
fournir un signal de récompense plus cohérent se basant sur une estimation de
l’erreur de changement d’état plutôt que sur le couple observation action. Cette
méthode permet non seulement d’obtenir de meilleures performances en termes
d’imitation mais permet aussi d’apprendre une fonction de récompense facile à
interpréter. En complément, nous avons également proposé une nouvelle archi-
tecture de planificateurs de trajectoire pour compenser les écarts par rapport aux
trajectoires des experts lors des évaluations en boucle fermée. L’idée consiste a
prédire la prochaine position à atteindre par l’agent de façon robuste sans être
perturbé par les déviations avant de déduire quelle action effectuée en coordonnée
curviligne. Cette méthode a pour avantage de pouvoir exploiter non seulement
les démonstrations expertes mais aussi des données de simulation arbitraire afin
d’ajuster le modèle de transition d’état Laurent, le modèle de décision inverse
et le modèle de prédiction de position cible. Enfin, après avoir montré comment
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apprendre les règles de base de la circulation à partir d’apprentissage par renforce-
ment et après avoir montré comment imiter les trajectoire d’expert en limitant
la dérive nous avons cherché a développé une méthode permettant de bénéficier
des avantages des deux techniques simultanément. Pour cela nous proposons un
nouvel algorithme d’apprentissage multi-objectifs qui combine deux objectifs basé
sur gradient de politique, l’un calculé avec une fonction de récompense provenant
d’un discriminateur entraîné sur des données réelles et l’autre provenant d’ une
récompense synthétique qui code les règles de circulation. Notre méthode ap-
pelée Multi Objective Policy Optimization (MOPO) collecte séparément deux
ensembles de trajectoires avec notre politique sur des scénarios synthétiques et
réels rejoués avant de calculer les deux gradients de politique associés. Ces gra-
dients sont ensuite recombinés grâce à un optimiseur spécifique qui atténue les
conflits entre les récompenses synthétiques et celles basées sur les données. La
formulation multi-objectifs laisse également la possibilité de combiner différents
types d’expériences générées avec plusieurs dynamiques d’environnement de sorte
que l’agent ne se suradapte pas au trafic rejoué à partir d’épisodes enregistrés.
Nous montrons que compléter les expériences de conduite de notre politique qui
évolue à l’origine dans un trafic réel rejoué, avec des expériences synthétiques
générées en présence d’agents interactifs, a un effet de régularisation sur la poli-
tique, rendant sa stratégie d’évitement des collision plus robustes aux variations
de l’environnement. Nous montrons également que des scénarios entièrement syn-
thétiques aident la politique à mieux comprendre la tâche et notamment l’objectif
à long terme encodé dans le chemin de référence. Nous avons notamment remar-
qué que la proportion de scénarios synthétiques et la diversité de ces scénarios
ont une grande importance dans le compromis final obtenu entre sécurité et im-
itation. Afin de déployer des entraînements à grande échelle avec de nombreuses
simulations sur divers scénarios en parallèle, ce travail a nécessité la conception de
notre propre simulateur de trafic. En effet, une de nos exigences était de pouvoir
charger et rejouer des scénarios réels extraits d”Interaction dataset afin de pouvoir
extraire des démonstrations d’expert compatible avec notre format d’observation
et d’action . Notre travail a permis d’implémenter une ‘framework’ complète per-
mettant d’apprendre des politiques de conduite réalistes à partir d’un ensemble de
scénarios et de démonstrations extraits d’un dataset réel. Notre principale contri-
bution est une méthode d’apprentissage multi-objectifs appelée MOPO qui comble
les lacunes des approches purement basées sur l’apprentissage par renforcement
ou par imitation sans pour autant recourir à l’ intervention d’un expert interactif.
Nous pensons que des travaux futurs pourront s’appuyer sur des approches mono-
agent comme la nôtre pour initialiser un ensemble de politiques de conduite avant
de les améliorer et de les étendre au travers d’une séquences d’entraînements plus
sophistiqués définie par un curriculum. Les applications pratiques de la simula-
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tion de trafic se heurte encore à d’autres limites comme le manque de diversité au
sein de la population des politiques de navigation apprises ou encore les faibles
capacités de coordination entre agents qui nécessite l utilisation de techniques
plus avancées d’apprentissage multi agents.

Mots clés: Simulation de traffic, Apprentissage par imitation, Apprentissage par renforce-
ment.
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Abstract

Self Driving Vehciles(SDV) experienced fast development during the last decades with the joint
rise of deep learning and high speed computation technologies. Currently, SDV are only able
to drive in restricted locations such as highways and lack safety in interactive urban scenarios.
Traffic simulation appears as a promising tool for incremental development of SDV because it
makes it possible to run quantitative evaluation in a risk free setting. However, practical use
cases require the simulator to provide realistic social interactions among all traffic agents such
that the SDV can be tested as in real world conditions. In this work, we propose an approach to
learn human-like driving policies for traffic simulation that can generalize safe driving behaviors
in new and interactive scenarios. We first developed a hierarchical driving policy based on a
routing module combined with a maneuver planner implemented with deep neural networks.
We then learned navigation policies capable of imitating long-term expert trajectories thanks to
the principle of Adversarial Imitation Learning (AIL). In order to benefit simultaneously from
domain knowledge and real data, we propose a new multi objective algorithm that combines
two policy gradients one computed with a data-driven reward computed with a discriminator
trained with AIL and another based on a synthetic reward that encodes basic traffic rules.
Our method resulted in better performances compromise in terms of security and imitation, in
particular thanks to the inclusion of synthetic interactions generated with interactive agents.

Keys words Driving simulation, Adversarial Imitation Learning, Reinforcement Learning.
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Chapter 1

Introduction

Several companies have developed Self Driving Vehicles (SDVs) such as, Motional, Magna
International,AutoX, Cruise, Waymo, Zoox, Aurora and some of SDVs are already deployed in
some federal states in U.S.A (California, Arizona) or in some towns in China (Shenzhen and
Beijing). Self-driving systems still need to progress through the 6 levels of driver assistance
technology advancements defined by the Society of Automotive Engineers. Currently, the last
level of automation where no human supervision is required is far from being reached even if one
of the most advanced company (Waymo) already collected more than 2M km of driving data.
Providing quantitative safety guarantees on arbitrary locations and situations still constitutes
a major challenge, especially if real world tests are systematically required to find out system
deficiencies. Traffic simulation has gained a lot of interest in the recent years because it has the
potential to considerably ease the development of SDV. In this work, we proposed a method
for learning to simulate a realistic background traffic on various driving scenes. In this short
introduction, we motivate the necessity to develop a realistic traffic simulator for advancing
Autonomous driving.

1.1 Autonomous Driving Development

In a first sec.1.1.1, we summarize how self driving vehicles are currently structured and how the
decision making process is implemented. Subsequently in sec.1.1.2, we explain why SDVs still
face some major issues which prevents their large scale development in the real world. Finally
in sec.1.1.3, we explain why simulation is a key tool for developing future self driving vehicles
and highlight what still need to be improved for practical use cases in Autonomous Driving.

1.1.1 Architecture of Self Driving Vehicle

Self driving systems are composed of two main blocks : a perception block and a motion plan-
ning block as shown in fig.1.1. Perception usually consists in providing a local representation
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1.1. AUTONOMOUS DRIVING DEVELOPMENT

of the driving scene localized in a semantic map where routing can be operated. The repre-
sentation is generally the fusion of several data flow collected by various sensors as LIDARs,
Multiple camera, proximity sensors etc [72]. Most advanced solutions provide accurate spatial
representation of the ego agent surrounding reaching a centimetric precision at short range for
the most advanced systems. However in real world condition, representation can still suffer
from substantial issues such as occlusions or inaccurate depth estimation. Another difficultly
comes from the estimation of other agents recent trajectories history which can be incomplete
or blurred. The scene representation is exploited by motion planning module which combines
a prediction module and a planning module.
Motion planning is a challenging problem because it implies to optimize a plan while predicting
the short term trajectories of neighboring agents. End-to-End approaches that avoid explicit
motion forecasting lacks interpretability and reliability because prediction and planning are
closely intertwined[185]. Making consistent plans require to understand the scene context by
first predicting the short term goals of the ego agent neighbors before inferring full trajectories
which then serve to adapt the plan of the ego agent. Interpretable neural motion planners [213,
163] provide an alternative to end-to-end approaches, by maintaining modularity in the archi-
tecture while enabling end-to-end learning. They share a common representation for perception,
prediction and planning leveraging multiple subtasks that constrain the decision making pro-
cess. In order to integrate and select suitable information from the observation i.e change in
traffic light and not only rely on arbitrary geometrical features, specific neural network architec-
ture based on Transformers were developed as the TransFuser [151]. Additionally, model-based
approaches also enable to enforce dynamical constrains for prediction and planning which can
restrict potential future [174]. However, the multi-modal nature of prediction under intention
uncertainty makes planning difficult because all agents interact with each other and the exact
system dynamic is unknown. The diversity of road user as well as the diversity of road networks
increase considerably the complexity of the scene future. Consequently, safety layers are often
added on top of data based planner before the last decision is committed such that simple rules
can be verified and such that undesirable reaction are avoided [196]. It was shown that adding
an hand crafted safety layer considerably reduce the number of collision (by 95%) even if some
failure can still happen. Indeed, even if massive amount of data are available, data-based mod-
els as well as handcrafted system still suffer from generalization issues for edge cases or unusual
situation poorly represented in data [43]. Since appropriate strategies can not always be en-
coded manually or even found in driving data, we except that the driving system will generalize
it trough training. Approaches based on reinforcement learning enables to incorporate basic
rules which are sometime ambiguous in driving data [106]. Model based reinforcement learning
or imitation learning recently proved that optimal plan can be optimized under sophisticated
prediction model [194, 158]. As self driving systems develop, complete performance evaluation
also get more difficult because real world test condition are difficult to reproduce.
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1.1. AUTONOMOUS DRIVING DEVELOPMENT

Figure 1.1: Nominal AD functions according to Autoware [84] and Apollo[41]

1.1.2 Challenges in Urban driving

Self driving vehicles are already allowed to be tested on public roads in some specific locations
such as California from 2014 and in Germany where level 4 autonomous driving [15] is allowed
accord to a federal law. The disengagement reports provided by manufactures shows that large
distances can now be traveled by SDV. However, commercial application are still limited to level
2 autopilot mode on highways [35] and the core obstacle towards a large-scale deployment of
autonomous vehicles is the long tail of rare events that are poorly represented in the data [224].
Multiple accidents of self driving vehicles or safety critical situations have raised great security
concerns. As the performances of self-driving systems become better, it gets also more difficult
to find real world situations that still constitute a danger. This makes real-world experiences
less attractive after some time of development because more expensive to provide valuable
data. Indeed there are exponentially many scenario variations due to the combinatorial number
of possible lane topologies, actor configurations, trajectories, velocity profiles, appearance of
actors and backgrounds and all variations cannot be collected on purpose. Running the risk to
endanger real road user is not worth considering possible. Even if we always use the worst case
driving strategy to take action, it can still lead to failure and it may additionally congest the
traffic as shown in [221]. A systematic and quantitative analysis of self driving system safety
is currently a major concern in addition to the lack of explainability of deep learning based
methods. Deficiencies can come from several sources : occlusion or artefacts in perception
system can harm the prediction which motivated the development of photo-realictic simulator
as Carla [138] or Geosim [24]. Substantial issues also occur during decision making for critical
situations where for instance unexpected reactions of some road user can perturb the planning
module. Several works started to introduce a comprehensive taxonomy for critical scenario as
well as methods to identify them [15, 64]. What represents a suitable risk level is a compromise
between performance and safety. Quantifying risk and performances is made difficult because
it requires a suitable coverage of the scenario space and criteria to define the completeness of
the safety analysis. Systematic methods enable to generate various critical scenarios [36] and
simulation appears as a promising solution to deploy massive evaluation with simple access
to metric computations. The possibility to replay failures and apply specific modifications on
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the scenario is important for incremental development and continuous maintenance. However
rolling out realistic and interactive traffic simulations as in real world conditions is still a major
challenge. Animating various traffic agent in the scene as human would have behaved implies
to master basic driving skills while having access to a deep understanding of human driving
styles. The inherent multi-modality of human driving behaviours requires to learn a diversity
of traffic agents that can cover diverse situation such that evaluation do not simplify real world
complexity. A practical use case consist in simulating a realistic traffic on a new area with
few or no real data available which implies that traffic agents can generalizes consistent and
robust driving strategies. Data based method and especially the one for sequential decision
making are prone to failure when the discrepancy between test distribution and the training
distribution. This problem is known as the distributional shift and highly limits generalization
of data based models for traffic simulation or autonomous driving [43, 176, 30]. In the next
section, we explain what are the limits of existing simulators and motivate our approach.

1.1.3 Traffic simulation for Self Driving Vehicle

Simulators offer the possibility of safe and low-cost development of self driving systems and
it has become common practice to test reliability of ADSs in simulation [120]. First traffic
simulators such as Sumo [119] or Aisum exhibit naive or stereotypical behaviors for the back-
ground traffic because they wew originally designed to study the dynamic of large traffic flows
for anticipating traffic congestion. Rule based traffic agents cannot simulate microscopic traffic
interactions on arbitrary road-maps in a fine grained manner. Microscopic traffic simulation
emerged with the necessity of analysing safety critical scenarios for new self driving systems
based on deep learning. Reproducing failures in an interactive context is crucial to identify
root cause of consecutive decision with counterfactual analysis for instance. However simu-
lating critical scenarios pose a significant challenge because traffic agents need to extrapolate
human like behaviour. More generally rolling out simulation on scenario with no reference data
is problematic since no expert behaviour are available to guarantee the realism of interactions.
Data driven methods at least enable to evaluate how close the learned traffic agents generalize
a human like strategies with respect to human demonstrations on a large test database. Once
imitation performances can be obtained, it is reasonable to expect that well trained traffic
agents may generalize human like behaviour on new scenarios (assuming scenario are similar)
even if we do not have reference trajectories. In any cases we can still use proxy metrics to
measure basic performances based on domain knowledge which enables to identify most unre-
alistic behaviours. Several data-driven traffic simulators recently emerged between 2020 and
2022. Some frameworks such as SMARTS [228], MALib [227] or Nocturne [195] mostly focus
on learning safe multi agent interactions on various road-networks and were designed to de-
ploy training massively in parallel. Their approach takes into account the necessity to grow a
population of policies in a structured way but their main limitation is related to the fact that
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1.1. AUTONOMOUS DRIVING DEVELOPMENT

there is no support with large scale driving datasets for comparison with real traffic. In con-
trast, some simulator were specifically based on data such as the the BARK [13] project which
exploits demonstrations from the Interaction Dataset [214]. Unfortunately the framework was
not designed to support efficient large scale reinforcement training which require a framework
as Rllib [109]. A simulator like CARLA [138] even provide realistic rendering but its main
purpose is more oriented on designing self driving systems rather than learning how to animate
a background traffic. Even if CARLA now provide simplified Bird Eye View rendering there
is currently no support to efficiently load real scenarios and demonstration from large scale
driving dataset Note that we designed our simulator during 2019 and 2020 when few efficient
interfaces existed. It appears that an efficient framework for learning to simulate a traffic needs
an interface to load expert demonstration, an efficient road-map and scenario description as
well as the integration of scalable libraries for multi agent learning and deep learning. A conse-
quent part of our work consisted in developing such a pipeline since simulators that offer such
functionality such as the Driver simulator[94] or the Nuplan simulator[18] were not available 1.
Additionally, there is also the necessity to properly formulate the learning problem behind
traffic simulation. Even if Rule based policies tend to limit unpredictable behaviour, a gap
persists between simulated and real driver behaviours [119]. While first data based methods
such as PredictionNet [83] or Traffic-sim[180] adopted a centralized perspective for traffic sim-
ulation based on graph-based trajectory prediction model, promising works recently embraced
a decentralized approach were single agent driving policies are learnt. BITS [206] formulates
the driving task as a Bi-level Imitation with a high-level intent inference and a low-level driv-
ing behavior imitation. Symphony[74] couple Adversarial Imitation Learning and beam search
technics to refine realistic driving behaviour while preserving diversity. The DriveIRL [147]
learns a planner which generates a diverse set of trajectory proposals subsequently filtered and
scored based on an IRL reward. Modeling human-like driving behaviors with a decentralized
perspective offers a large number of possibility to progressively improve individual driving skill
as well as coordination [228]. We will explain more in detail in the next chapter why we think
that this approach is more promising than an end to end learning method of a centralized traffic
model.
In this work, our main contributions for realistic traffic simulation are:

• A method to learn human like diving policies on real and highly interactive scenarios that
resulted in a first publication ’Learning human like driving policies from real interactive
driving scenes’ for the international conference ICINCO 2022.

• A method for learning driving policies that balances safety and human driving imitation
on interactive or replayed driving scenarios that resulted in a second publication: ’Ex-
ploring the trade off between human driving imitation and safety for traffic simulation’
ITSC 2022.

1Note that those simulators are still at the prototype stage in 2022.
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This manuscript introduces the main steps that led to the develop of those methods. In a first
chapter, we first consider traffic simulation from a global perspective and propose an approach
to learn a first generation of driving policies. In a second chapter, we introduce our driving
simulator and the way we animate traffic agents that are not learning. In a third chapter,
we propose different architectures for our driving policy and some pretraining methods on real
demonstrations to validate our design. In a fourth chapter we explain how to learn robust
driving policies with basic driving skills thanks to reinforcement learning. In a last chapter,
we explain how to learn human-like driving policies robust to unusual situations thanks to
adversarial imitation learning. Finally, we propose a multi-objective algorithm that optimizes
both safety and human imitation for a driving policy on various driving scenarios.
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2.1. LEARNING TO DRIVE IN SIMULATION

In this chapter, we introduce the problem of traffic simulation and propose our approach in
sec.2.1 for learning to animate traffic agents. In a second part in sec.2.2 we detail how we set
up our simulation environment for traffic simulation.

2.1 Learning to drive in simulation

In the introduction, we explained why traffic simulation is so essential for the large scale de-
ployment of self driving vehicles. A traffic simulator can be decomposed in two main parts:
environment components as the road-network, traffic rule items and the pool of driving policies
that enables to animate traffic agents and which constitutes the most challenging part of traffic
simulation. Simulating a realistic traffic for long horizon is crucial for practical applications
but is still not addressed. The main difficulty is to guarantee that all agents can generalize
human like driving behaviours in new situations where no demonstrations are available. In this
work, we propose to decompose the original multi agent problem into several stages to relieve
complexity. We first explain how to model traffic simulation in sec.2.1.1 before defining the
task we aim to solve in sec.2.1.2. Finally, we motivate the way we formulated our learning
problem in sec.2.1.3.

2.1.1 Traffic simulation

We consider traffic simulation as the process of generating a driving episode on a bounded
driving scene for a given temporal horizon H. The driving episode represents the set of tra-
jectories generated in the scene during the temporal range [0, H]. Note that a driving episode
may contain different kind of agents as vehicles or pedestrians and some dynamic part of the
scene as traffic light signals which can also be registered in the episode if necessary.
Definition: driving episode A driving episode on a bounded scene is a set of trajectories
{τ i
tistart:t

i
end
}i∈[1,N ] generated by all the N driving agents that evolved in the driving scene during

the temporal range [0, H].
In order to define how to generate a driving episode we introduce the definition of a driving
scenario
Definition: driving scenario A driving scenario is a tuple S = (M,F , ρ,H,G,Π) composed
of a bounded driving sceneM, a traffic flow process F , an initial state distribution ρ, a simu-
lation horizon H, a goal assignment process G and a pool of driving policies Π.
The driving scenario is provided to the simulator which rolls out the scenario to generate a
driving episode. The time at which driving agents are queried to take a decision for moving is
called the decision step ∆td = 100ms while the time at which the global simulator state is up-
dated is called the simulation step ∆ts = 25ms. The decision period is chosen as ∆td = k.∆ts

such that traffic agents can be modeled in a hierarchical manner1. At the top level there is
1A single agent decision can be applied for several simulation steps.
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2.1. LEARNING TO DRIVE IN SIMULATION

the driving policy that outputs at each decision step an action ait = π(st) that is a high level
representation of the desired trajectory. Subsequently the action is decomposed into control
inputs by the agent controller ut = fcontrol(at, st) at the simulation period. The agent physical
state st can then be updated at each simulation step based on the agent physical model fphysical
and the control: st+∆ts = fphysical(ut, st). We endow each agent of a physical model fphysical a
controller model fcontrol and a policy π. Depending on the agent, the physical model can be a
simple geometrical model, an unicycle or an advanced dynamical model as well as the controller
that can be a simple linear interpolator of states or a PID like controller.

2.1.1.1 Driving scene

The driving scene M of a driving scenario S is composed of a bounded road map on which
traffic agents are supposed to move. A driving scene can be highly complex if it integrates
all the real worlds features. In advanced simulation as Carla[138], the world is modeled in
three dimensions with realistic textures and sophisticated shapes for buildings, trees, bench
but real world details are mainly exploited for application in perception. For decision making
problem, most perception are usually provided with a high level representation to simplify the
problem. A top view representation of the scene is sufficient for local representation of most
of the road-network that does not include important hills that may induces specific driving
patterns. As we mainly consider traffic simulation for vehicles even if pedestrian are also
included, we focus on designing a representation that enables a car to reach it destination
based on traffic rules and the scene context. For this purpose, we introduce a road network
representation that includes all elements that enables to infer how to move and where not move.
Several road-networks representations exist [11, 138] but they were not necessarily designed for
autonomous driving like the OSM format [192]. One representation called the Lanelet2 [150]
was specifically introduced to ease the decision making process for automated driving. We
describe this representation in detail in sec.2.2.2 since it constitutes the basis of our driving
simulator.

Figure 2.1: Road-maps used for traffic simulations
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2.1. LEARNING TO DRIVE IN SIMULATION

2.1.1.2 Driving policy

A driving episode is a set of trajectories generated by traffic agents. Trajectories are compact
representations that can summarize the behaviour of any kind of agent from pedestrians, cyclist
to vehicles. In order to generate individual trajectories we introduce the general notion of muti
agent driving policy πn that maps at each decision step the simulator state st and the goal
assignment of n agents gt to a vector of n actions at = [a1t , ..., a

n
t ]. In general, we consider single

agent driving policy that only consider one goal and output a single action but more general
policies that requires coordination among agents may require the definition of the multi agent
policy as shown in sec.2.1.3.1. As explained above, any single agent driving policy is associate
to a controller that decomposes the action into a sequence of control that enables to update the
agent state based on it physical model. Single agent action represents the desired trajectories to
follow at least up to the next decision step and can have various form as explained in sec.2.1.2.
In order to infer an action, each agent is endowed with an observation model that generates
observations extracted from the global simulation state for each agent. For learning agents, an
observation consists in an ego-centric partial representation of the driving scene as detailed in
the next chapter.3 but for rule based agents that just animate the scene, we can provide more
privileged information.
Since some agent trajectories for a driving episode may be used for downstream learning of
driving behaviors whereas other trajectories of the same episode will just appear though ob-
servations collected by learning agents, we need to introduce another a distinction between
two categories of driving agents. A driving agent that generates trajectories for downstream
learning of driving behaviours is called an actor while a driving agent that just animates the
driving scene is called a traffic worker2. Traffic workers (traffic agents) populate the driving
scene but their trajectories: the sequence of consecutive observations and actions are not stored
by the learning pipeline.

2.1.1.3 Traffic flow

Traffic simulation requires a mechanism to spawn driving agents on the driving scene M at
each simulation step. We call this process the traffic flow F . To populate a driving scene we
first introduce the spatial distribution of initial positions of agents denoted ρ which usually
has a fixed and discrete support on a bounded driving scene at the extremity of the map or
close to building gates. Empirical distributions can be obtained based on multiple recordings
of the same, but the scenarios that we built based on real data and called real scenarios, just
extract initial positions of agents that were recorded instead of using a full distribution. In
addition to initial locations, the traffic flow specifies which kind of agents to spawn i.e bicyclist,
car, bus etc with their own features i.e length, width etc3. The Traffic flow also associates

2We also call them traffic agents when there is no ambiguity in order to alleviate notations
3Note that additional features could be provided as risk aversion or degree of cooperativeness for rule based

agents
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2.1. LEARNING TO DRIVE IN SIMULATION

one driving policy π ∈ Π and a goal specification g ∈ G to each spawned agent. In order
to avoid initial position overlap the traffic flow needs to take into account the current scene
context i.e current agent positions to activate some spawning locations at a given time or not.
Since we consider bounded driving scenes there is a maximum number of agents denoted N

that can appear at the same simulation step. This number can be fixed arbitrarily or obtained
empirically if real scenes are available. Formally, the traffic flow can be modeled as a stochastic
process that defines the evolution at each simulation step of a random vector Xt = [X0

t , ..., X
N
t ]

that describes the birth of at most N agents on the driving scene M at time step t. Each
component X i

t = (bi, xi, yi, πi, gi) is a random vector where bi is a Bernoulli variable representing
the potential birth of an i-th agent on the map at time t at location (xi, yi), and πi denotes the
policy associated to the agent i. The traffic flow naturally induce the distribution of N agent
occupancy conditioned on the current scene context modeled by Ct:

F ∼ p(X0
t , ..., X

N
t |Ct) (2.1)

Note that driving simulation on bounded scene also requires to absorb driving agents before
they reach map borders or at specific locations as garage entrances. We do not overload the
notation with the agent absorbing process as it can be easily modeled the same way. In practice,
we considered two kind of traffic flow : the first one is based on real recordings that just consist
in replaying episodes with the same initial conditions (initial positions and goals assignment).
In addition we also created synthetic traffic flows with predefined spawning location that get
activated at specific simulation steps. By extension, we refer to a real episode when the driving
episode uses a real traffic flow.

2.1.1.4 Driving mission

A single agent driving policy is conditioned on a goal assignment that specify what the driving
agent should ideally achieve for the next H seconds of simulation. Driving behaviour can be
quite complex as agents may change their destination or their strategy to reach theirs goals
and vehicles can have long term goal far away or the intention to park. Since we are mainly
interested in simulated vehicles on bounded scenes, we introduce a very simple goal specification
that consists in the final location to reach on the map that is usually far from the initial position
of the traffic agent. Note that this specification is not enough to specify a parking maneuver
at a given location but our formalism makes possible to extend the goal specification with for
example a maneuver descriptor. For our driving simulator, we let the traffic flow assigning to
each spawned agent a final destination location as a goal specification and we keep this goal for
the whole episode which is a reasonable choice for relatively small maps and short simulation
horizons (H < 20seconds).
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2.1. LEARNING TO DRIVE IN SIMULATION

2.1.2 Driving task

Driving policies are the key elements of the traffic simulator even if other parts like traffic flow
process could require a lot of attention to be modeled in a realistic way. Our main objective is
to design driving policies that behave as real human driver would do and not just safely. Since
the driving task is defined as generating a consistent trajectory for reaching a long term goal,
it is interesting to decompose the sequential decision process in different level of complexity.

2.1.2.1 Hierarchical driving policy

The driving task can be decomposed in two different stages that are relatively independent from
each other. At the top level considered as the most abstract, any driving agent has to plan a
route that leads to the long term goal. To this end, the routing module leverage the road-map
structure to infer possible paths without considering dynamical element of the scenes as other
road users. Graph search on the road-network can be used to select the sequence of lanes to
follow and then a dense polyline can easily be extracted based on the center-lines leveraging
the lanelet2Map format introduced in the next chapter.3. Usually the shortest path is preferred
and should be selected but other choices based on the current traffic load of the driving scene
can be used as a criteria. The route is considered as a sequence of positions and is not indexed
by time even if ideal constant speed trajectory based on the scene speed limitation could also
be used. Given a goal destination and the current simulation state, the routing module of
agent i denoted πrouting generates a traffic free reference path called route proute and sends it
to a lower stage of the policy called the maneuver policy πmaneuver. The maneuver policy is
conditioned on the route to follow and is expected to output an action that will be converted into
trajectory up to the next decision step thanks to the controller and the physical model of the
agent. The choice of the action space and its associate controller is crucial and will be detailed
in chap.3. At this level we consider a general action specification from which the next pose
will be computed though the simulator. The action should ideally specify a trajectory whose
spatial support is closed to the planned reference route proute but some contextual elements may
imply deviations. Concerning the speed along the trajectory, it should be consistent with the
local traffic rules but also with safety margins to avoid collisions with other traffic agents. The
top down structure composed of an upper routing module πrouting and a lower level maneuver
policy πmaneuver enables to avoid inconsistent displacements and usually does not require that
the routing module depends on the actions generated by the maneuver policy. This assumption
is reasonable when the driving scene context does not require to replan for reaching the goal.
In some situation like traffic jams or when the vehicle is blocked, it could be necessary to replan
but most of the time, the maneuver policy is expected to handle the situation and to find a
suitable trajectory. Consequently we decompose any driving policy as follows:

π = πrouting ◦ πmaneuver (2.2)
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The routing module πrouting that generates the traffic free reference path πrouting is a relatively
simple to implement since several works already proposed robust algorithms [53] but maneuver
planning4 is still an active field of research [229]. Indeed, the maneuver planner has to handle
interactions between driving agents which can be hard to reproduce in a realistic way even with
full observability. While planning a path on new maps is not prone to major issues assuming the
road-structure is well described, finding a socially consistent trajectory on new maps or in new
situations can reveal especially challenging because of the diversity of road-users interactions.
In the next subsection, we focus our attention on the design of the maneuver planner.

2.1.2.2 Maneuver planning

In order to design a robust maneuver planner able to generalize safe and realistic trajectories
on arbitrary contexts, we first review few works to identify the main existing trends. The first
methods were fully rule based as the Intelligent Driver Model (IDM) [190] designed for straight
highways, or MoByle [87] that can handle lane changes. The major limitation of pure rule based
methods is the difficulty to adapt them on arbitrary road topologies. Data based approaches
leveraging deep learning now enable to avoid complex hand crafted decision procedures. A
lot of progress have been achieved in predicting the short term evolution of the local traffic
as shown in [51, 20, 191, 226] which can be extended for planning applications [159, 194]. A
General maneuver planer can leverage model predictive control for planning trajectories under
constrains for some temporal horizon based on a prediction model. The main difficulty is to
learn to dynamically adapt to other agents future trajectories conditioned on the ego agent
plan which grows in complexity with the number of neighbors [153]. Concurrently, the driving
task can also be formulated as sequential decision making process and several works proposed
to apply Reinforcement Learning (RL) and Imitation learning to learn driving policies [229].
RL enables the policy to acquire common sense knowledge thanks to hand crafted rewards [139]
while IL helps the policy to reproduce expert trajectories [63]. Most advanced approaches even
propose to incorporate prediction model to refine the policy [89].
The question that arises is which approach is the most promising for learning not only one
policy but potentially a pool of realistic driving policies for large scale traffic simulation. In the
next sections, we propose to analyse two general formulations: one derived from the motion
forecasting literature which adopts a centralized perspective in sec.?? and another based on a
Multi Agent Reinforcement Learning (MARL) which adopts a more decentralized perspective.

2.1.3 Learning driving policies

Traffic simulation is an interactive multi agent process that requires to animate all driving agents
simultaneously. In order to learn driving policies, we first introduce the two main approaches

4In some works, they refer to behavioural planning but since we condition on a command, we call it maneuver
planner.
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in sec.2.1.3.1 and sec.2.1.3.2 before explaining the one we follow in sec.2.1.3.3.

2.1.3.1 A centralized approach for traffic simulation

Traffic simulation can be considered with a centralized perspective which consists in learning
the joint distribution of all actors future states simultaneously [180] based on the driving scene
context. Learning the full distribution instead of a deterministic model enables to sample
multiple futures and forward multiple driving episodes from the same scenario. Let Y it: =

[Y i
t+∆ts

, ..., Y i
t+∆tplan

] denote the future positions of the ith agent present in the scene and let
Yt: = [Y1

t:, ...,YNt: ] denote the futures positions of all the N agents present in the scene. Let
Xt = [X 1

:t , ...,XN
:t , C:t] denote the current context of the driving scene composed of individual

agent past sate X i
:t but also static or dynamical elements of the driving scene C:t across past

time steps. The centralized approach aims to learn the joint actor conditional distribution:

p(Yt:|Xt:) (2.3)

As this distribution encapsulates all uncertainties about agents intentions, driving style and
interactions modes, the distribution cannot easily be expressed in closed from. Instead, the
distribution is characterized implicitly via latent variable modes Zt that encodes future scene
dynamics.

p(Yt|Xt) =
∫
Z

p(Yt|Xt,Zt).p(Zt|Xt) (2.4)

A future multi-agent plan Yt is generated by sampling Zt ∼ pθ(Zt|Xt) from an encoder and
then decoding Zt with a deterministic decoder Yt = fϕ(Xt, Zt). Conditional variationnal infer-
ence is used to obtain a lower bound of the likelihood of real driving data with respect to the
p(Yt|Xt) which can then be maximized through Stochastic Gradient Descent (SGD). The train-
ing objective requires the introduction of a posterior model qφ(Zt|Xt,Yt) that learns to map
the ground truth future to the scene latent space for better reconstruction. Usually the latent
space is partitioned for better representation of different source of stochasticity : decomposing
the latent space per agent is a commom choice Zt = {Z1

t , ..., Z
N
t }. In order to generate a full

driving episode from an initial driving scenario, the joint actor model is sampled sequentially at
each time step pθ,ϕ(Yt|Xt) and the new scene context is extracted based on plan. The process
is summarized in algorithm 1

Centralized simulation has several convenient properties during training and test. The cen-
tralized simulation approach is inspired by the motion forecasting literature which intensively
exploits graph neural networks and attention mechanism for learning to predict realistic and
socially consistent multi agent trajectories [110, 226]. The performances obtained by several
works [51, 20, 164] already proved that the local real traffic around an ego vehicle can be pre-
dicted for at least 5 seconds accurately and the main traffic modalities are often all detected.
However supervised models still suffer from generalization issues when it comes to closed loop
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Algorithm 1 Centralized traffic simulation as formulated in [TrafficSim]
INPUTS:

• X0 = [X 1
:0, ...,XN

:0 , C:0] initial context

• ∆tplan: planning horizon

OUTPUTS:[X0, ....,XT ] # driving epsiod (multi agent trajectories)
Γ = [X0]
for t in [t, t+∆tplan, ...T ] : do

Zt ∼ pθ(Zt|Xt)
Yt = fϕ(Xt, Zt)
C:t+∆tplan = updateContext(C:t)
Xt+∆tplan = Yt
Γ = cat(Γ, [Xt+∆tplan , C:t+∆tplan ])

end for

evaluation. While motion forecasting was mainly focused on open loop metrics the traffic
simulation problem also requires evaluation in closed loop to attest that simulated agents all
behave in a realistic way across time. We defined more precisely those notions for simulation
evaluations based on a recent benchmark recently deigned to handle those limitations [18]. In
order to evaluate a self driving vehicle we can consider its performances measured in terms of
prediction errors, collision rate, traffic rule infractions etc in two different mode.
Definition : open loop evaluation
In open loop evaluation the policy is queried to output a trajectory from states reached by an
expert stored in a dataset collected in the real world. The trajectory is evaluated according to
specific metrics but is not used to control the vehicle for the next step.
Definition : closed loop evaluation
In closed loop evaluation the policy is queried to output a trajectory from states reached in

simulation by the policy. Since the policy partially control the next state it will visit, it may
end up in states radically different from the ones represented in the expert dataset.
In traffic simulation open loop and closed loop evaluation not only apply to a single self driving
vehicle but to all traffic agents that are planning their next steps. Closed loop simulation with
a centralized model requires to re-plan trajectories from states induced by the model which
can gradually lead to compounding errors with respect to ground truth demonstrations. This
problem is exacerbated by the the fact that multiple agents interacts which each other. A
workaround is to resort to back-propagation through time (BPTT) as suggested in [180] but
this solution is prone to gradient approximation and is sensitive to the sampling of latent vari-
ables [111]. As long as the simulation stays close to the ground truth episode, it is reasonable
to think that BPTT can reduce error through time however when the scenario starts to diverge
due to the latent variable sampling One agent can take the way instead of waiting at an inter-
section due to the value taken by a latent component zi, it can turn unstable. Additionally,
BPTT complexity grows linearly in times which requires to predict the next simulation with
large horizon as done in Traffic-Sim. Another limitation of real training data is the fact that
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they rarely contain safety critical situations that exhibit how to react in case of an emergency.
Closed loop evaluation can lead to such situations where appropriate reactions are not rep-
resented in the training distributions which can lead to poor performances with for instance
collisions or hard braking as shown in [220]. More generally, the Distributionnal-shift which
is manifested by a gap between the state distribution induced by rolling out the model and
the state distribution of the dataset has become a major concern in supervised learning for
sequential decision making [43, 122, 30, 176].
Other practical concerns make the centralized approach less attractive as the lack of modular-
ity. Learning a centralized model to animate variables number and type of agents on variable
locations and for variable horizon is very challenging and the centralized models may be prone to
over-fitting which limits its reliability in new situations. Decentralized approaches are mainly
motivated by the need of modularity for fast and incremental deployment of simulation on
arbitrary scenarios with eventually few expert demonstrations.

2.1.3.2 A decentralized approach of traffic simulation

Decentralized approaches based on Multi Agent Reinforcement Learning (MARL) consider the
traffic simulation process as a sequential decision making problem. Instead of designing a cen-
tralized model to update the whole driving scenario, we can realise each simulation step with
single agent policies that act in parallel for animating each traffic agent. In order to formulate
traffic simulation as a MARL problem, we leverage the concept of Markov game with partial
observability.
A Markov Game [112] with partial observability is defined by the tuple
G = (N,S,Oii∈N , Aii∈N ,P , Rii∈N). The game contains N agents whose global state belongs to
S. Each agent is assigned an action space {Ai}ni=1 and an observation space which depends on
the current global state. The function P : S × A1 × · · · × AN → T (S) describes the (stochas-
tic) transition process between states, where P (S) denotes the set of probability distributions
over the set S. At each step t, all the agents take actions (a1, ..., aN) and the next state st+1

obeys the transitions dynamic st+1 ∼ T (st+1|st, a1, ..., aN). Each agent i aims to maximize its
own total expected return Ri

t =
∑∞

τ=t .γ
t−τ .riτ (sτ , a

1
τ , ...., a

n
τ ) where γ is the discount factor, by

selecting actions through a (stationary and Markovian) stochastic policy πi : S × Ai → [0, 1].
Each agent is assigned a reward function rit(st, a

i
t, st+1) that maps a transition with a scalar

value that represents instantaneous utility. The initial states are determined by the initial dis-
tribution η : S → [0, 1].
For decentralized traffic simulation, the joint policy of traffic agents is defined as π((a1, ....., ant)|st) =
Πnt
i=1πi(.|st). The goal of each agent i is to maximize the long-term return J i calculated by:

maxπiJ i(πi, π−i) = E[
∞∑
t=0

γt.rit|s0, ait ∼ πi(.|st), a−it ∼ π−i(.|st)] (2.5)

17



2.1. LEARNING TO DRIVE IN SIMULATION

where −i represents the indices of all agents except agent i, and π−i = Πnt
j ̸=iπj(.|st) refers to

the joint policy of all agents except agent i. Unlike standard reinforcement learning (RL), the
optimal policy of an agent depends on other agents policies in the Markov games because all
the J i are coupled. To formalize this interdependence we use the concept of Nash equilibrium.
Informally, a set of policies {πi∗}i∈N is a Nash equilibrium if no agent can achieve higher reward
by unilaterally changing its policy πi :

∀i ∈ [1, N ], J i(πi∗, π
−i
∗ ) ≥ J i(πi, π−i

∗ ) (2.6)

Usually, the goal of most MARL problems is to find local Nash equilibrium of the Markov
games G without the knowledge of the dynamic. The main limitation of MARL for realistic
traffic simulation is the lack of the ’True’ expert reward functions that explain the behaviour
of human like traffic agents. Even if most of motion forecasting dataset [70, 40, 19] can be con-
verted into sequences of observations and actions, they do not contain the true reward signals.
Hand crafting reward is a common practice, but those rewards can only act as proxy of expert
true utility. The induced driving behaviour often exhibits common sense i.e the driving policy
avoids crashes and stays on the road but no metrics enables to quantify how sharp is the reality
gap with real human drivers [92].
In order to get around this problem, Multi Agent Inverse Reinforcement Learning (MAIRL) pro-
poses to learn not only the policies but also the rewards from real expert demonstrations[175].
Suppose we do not have access to the reward signal r, but only to demonstrations D pro-
vided by N experts. In Markov games, we assume that all N experts operates in the same
environment, and the demonstrations D = (sj, aj)

M
j=1 are collected by sampling s0 ∼ η(s),

at = πE(at|st), st+1 ∼ P(st+1|st, at). The problem of recovering a reward function r that ratio-
nalizes an expert behavior πe can be formulated as matching two occupancy measures[50] i.e.,
the distribution over states and actions encountered when navigating the environment with a
policy ρπ(s, a) = π(a|s).

∑∞
t=0 γ

t.P(st = s|π)

RL ◦ ILRψ(πE) = argminπ∈Π −H(π) + ψ∗(ρπ, ρπe) (2.7)

where H denotes the causal entropy and whereψ∗ is the convex conjugate of ψ, which could
be interpreted as a measure of similarity between the occupancy measures of expert policy and
agent’s policy. This approach can be extended for Markov games with multiple rewards r.
We use MARL(r) to denote the set of (stationary and Markovian) policies that forms a Nash
equilibrium under r and maximum causal entropy (among all equilibria):MARL(r) = argminπ∈Π,v∈RS×Nfr(π, v)−H(π)

vi(s) ≥ qi(s, ai)∀i ∈ [N ]∀s ∈ S, ai ∈ Ai
(2.8)
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Based on the MARL operator, we need and inverse operator MAIRL, in analogy to IRL, which
finds a reward that creates a margin between the expert and every other policy:

MARL ◦MAILRψ(πE) (2.9)

The most challenging part for implementing a practical operator, consists in maintaining the
constraints of the Nash equilibrium vi(s) ≥ qi(s, ai)∀i ∈ [N ]∀s ∈ S, ai ∈ Ai. [175] use a
Lagrangian formulation which leads to the following optimization problem:

MARL ◦MAILRψ(πE) = argminπ∈Π

N∑
i=1

−β.Hi(πi) + ψ∗
i (ρπi,E−i

− ρE) (2.10)

where ψ∗
i is a convex function measuring occupancy discrepancy and where πi denotes the

policy for agent i and π−i
E expert policies for other agents. Note that in practice, we don’t have

access to ρπi,E−i
because we usually don’t have interactive expert policies that can be rolled

out along with πi but just a fixed expert dataset. In practice [175] considers an alternative
approach where they match the occupancy measure between ρπE and ρπ . This approximation
leads to another common issues in MARL known as non stationarity. As multiple learning
agents are driving simultaneously, the environment faced by each individual agent appears
non-stationary. In particular, the action taken by one agent affects the reward of other agents,
and the evolution of the state. As a result, the learning agent is required to account for
how the other agents behave and adapt to the joint behavior accordingly. This invalidates
the stationarity assumption for establishing the convergence of single-agent RL algorithms,
namely, the stationary Markovian property of the environment such that the individual reward
and current state depend only on the previous state and action taken. Empirically, if the agent
ignores this issue and optimizes its own policy assuming a stationary environment, which is
usually referred to as an independent learner, the algorithms may fail to converge [142]. Beyond
the non-stationarity issue, practical MARL algorithms also suffer from the credit assignment
problem where individual agents struggle to estimate the impact of their own action over the
return with respect to the impact of the joint action on the return [218].
In order to alleviate the learning complexity of the consecutive application of MAIRL and
MARL operators, some authors introduce simplifying assumptions. For traffic simulation on
highways. PS-GAIL[14] proposed to share parameters of agents policies while assuming that
agents have the same action and observation space. Furthermore, they assume that all agents
have identical rewards and that agent i reward only depends on the the state and action ai

: rψi
(s, ai, a−i) = rψ(s, ai). Such idealization may be sufficient for specific setting but do not

hold because expert demonstrations usually come from diverse human drivers with their own
driving style.
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2.1.3.3 Curriculum for learning driving policies

Learning realistic interactions among heterogeneous traffic participants on various scenarios
remains largely unsolved. We previously reviewed two approaches that aim to solve the traf-
fic simulation problem, the first is based on a centralized joint policy learned offline and the
second based on decentralized policies learned though simulation with the support of domain
knowledge and expert demonstrations. Even if promising results were provided in[14, 180],
those methods are still insufficient for robust real world applications. Beyond the difficulty to
provide trustworthy metrics to guarantee safety and realism on a arbitrary driving scenarios,
current methods lack robustness when facing new scenarios in closed loop evaluation. Addi-
tionally there is no methods that enable to compare the diversity of the learned pool of driving
policies compared to a real population of human drivers. A recent project called SMARTS
[228] revealed a promising way to achieve interactive and realistic traffic simulation. Instead of
trying to learn realistic and safe driving policies in one shot, SMARTS decompose the problem
into a hierarchy of simpler problems and aim to solve them in a incremental manner. The logic
is to reduce the complexity of each learning stage and progressively gain new driving behaviours
without catastrophic forgetting. SMARTS builds upon the notion of curriculum that enables
to evolve a Multi Agent System(MAS) [209]. We briefly introduce this fundamental mechanism
that structures modern MARL training pipelines [227, 109]. From a general point of view, a
multi agent system can be seen as a group of adaptive units where each units can itself be
composed of adaptive units [104]. For simplicity, we consider atomic adaptive units even if
agent can itself be composed of multiple interacting networks as policy or critics and various
encoders. One way to evolve the MAS is to let it interact in a simulation environment. The
environment where the MAS evolves is not necessarily directly the real ones. We consider that
the training environment can change on purpose and we call any change of the environment a
challenge. Challenges motivate adaptive units to explore since their primary goal is to maxi-
mize their return which has been affected by the environment change. We define a curriculum
as a sequence of challenges or as a sequence of tasks to direct learning. Certain curricula may
emerge naturally from the non-stationary dynamics of social interactions of the MAS, without
any need for environmental engineering and those are called auto-curriculla since each chal-
lenge in the sequence is generated by the system itself. From the perspective of an individual
learner, the problem is to adapt to a sequence of challenges, i.e. an auto-curriulum. Innovation
occurs when following an auto-curriculum leads to a policy that escapes local optima where it
would otherwise have been trapped. However, there is no guarantee that novel challenges will
be continuously generated in this way. Auto-curricula, may be cyclic, repeatedly learning and
unlearning the same information. Care must be taken to prevent from forgetting past policies
because if old policies are forgotten, then a newer generation may become unable to outperform
an older generation,preventing the productive accumulation of new innovations. In practice,
successful self-play algorithms generally play not just against the latest (and strongest) policy,
but also against as large and as diverse as possible set of older policies [100].
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Therefore, at the heart of the SMARTS project, there is the ’social zoo’ which contains various
driving behaviours accumulated through the whole training procedure. This enables to avoid
policy over-fitting to other agents behaviours and hence more robust behaviour can be learned.
However diversity is not enough to understand how to coordinate agents and solve the credit
assignment problem. Additionally it may not always be opportune to train all traffic agents
simultaneously which brings non stationarity. Consequently SMARTS propose two important
mechanisms: the first one is called the bubble and enables to isolate the learning of local inter-
actions among traffic agents. A bubble is a spatiotemporal and conditionally specifiable region
in which social agents are expected to be controlled for learning from their experiences. The
second mechanism is the background traffic provider which enables to animate specific traffic
agents of the scenario that are not supposed to learn from their experiences5. Consequently,
agents could be trained in a highly focused way by only collecting interaction trajectories in
bubbles, while the background traffic continues to supply realistic traffic flow through the outer
membrane of the bubble.
Following a bootstrapping strategy, the SMARTS project aims to grow the social zoo for ani-
mating realistic traffic with incremental training stages based on increasingly more challenging
multi agent interactions. Each training stage requires specific training algorithms, background
traffics, driving scenarios and social agents as summarized bellow accordingly to the SMARTS
[228] projects.

1. Rule based learning: In this setting, driving policies are designed manually and tested on
the fly.

• Agents are designed to follow specific rules and stick to them regardless of how the
environment dynamic may have shifted.

2. Single agent learning (RL): In this setting the environment is considered as stationary
and background traffic can be provided either by rule based agents either by frozen agents
learned previously.

• Model free RL : agents can learn to adapt from its online experiences but does not
explicitly learn the environment dynamic.

• Model based RL: agents not only learn to adapt, but also learn to model the dynamic
of other road users of the environment. However, there is still no direct information
exchange among the learning agents during such a decentralized learning process

3. Multi agent Reinforcement Learning (MARL): In this setting, multiple agents learn si-
multaneously from their common experiences.

(a) Independent learning : Multiple agents are learning at the same time in the environ-
ment with eventually parameters sharing but independently without direct informa-
tion exchange among the learning agents.

5Note that both background traffic agents and social agents come from the social zoo.
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(b) Centralized training and decentralized execution (CTDE): agents start to share in-
formation during training and their common experiences are used during training to
update each of them consistently but at execution time there is neither centralized
control nor direct information exchange.

(c) Centralized training from demonstrations : In this setting MAIRL can be used to
learn expert rewards from demonstrations while expert policies can be learn with a
centralized MARL algorithm that can additionally enforce global consistency over
interactions .

(d) Centralized training with communications: agents are able to communicate either
for training purposes either to coordinate locally during execution.

• Local coordination: local group of agents are required to coordinate their learn-
ing and are expected to reach equilibrium at execution time i.e at an unprotected
intersection, agents align their strategy.

• Global coordination: agents start to consider how their local action may impact
the global traffic i.e would a lane change avoid congestion on this part of the road.
Global coordination usually requires communication channels [156, 75]

Note that each level of multi agent interactions assumes that the background traffic as well
as social agents are able to generate consistent training experiences without naively failing
due to lack of skills i.e going off road instead of coordinating at an unprotected intersection.
Therefore, organizing the training procedure can become very problematic for the last training
stages because acquiring a new skill imply to master another set of skills potentially unknown
without which new experiences are not valuable for training [209]. We posit that elementary
skills for first generations of social agents can be learned trough single agent learning. In our
work, we particularly study how driving policy can be learned both from domain knowledge and
human demonstrations. We will show through chap.4 that simple driving skills can be learned
with single agent RL while chap.5 will show that expert behaviours can be closely imitated
with limited number of failures. Finally, we will also show that a reasonable trade-off can be
found between imitating expert and learning rules through a multi task learning process. We
posit that our methods could provide a first generation of driving policies with basic driving
skill to initialise the social zoo described in the SMARTS project.

2.2 Simulation environment

In the previous section, we motivated our approach for learning single agent driving policies for
traffic simulation. In order to evaluate driving policies or to generate data we need a simulation
environment. We first explain why and how we designed our own simulator in sec.2.2.1. We
discuss important aspects of the simulation and notably the road-network interface in sec.2.2.2
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and the environment dynamic in sec.2.2.3. In a last sec.2.2.4, we explain how our framework
makes possible to extract and replay real driving scenarios.

2.2.1 Designing a driving simulator

We first motivate our choice of designing our own simulator in sec.2.2.1.1 before detailing the
simulation process in sec.2.2.1.2.

2.2.1.1 Limits of existing traffic simulator

Learning a realistic traffic is an incremental procedure as explained in sec:2.1.3.3 that rely on a
driving environment not only for evaluation but also for training. Since we aim to use reinforce-
ment learning to learn from interactions on various scenarios we need a scalable pipeline able
to perform massively simulation roll-outs in parallel on multiple scenarios which reveals very
challenging because of important data sharing between multiple process distributed on multiple
CPU cores, high RAM memory consumption6 necessary to store buffers and training batches
and high requirements to deploy multiple neural networks on potentially multiple GPUs. Those
issues are addressed in the SMARTS project which provides a scalable and efficient framework
for traffic simulation dedicated for MARL. SMARTS is indeed built on top of Ray[127] which
offers a distributed system for cluster-computing that enables simulation, training, and serv-
ing for RL applications. Contrary to CARLA simulator that can easily be used for RL [117],
SMARTS was specifically designed for lightweight control of driving vehicles with better sup-
port for MARL which offers more flexibility to grow a diversity of driving polices. For better
population management the MAlib project [227] was introduced in concurrence to SMARTS
but currently does not offer driving environments support.
The main limitations of those projects are their inability to load real driving scenarios from
existing datasets [214, 40, 19, 70] which prevents from comparing the learned driving policies
with respect to real human trajectories. SMARTS currently does not provide this functionality
probably because it uses the OpenDrive scenario format of SUMO which does not easily enable
to convert arbitrary road networks with complex merging or intersections. CARLA simulator
recently offers the possibility to load real scenarios but available data are very restricted [138].
Other very recent projects as the DriverGym(2021) [94] which now offers a RL simulator com-
patible with the Lyft dataset[40] or the Nuplan Project[18](2022) which offers a full pipeline
for closed loop evaluation on NuScene Dataset [19] will probably fill this gap in the next years.
At the beginning of our work in 2019, the most advanced project to replay episodes from real
scenario was the BARK[13] simulator. BARK is built on top of the Interaction Dataset [214]
which offers long horizon (up to 20seconds) driving episodes with challenging interactions on
various kind of maps. Unfortunately this project is not built upon Ray and its associate Rein-

6More than 150GB required for 6 trainings each using 50 parallel simulations collecting 100K transitions for
each training batch.
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forcement Learning library called Rllib[109] which makes difficult to learn in a highly efficient
and distributed way. Consequently, we decided to implement our own simulator combining
the bests of the SMART and BARK projects for learning realistic driving policies from real
scenarios extracted from the Interaction Dataset [214].

2.2.1.2 Simulation process

Before describing how we designed our simulator, we stress the main guidelines we followed.
We designed a simulator such that :

• any driving simulation is initialized and configured with a driving scenario.

• real demonstrations can be integrated with the appropriate observation and action space
to replay real episodes.

• the driving scene context can be extracted at each decision step for each agent with its
point of view with an observation model

• the decision making process is separated in multiple levels from actions to control se-
quences that ultimately feed agent physical models.

• various metrics can be computed in closed loop to evaluate safety and imitation errors

The simulation environment is not only necessary for evaluation but also for training which
requires that

• massive simulation roll-outs can be performed with multiple driving policies on multiples
scenarios in parallel to feed RL algorithms.

• specific feedbacks can be provided at each decision step for each actor based on the global
context

• multi agent trajectories coming from parallel simulations can be centralized and stored
for training neural networks on appropriate devices (GPUs).

• neural network weights can be transferred to each instance of parallel simulator.
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Figure 2.2: Simulation process

Algorithm 2 Simulator function
INPUTS:

• S = (M, T , H) : scenario

• M : map

• T traffic flow

• H : simulation horizon

St = initialGlobalState(S,M)
while scenarioNotFinished(St+∆TD) do:

St+∆TD , ot, at, rt, infot, ot+∆TD , dones =step(St)
yield ot, at, rt, infot, ot+∆TD , dones

end while

In order to design a suitable simulation environment we first looked for a real dataset from
which real driving episodes could be replayed. Numerous dataset for autonomous driving are
available [214, 40, 19, 70] but they were not originally collected for simulation purposes. The
main limitations, beyond various amount of noise in the data, is the length of demonstrations
which usually does not exceed 5 seconds. Learning long term driving strategies that are safe
based on such short episodes is very restrictive. Another difficulty comes from observation
extraction and metrics computation which both require an access to powerful map interface. Not
all datasets contains lightweight hierarchical road-maps that can be exploited by a simulator:
usually just raw perceptual data are provided. Our choice turned to the Interaction Dataset[214]
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which offers demonstrations on multiple road networks topologies with an efficient Map format
called Lanelet2 detailed in sec.??. In order to exploit map information to generate observations
or to localize agents with respect to the road we designed a centralized Map Interface built upon
the Lanelet2 map format Driving scenes entities are decomposed into polygons and polylines
with advanced support for various geometric operations . The simulation process depicted on
fig.2.2 and summarized in alg.2 starts from a driving scenario S = (M, T , H) which initializes
a global simulation state denoted St that encompass states of all agents and traffic rule items.
The global state will be updated for H steps with the step function that modifies the current
global state to the next global state at time t + ∆Td where ∆Td denote the decision period .
We summarize the principle of the step function in alg.3 :

Algorithm 3 STEPS function in process
INPUTS:

• TD : decision time

• TS : simulation time

OUTPUTS:
• ot, at, rt, info, dones

for Ait ∈ A: do
oit = ait.observe(St)
ait = Ait.decide(ot)
for i ∈ [∆TS/Ns] do:

ut = control(ait, St)
sτ+i.∆Ts = simulate(ut, St)

end for
checkTrafficRules(St+D

, St)
rt =computeFeedbacks(St+∆TD)
updateMissions(St+∆TD) # spawn and absorb agents
A.updateTrafficF low(St+∆TD)
for Ait+∆TD

∈ A do:
oit+∆TD

= Ait.observe(St)
end for
info=comuteMetrics(St+∆TD , St)
done=IsScenarioFinished(St+∆TD)
return ot, at, rt, ot+∆TD ,infot+∆TD , donest+∆TD

During a decision step, each agent receives an observation ot in the appropriate observation
space built from the global state St with the observer model associated to the agent. This
observation is then sent to the agent brain which can either be a learnable model or a fixed
model depending on the agent type (actor or worker). The brain computes an action at based
on the observation ot and on its goal gt according to the policy model of the agent. The action
is then post-processed before being sent to a controller module that will generate a sequence of
controls ut:t+∆TD

to feed the physical model of the agent. The physical state st of the agent is
updated for several simulation steps ∆Ts according to the sequence of controls and the physical
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model : st+∆TS = fphysical(st, ut). Physical model can be simple geometrical model that updates
cartesian positions of agents, kinematical model as unicycle, or more advanced model based
dynamical model. In practice we mainly worked with model in curvilinear coordinates that we
detail in chap.3. Once the last simulation step is reached, the traffic rule engine checks whether
traffic rules were respected during the transition from St to St+∆TD and store appropriate infor-
mation in the new global states St+∆TD . According to the traffic rules and the reward models
ri associated to to each agent, the feedback manager provides a reward ri(St, at, St+∆TD) for
each agent Ait7. Subsequently the traffic flow engine spawns new agents at specific locations
according to spawning distributions for synthetic episodes or according to a specific locations
for real episodes. The traffic flow engine is also responsible to absorb agents that just left the
map or that are eliminated due to an absorbing state reached at st+∆TD . Note that replaying
a real episode sometimes requires to spawn new agents in the middle of a decision step. The
decision step ends with custom metrics computations i.e collision rates, offroad driving rates,
imitation errors between for the transition (St, St+∆TD) and finally the scenario manager checks
whether the simulation should be ended either because the horizon H is reached either be-
cause no more learning agent is alive. The step function returns the transitions for all learning
agents ot, at, rt, ot+∆TD ,infot+∆TD , donest+∆TD as implemented in Rllib [109] that extends the
usual single agent gym format developed by OpenAI. Note that a critical issue can occur if
for a specific decision step no actors are alive because previous were absorbed and new ones
will be spawn in the next steps. In this case no transitions can be returned and consequently
the simulator should be able to automatically continue the simulation stepping up to the last
learning agent(actor) get spawned.
In order to perform efficiently data collection for training, we chose to use the RLlib frame-
work[109]. RLlib enables to compute the action inside a policy model that can eventually be
shared among different traffic agents. Rllib also enables to switch easily from evaluation mode
on multiple CPUs to training mode on a GPU devices which is critical for using neural networks.
Once the policy is updated, Rllib makes easy to synchronize the weights on all the parallel in-
stances of simulators. Another interesting property is the ability to chose which policy model
is currently training which makes possible to use fixed neural networks for some agents in the
scene instead of just rule based models. Lastly, RLLib offers a power-full trajectory API that
enables to store multi agent trajectories of the same episode which can later be decomposed
into single agent RL trajectories of variable length. This functionality is crucial to compute
various quantity efficiently as the discounted return or Generalized Advantage Estimator for RL
algorithms[166]. Lastly the distributed nature of Rllib makes possible to perform massive simu-
lation roll-outs on potentially multiple clusters leveraging the ray framework which is necessary
to learn from various experiences on different scenarios. Note that simulation computation
can turn highly expensive due to multiple observation computation which requires access to

7Note that rewards are computed with the global state to access whatever is necessary and not from obser-
vations.
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numerous CPU cores8.
Simulation computation load can become a bottleneck if rendering are necessary to generate
observations. Therefore we decided to use a rendering engine only for visualization in evalu-
ation and we use observers that build vectorized outputs instead of high definition top view
images of the driving scene. Other expensive computations come from the map interface which
enables to localize agents on the road-network, extract various pieces of the road-network or
check intersections. The use of a global state object that centralize information for all agents
enables to perform individual queries for various services as the feedback manager, observers
or control modules through the map interface. Once an operation is done on the global state
as for instance localizing an agent Ait with respect to its route, it is not necessary to repeat this
operation for other services that can just retrieve the result previously computed. The global
state also enables to avoid the local copy of information that are shared for all services.

2.2.1.3 Simulation metrics

Since we aim to evaluate the ability to imitate human drivers and the ability to adapt safely
on new situations while respecting traffic rules, we introduce two categories of metrics that we
will provide at the end of each driving simulation. The first category called imitation metrics
aims to measure the average errors of our driving policy with respect to the expert trajectory.
Note that imitation metrics can only be computed in simulation with replay agents. Even if
replay agents are not interactive, imitation metrics enables to estimate how fast and far the
policy diverges from the expert trajectory. Ideally we should have an interactive realistic traffic
and an online expert that provides new trajectories from the current state of the policy once it
has definitely deviated 9. In practice, we use the average distance error for a given horizon H
on the whole scenario database S to evaluate imitation performances. Note that we only use
scenarios that have at least H steps ( Si ∈ S|H ≤ Ti) to compute the ADE-H . Let P π

τ be the
position of the policy at time t on a given scenario

ADE −H(meters) = ESi∈S|H≤Ti
1

H

H∑
τ=1

||P π
τ − P τ ||2 (2.11)

In terms of safety, we mostly focus on the presence of collisions and off-road driving which
reveals if basic driving skills are mastered. We compute the rate of episode with at least a
collision denoted CR on the whole scenario database. Let s(ti) be the state at time t on scenario
i of the policy .

CR(%) = ESi∈S1(∃τ ∈ [1, Ti]|iscollided(sit) (2.12)
8We usually use 50 CPU cores to perform 50 parallel simulations
9Once the policy is too far from the original trajectory of the expert, it would be better to query the expert

for an updated reference trajectory to analyse the future trajectory of the policy.

28



2.2. SIMULATION ENVIRONMENT

We can also focus on front collisions : the ones that occur inside the cone oriented along the
ego agent body, with an opening of 60 degrees and starting from the centroid point of the ego
agent body. To evaluate if the agent stays on-road, we compute the average amount of time
where the policy stays outside the road corridor on each scenario of the database. In the next
section, we will explain how to build the corridor associated with a reference thanks to the
lanelet strcuture of the road map.

Off(%) = ESi∈S
1

Ti

Ti∑
τ=1

1(onroad(sit) (2.13)

There are more sophisticated metrics that we practically considered, as the amount of over-
speeding, safety distances and jerks but it makes comparisons and analysis more heavy. Over
speeding was not a concern in practice because our action space was bounded in contrast to
low travel speeds. Since low speeds are often justified iun order to avoid collisions or just to
wait for free space we mainly considered the average relative distance travelled with respect to
the expert denoted L(%) measured with curvilinear abscissa relative to the reference path p.
Let sπt be the curvilinear abscissa of the policy at time t on a given scenario indexed by i and
let Lexperti denote the longitudinal distance traveled by the expert on the same scenario.

L(%) = ESi∈S
(sπTi − s

π
0 )

Lexperti

(2.14)

2.2.2 The road-network interface

The map interface uses a specific map representation designed for decision making of driving
policies. Indeed, a raw picture representation of a road intersection, does not indicate explicitly
which traffic light is valid for a particular lane. For motion planning, routing requires knowledge
of consecutive lanes and where they lead otherwise the driving agent may move in forbidden
directions or change lanes in inappropriate situations. The map representation should also
help any driving agent to predict future moves of its immediate neighborhood. Information
about the surrounding of a vehicle such as bicycle lanes, sidewalks, markings, traffic signs and
curbs must also be available. As the agent is constantly moving, the map representation should
also be easily extensible. Such requirements are met by the Lanelet2 map format[150] that we
shortly summarize bellow:

2.2.2.1 Lanelet2Map

The lanelet2 map representation depicted in fig.2.3 globally assumes that all elements of the
driving scene can be described by a projection onto a flat ground plane at least locally. A
lanelet2 map is decomposed in several layers:

1. physical layer : contains real observable elements represented as points and line strings
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primitives.

2. relational layer: it contains lanelets, areas and regulatory elements which are composed
of items of the physical layer.

3. topological layer: it connects lanelets and defines the graph of the road-network.

All elements have in common that they are identified by a unique ID and attributes in the form
of key-value pairs. Areas are regions defined by one or more linestrings of the map in which
arbitrary displacements are possible i.e parking areas or forbidden i.e green spaces or buildings
borders. A lanelet, defines an atomic section of the map in which agent motion is directed and
explicit i.e a lane corridor, sidewalks. Inside a lanelet, traffic rules does not change and the
topological relationships with other lanelets does not change either. Both lanelets and areas
can have several regulatory elements which define traffic rules, such as speed limits, priority
signs or traffic lights.
Definition : Lanelet A lanelet is spatially defined by a polygon encoded with two line strings:
one for the left border and another for the right border which defines the lanelet direction.

Figure 2.3: Lanelet2 map representation of a motorway borrowed from [150]

The lanelet2 map representation easily enables routing based on the topological layer as long
as one can identify the lanelet associated to a given position. As several lanelets can intersect
and even overlap, a wrong lanelet can easily be associated to the current position of the agent
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which makes sometime impossible to find a route that leads to the desired destination. Hence
a planner should take into account the context : the past trajectory to provide continuously a
consistent route.
Definition : route A route from position Xt to goal gt is a sequence of lanelets in the
topological layer where the first lanelet matches with agent current configuration Xt and the
last one matches with the position of the destination gt.
The hierarchical policy model π = πmaneuver ◦ pirouting use the routing module πrouting to infer
a route that is subsequently converted into a reference path pref that extends from the current
position of the agent Xt to the goal gt assigned by the mission manager. The reference path is
extracted by concatenating the center-lines of each consecutive lanelet of the route.

2.2.2.2 Localization on the map

Given a route and its associate reference path, it can be handful to localize the agent or any
other item with respect to it. It is also interesting to define explicit motions along the route.
Curvilinear coordinates are very efficient to specify longitudinal and lateral positions along
the route but their analytical expression requires parametric curves as Hermite curves which
adds additional computational load for the simulator 10. Using discrete representations for the
route based on polylines can lead to discontinuities when the points density of the polyline
is not sufficient. On the left side of fig.2.4, we see that naive curvilinear coordinates based
on segment normals and length lead to two kind of issues. On the right side of the curve,
points P4, P5, P6 have the same abscissa s =

∑1
i=0

∥∥∥PiPi+1

∥∥∥ but no reference normal enables to
define the ordinate. This prevent the conversion from cartesian to cuvilinear coordinates to be
bijective which makes impossible to use a physical model that updates the cartesian position
from curvilinear motions defined with (ds, n) for instance. On the left side of the curve, we note
that curvilinear abscissa of points of segment [P1, P3] do not evolve continuously. This come
from the fact two normals can be used to define the ordinate of point P2 because P2 is on the
bisector of cone (C1, C2, C3). As we choose n23 to be the reference normal it induces a jump in
curvilinear abscissa because |s2 − s1| ≫ |s3 − s3| despite ∥P2P3∥ ≈ ∥P1P2∥. This side effect is
undesirable for control because small motions along the route should be smooth in curvilinear
coordinates when the lateral distance with respect to the route does not change too quickly.

10Note that coordinates computation of numerous points are necessary for a single simulation step notably
for observations.
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Figure 2.4: Curvilinear coordinates discontinuities: on the left side we show a naive Frenet-Serret
frame that leads to coordinate discontinuities while the method that we later propose solve those issues
as shown in the middle and on the right side of the figure.

A simple solution is to introduce tangents on each control point of the polyline and to inter-
polate tangents on each segment from base to tip in order to define a continuous Frenet-Serret
frame [65]. We shortly describe the method that enables to compute curvilinear coordinates
of point P located close to a polyline defined by the sequence of control points [C0, C1, ..., CN ].
We found out that the maneuver policy performances highly depend on the curvilinear coor-
dinates smoothness provided by this method. We start with the fundamental principle that
enables to check if a point P has its Frenet-Serret frame over the segment [Ci, Cj]. of length l.
Without loss of generality we consider the segment at the horizontal and re-centered in frame
R = (Ci, x, y).

Figure 2.5: Curvilinear coordinate computation

Note that control points Ci and Cj depicted on fig.2.5 have their own tangents ti and tj that
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can directly be computed from the polyline control points with the formula ti =
Ci−1,Ci

2.∥Ci−1,Ci∥ +
Ci,Ci+1

2.∥Ci,Ci+1∥ for i ∈ [1, N − 1] and simply t0 =
C0,C1

∥C0,C1∥ ,tN =
CN−1,CN

∥CN−1,CN∥ . To simplify calculus, we

force the coordinates ti, tj to be ti = (1,mi) and tj = (1,mj) which is easy to implement with
a scaling operation. We enforce the Frenet-Serret frame that moves along the segment Ci, Ci+1

to interpolate the tangents: tλ = λ.ti + (1− λ).ti+1

Pλ = λ.Pi + (1− λ).Pi+1

(2.15)

Additionally, we have by definition of an orthogonal frame tλ.nλ = 0 so tλ.PλP = 0.

PλP = P − λ.Pi + (1− λ).Pi+1 =

[
x

y

]
− λ.

[
0

0

]
− (1− λ).

[
l

0

]
=

[
x− l(1− λ)

y

]
(2.16)

(
λ.

[
1

mi

]
+ (1− λ).

[
1

mi+1

])
= .

[
1

λ.mi + (1− λ).mi+1

]
(2.17)

([
1

λ.mi + (1− λ).mi+1

])
.

([
x− l(1− λ)

y

])
= 0 (2.18)

(λ.mi + (1− λ).mi+1).y + x− l(1− λ) = 0 (2.19)

λ.((mi −mi+1).y + l) = l − x−mi+1.y (2.20)

λ =
l − x−mj.y

((mi −mi+1).y + l)
(2.21)

When λ ∈ [0, 1] it means that P lies over the segment [Ci, Cj]. In this case, we can compute
the curvilinear coordinates of point P with respect to polyline P with s =

∑i−1
j=0 ∥CjCj+1∥+λ.l

and the ordinate is n =
√

(x− l(1− λ)2 + y2. The conversion is bijective so for any curvi-
linear coordinate (s, n), we can extract associate cartesian coordinate as follow. First we

search lambda by finding the first index i which provides λ =
s−

∑i−1
j=0∥Ci,Cj∥
li

∈ [0, 1].Given
λ we can compute P λ and tλand consequently nλ wich is the orthogonal of tλ. Finally, we get
P = P λ + n.nλ. Note that the method we introduced still assumes that P stays close to the
polyline to work properly and additional procedures need to be implemented in case the point
lie far before or after the polyline end points. Additionally another problem can occur when
the polyline P tracing the route contains loops i.e a full turn of a roundabout. Using naive
localization with the full reference path can lead to errors as shown in fig.2.6
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Figure 2.6: localization issue on a polyline including a loop: the curvilinear coordinates of point Xt

may be mapped to the wrong curvilinear abscissa if the past trajectory is not considered.

For configuration Xt the naive method detailed before and applied on polyline [P0, ..., P14]

leads to a wrong projection Pλ=XP
t instead of X̂t assuming that the agent already followed

route [P0, P1, P2] as showed by its past trajectory in green on fig.2.6. A lightweight method to
avoid such mis-localization is to decompose the route into multiple pieces based on the variation
of tangents orientations. On fig.2.7 we illustrate this principle with the route decomposed in
two pieces depicted in red and in blue based on a threshold on the maximum variation of
tangent orientation equal to 180 degrees. We observe that the angle between t0 and t7 is bigger
than 180 which triggered a route decomposition. In this example, there are only two pieces but
there could be more depending on the route and on the threshold.

Figure 2.7: Long route decomposition based on a threshold on maximum tangent orientation vari-
ation: computing curvilinear coordinates with respect to each piece easily enables to detect discon-
tinuities in curvilinear abscissa between two consecutive position( Assuming that the first one has a
correct abscissa)

To localize a point with respect to a polyline decomposed in multiple pieces, we assume that
we constantly have an initial guess of at least the last piece on which the point should lie. This
assumption is reasonable because we are mainly interested in locating agent with respect to
reference path provided as a polyline. The initial pose of the agent with respect to the reference
path can be computed without error using the initial lanelet on which the agent is spawned at
simulation initialization. This provides an initial guess of which piece of the polyline the agent
is currently located and where it is likely to go for the next decision step assuming bounded
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motion. When the agent starts to move it can deviate from the route but we still want to locate
the agent pose with respect to it. Therefore, we start to locate the agent on the piece of road
we guess it should be located on. If we realise that the agent lie outside this piece of route, then
we extend our search to neighboring pieces of route up to the good projection (st+1, nt+1) is
found for the pose Xt+1 . We check that (st+1, nt+1) is consistent with previous (st, nt) namely
: |st+1 − st| should not exceed a few meters for a decision step of 100ms.
The localization method we use through our map interface enables to implement various driving
policy that can directly exploit the structure, of the road to move. It is particularly useful to
define rule based agents that need to reason directly in terms motion along the route instead
of relative motion.

2.2.3 Driving scene dynamic

In this section, we describe the dynamic of the driving scene environment. Most of the driving
scene is static as the road-network and regulatory elements only obey predefined rules and the
environment dynamic mainly depends on behaviour of traffic agents. In our work, our main
focus is to learn realistic driving behaviour rather than accurate physical models with high
order dynamic. Therefore, we simplify as much as possible the driving scene dynamic and detail
how to model traffic agents that populate the scene. We first explain in section2.2.3.1 which
hypothesis we made on the transition model by introducing traffic workers in the simulation.
Subsequently we describe how we designed two types of rule based traffic workers in sec.2.2.3.2
and in sec.2.2.3.3.

2.2.3.1 Transition model

As detailed in sec.2.2.1.2, we formalized traffic simulation with a Markov game G with partial
observability whose transition model is denoted TG. Assuming that a single agent is learning, it
reduces to a Markov decision processM with a dynamic TM .. Note that the dynamics are not
the same because in G all traffic agents are learning simultaneously while in TM part of traffic
agents have a fixed behaviour. In G, all actors are changing during learning which makes the
environment dynamic non stationary from the point of view of each actor.For each decision step,
the simulation process in G is summarized in alg.5. The transition model TG handles all agents
physics through fphysical, collisions detection, all regulatory elements as well as agents spawning
and absorbing process. Note that the variable number of agents between two steps encourage a
decentralized approach since the number of random variable manipulated oit, ait, sit are changing.
In case of single agent learning the, other traffic agents have a fixed policy and are called traffic
workers while the learning agent is called an actor. The behaviour of traffic workers is included
in the dynamic TM as summarized in alg.6. Learning a driving policy with MARL in TG or
with RL in TM is not equivalent because learning agents will not interact the same way and
may develop different behaviour to optimize their return even if they share the same reward
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Algorithm 5 Transition model in Markov Game
INPUTS:

• at: joint action

• St: global state

OUTPUTS:

• St+∆TD : next glocal state
for τ in [t, t+∆Ts, ..., t+∆TD] : do

for agenti in Aτ : do
uit = agenti.control(at[i], s

i
τ , u:τ−∆Ts)

siτ+∆Ts
= agenti.fphysical(s

i
τ , u

i
t)

end for
# Check collisions
Sτ+∆Ts =checkCollisions(s1:|At|

τ+∆Ts
)

# spwan and absorb agents
Sτ+∆Ts = F(Sτ )

end for=0

Algorithm 6 Transition model in a Markov Decision Process TG
INPUTS:

• ait: single action

• St: global state

OUTPUTS:

• St+∆TD : next glocal state

at[i] = ait # decision for the actor
# workers decision making
for agentj in Aτ−i : do

at[j] ∼ agentj.π(.|St)
end for
for τ in [t, t+∆Ts, ..., t+∆TD] : do

for agentj in Aτ : do
ujt = agentj.control(at[j], s

j
τ , u

j
:τ−∆Ts

)

sjτ+∆Ts
= agentj.fphysical(s

j
τ , u

j
t)

end for
# Check collisions
Sτ+∆Ts =checkCollisions(s1:|At|

τ+∆Ts
)

# spwan and absorb agents
Sτ+∆Ts = F(Sτ )

end for

function. In G all agent are fully interacting with each other while inM only a single actor is
interacting with traffic workers which may just approximate real traffic interactions. However,
since our approach is based on Curriculum learning changing the environment dynamics plays
a key role. We posit that progressively changing the dynamic of our learning environment
toward a real world traffic dynamic can help to learn robust driving policies with RL. Since
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we hypothesize that the first stage of the curriculum consist in learning single agent driving
policies, we need to define the dynamic of TM, namely the dynamic of traffic workers. As the
principle of curriculum is to increase complexity of the environment while gaining new skills, we
should start with a basic driving task and a dynamic TM that is challenging enough for the first
generation of driving policies. Since real and interactive driving behaviour are not available for
large scale simulations, we have mainly two opposite possibilities. Either we use an interactive
rule based agent, either we let the traffic workers replay their respective trajectories according
to a real driving episode already recorded. Learning a single agent driving policy with RL in
presence of replay worker will be studied in depth in chap.4 but we can already stress interesting
properties. Numerous real driving episodes of reasonable temporal length i.e 5 to 20 seconds
are already available in the Interaction Dataset[214] which enables to define driving scenarios
with replay workers as explained in section 2.2.4. Even if replay workers do not react to the
actor behaviour, they still enable to learn a driving strategy for avoiding collisions and in the
best case the actor can even recover the expert strategy if the reward is properly defined as
studied in chap.5. However, replay workers can also be replaced with more interactive agents
such that the actor can acquire more diversified driving skills. Therefore we also introduced
two kind of rule based agents in sec. and in sec.2.2.3.3.

2.2.3.2 Decentralized rule based agents

In order to define interactive rule based agents, we first consider a decentralized solution where
each worker takes it decision independently from other decisions. Having at our disposal a Map
Interface with localization along routes in curvilinear coordinates, we chose to extend the IDM
model originally designed for longitudinal control [190] and unable to avoid collisions in case
of intersections. Similarly to our hierarchical driving policy, our advanced decentralized IDM
model (DIDM) use a planner to build a route leading to the goal it was assigned by the traffic
flow. IDM originally just regulates the longitudinal distance with the front neighboor moving
in the same lane corridor. IDM instantaneous acceleration a(t), speed v(t) and longitudinal
position s(t) with respect to its path p obey the following relations:

a(t) = amax.(a− ( v(t)
vmax

)delta − (ddesired(t)
d(t)

)2)

ddesired = max(v(t).T − v(t).∆v(t)

2.
√

(amax.b)
, 0) + d0

d(t) = sn(t)− s(t)− Ln
∆v(t) = vn(t)− v(t)

(2.22)

where amax, vmax denote respectively IDM maximal acceleration and speed, b is the com-
fortable deceleration desired, d0 is the safety distance gap and T is the desired time gap. The
parameters vn, sn(t) denote respectively the speed and the longitudinal position of the leading
vehicle with respect to IDM path, and Ln represents the half length of the leading vehicle. In
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order to handle driving scenarios with intersections we need to regulate the IDM longitudinal
speed when it faces a front neighbor that is not moving on the same lane as itself and that is
likely to intersect its route. This situation occurs for example on a roundabout when the IDM
agent faces a neighboor that is about to enter the roundabout. As any traffic agent (actor or
worker) is assigned a path to follow at the beginning of the simulation, any IDM agent can
know if a neighbor in a radius rinter is intersecting its own path. On fig.2.8 we show that our
advanced IDM agent called DIDM can infer the intersection point denoted PI between its route
and the route of the ith agent. To check that the ith neigboor is moving toward the intersection
point we can check that its longitudinal speed reduces the gap between its current position and
PI . If the DIDM agents is closer to PI as indicated by

s(PI)/rDIDM
− s(PDIDM)/rDIDM

< s(PI)/ri − s(Pi)/ri (2.23)

then DIDM is allowed to take the way and does not modify its speed in function of the in-
tersecting neighbor. Otherwise DIDM has to give the way which consists in moving up to a
virtual stop point P stop

i and then stop for some time period Tstop that we can modulate. The
virtual stop point acts as a virtual leading neighbor which would be located on DIDM’s route at
abscissa s(P stop

i )/rDIDM
and whose longitudinal speed would be zero 11. The virtual stop point

is located at the intersection of DIDM’s route and the safety circle centered at PI as shown on
fig.2.8. In case DIDM has several close neighbors likely to intersect its route, it is necessary
to calculate which virtual stop point has to be considered to regulate the longitudinal speed of
the DIDM agent. For example if DIDM has N neighbors of half length Li about to intersect its
route located at {Pi}i∈{1,N} and a leading neighbor on the same lane located at Pl then we first
compute their associate virtual stop points {P stop

i }i∈{1,N,l}. To select which virtual stop point
will be considered, we use the following rule

j = argminj∈[1,N,l](s(PI)/rIDM
− s(P stop

j )/rIDM
− Lj) (2.24)

which indicates that the closest neighbor along DIDM’s route rIDM is considered as the one
that regulates DIDM’s speed according to formula 2.22.

11More advanced model could use a moving virtual stop point
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Figure 2.8: Illustration of our advanced IDM decision making process(DIDM).

To validate that our DIDM model can generate an interactive traffic with few collisions, we
realised two experiences. We first check that our advanced IDM model has low rate of epsiodes
with at least one collision denoted (CR%) in presence of a traffic composed of replayed agents.
This experience enables to identify specifically deficiencies of the DIDM because other agents
are not reacting. We also consider the rate of episodes with a front collision (FR%) which should
be low since the DIDM agent is specifically designed to regulate the gap with neighbors in the
front. We ran the evaluation on two scenario databases Huge_R_Basic and Huge_I_Basic
detailed in .2. For comparison, we also replace the DIDM agent we evaluate with either a simple
IDM model that do not handle side collisions or a constant speed model that moves forward at
30km/h. We observe that our DIDM agent can reach much lower rate of collisions than a simple

Huge_R Huge_I
CR% FR% CR% FR%

constant speed 42 21 37 25
IDM 21 2 18 2.5

DIDM 9 1.5 13 2

Table 2.1: Performances of a DIDM agents in presence of a traffic populated with replay agents

IDM baseline or than a constant speed model even if in some cases, it still collides at the level
of intersections because the virtual stop point is not always sufficiently far from intersecting
agents that are slightly shifted from the center-line. We realised another experiences where we
still test our DIDM model on the same set of driving scenarios expect that we replace all replay
agents with DIDM models. This experience enables to understand if decentralized interactions
among DIDM result in low rate of episode with a collision. We observe that the rate of collisions
is lower than in the previous experience because DIDM traffic workers try to avoid collision with
other traffic agents. We note that the DIDM agent is still safer than the IDM baseline or than
the constant speed model. This can first be explained by the fact that all agents stay on the
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Huge_R Huge_I
CR% FR% CR% FR%

constant speed 12 8 19 13.4
IDM 9 2 13 2.5

DIDM 7 1.5 9 2

Table 2.2: Performances of a DIDM agent in presence of a traffic composed of DIDM agents

center-line which reduces the number of locations where collisions could occur. Qualitatively,
we also observed that the traffic tends to evolve in a irregular manner compared the real ones
: agents that are likely to intersect slow down, and then progressively re-accelerate once the
path is free which generates jerky traffic patterns that do not look realistic.

2.2.3.3 Centralized rule based agents

In order to have a consistent coordination strategy at intersections: a consistent order of pas-
sage, it is easier to share information among all agents and take a common joint decision at
each decision step of the simulation. Therefore we also developed a centralized version of our
advanced IDM agents(CIDM). Since we know the full route of each agent and all intersections
areas on the map thanks to the lanelet structure, we can coordinate the passage of each agent
for each intersection area that lies on their route. Let’s illustrate the principle with the example
depicted on fig.2.9

Figure 2.9: Centralized coordination for rule based agents

The roadwork contains two intersections areas where respectively lanelets L2, L1, L6 and
lanelets L4, L5 intersect . Intersection areas can be pre-computed at simulation initialization
and stored in a graph as shown on fig.2.9. For intersection area 1, the route of four (CIDM)
agents are intersecting so we need to coordinate their passage at this level. We specify the order
of passage as follows D > C > A > B which means that agent D goes first followed by C that
is allowed to cross the intersection area once A has finished to cross it etc. In order to specify
at which position an agent should stop before crossing the intersection area, we compute the
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intersection of its route with the borders of the intersection area . Similarly to (DIDM, we call
this intersection point a virtual stop point and it corresponds for instance to point P s

3 for agent
B at intersection area 1 as shown on fig.2.9. Having at our disposal curvilinear coordinates,
we rank priority of passage based on longitudinal distances that separates each agent from
its virtual stopping point with respect to its own route. The first agent allowed to cross the
intersection area 1 is the one that verifies:

argmini∈{A,B,C,D}s(P
s
i )/ri − s(Pi)/ri (2.25)

where s(P )/ri denotes curvilinear abscissa with respect to the route ri of agent i. Note that
the order of priority assumes that all agents move at the same constant speed. To consider the
speed in the priority rule, it is possible to divide s(P s

i )/ri − s(Pi)/ri by the current longitudinal
speed of the agent along the route. Since IDM principle is to maintain a constant speed along
the route and since all rule based agent are supposed to maintain the same constant speed in our
simulation, we do not divide by the speed in our framework. To detect if an agent i finished to
cross an intersection area, we check if s(P o

i )/ri < s(Pi)/ri where P o
i denote the intersection point

between route ri and intersection area 1 whose curvilinear abscissa is the biggest12. Note that
the main changes of CIDM agents with respect to DIDM agents are the way virtual stop points
are computed and which virtual stop point each CDIM agent has to consider i.e its order of
passage at an intersection at every decision step. In terms of implementation CIDM agents need
to share information among agents and notably the coordination graph represented on fig.2.9.
The incomming edge B → A indicates that agent A has the priority with respect to B and each
node stores the virtual stop point of each agent. We summarize the centralized coordination
process of CIDM agents in alg.7. Note that in a traffic composed of some CIDM agents and some
other kind of agents, CIDM agents assumes that all agents follow the centralized coordination
process updated at each decision step even it is not the case in simulation.
In order to validate our CIDM model, we realised the following experiences. On the same set
of scenarios as in the previous section, we evaluate a CIDM agent among a traffic of CIDM
agents. Our goal is to verify that consistent centralized coordination strategies can be generated
in such a traffic. Note that a centralized traffic can be used to teach a learning agent a specific
driving strategy: namely a consistent prior strategy to coordinate at an intersection. In the

Huge_R Huge_I
CR% FR% CR% FR%

RA vs CIDM 37 17.5 34 13
CIDM vs CIDM 4 1 5.5 2

Table 2.3: Performances of CIDM agent or a replay agent(RA) in presence of a traffic composed of
CIDM agents

first row of tab.2.3 we see that a replay agent in presence of CIDM agents often tends to collide
12Indeed,the intersection area is not necessarily convex and the route is not straight so several intersection

points may exist.
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with CIDM agents of the traffic which shows that a traffic populated with CIDM cannot adapt
to an arbitrary driving behaviour. In contrast, a CIDM agent have almost no collisions with
other CIDM agents of the traffic (second row) but interactions are considerably slower than
in the previous experience because CIDM are very conservative by definition : they wait their
respective turn before committing in the intersection. The CIDM agent usually stop far enough
from other agents thanks to the use of intersection areas but it spends considerably more time
motionless13.

Algorithm 7 Centralized coordination at an intersections
INPUTS:

• traffic agents A
• intersection_areas

OUTPUTS:

• virtual stop points
for inter_area_i ∈ intersection_areas do

# extract all agents likely to collide at intersection area i
Ai = {}
for aj in A do
Ai.add(aj) if s(P o

j )/rj > s(Pj)/rjand ∥Oi − Pj∥ < rinteraction
#Compute distance to stop points
for aj in Ai do

δsj = s(P s
j )/rj > s(Pj)/rj

# Check the closest agents
[δsk1 , ....δsk|Ai|

, ] =sortDistancesToStopPointInIncreasingOrder(Ai, {δsj}j∈Ai
)

# first agents take the way and ignore others in Ai
for aj in Ai\{k1} : do

aj.updateVirtualStopPoint(P s
k1
)

end for
end for

Contrary to DIDM traffic agents which enables to introduce some stochasticity in the sim-
ulation, CIDM traffic agents enable to provide an interactive traffic that always applies the
same joint coordination strategy. For a traffic populated with DIDM agents, there is no guar-
antee that all intersecting agents will cross one by one the intersection area without conflict.
In contrast, a traffic composed of CIDM agents is supposed to coordinate the passage of each
agent at each intersection area and at each decision step. Leveraging DIDM and CIDM traffic
agents, it is possible to simulate various interactions for learning robust driving behaviours as
shown in chap.5.

13Some collisions remain because we do not explicitly handle speed and acceleration of CIDM agents within
the coordination strategy which generates some delay between the expected behaviour at a given time step and
the simulated behaviour.
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2.2.4 Building driving scenarios

In order to run a simulation, we need provide a driving scenario to the simulator. In this section
we just explain how we extracted real driving scenarios from a the Interaction Dataset[214] but
we detail the composition of all scenario databases used in this work in annexes .2.

2.2.4.1 Extraction from real epsiodes

A driving scenario can be built in two different ways: either based on real episodes either based
on synthetic requirements. Creating synthetic scenarios with synthetic maps as in [107] is also
possible in our framework but less interesting since we aim to imitate human drivers in real
situations. Even if synthetic scenarios also enable to learn basic driving behaviour in simula-
tion as collision avoidance strategy, they do not enable to compare the trajectory of the learner
with a human expert trajectory[145]. Building driving scenarios from real episodes has several
advantages over synthetic generation. The goals assignment and the initial configuration of
all traffic agents are directly available in real driving dataset as [214] otherwise they need to
be computed by some rule based procedures based on the map topology and agents density
criteria. Additionally, real scenarios enable to replay trajectories of some agents that we call
replay workers in our pipeline.
In order to build a real driving scenario S = (M,F , ρ,H,G,Π) from the interaction dataset
we implemented a Scenario Database Editor whose main procedure is shortly summarize in
the following. The composition of a scenario database is specified in a configuration file (sce-
nario are scripted) composed of a list of blocks that each details the composition of a subset
of scenarios. In each block, we first select the map M on which the scenario should be built
then we select the track file from which the traffic flow F will be extracted. Given a simula-
tion horizon H, we first search a traffic agent in the track file to play the actor. This traffic
agent should last at least H seconds in the recordings. Once the actor is found, we extract
all traffic agents recorded during the H seconds of the simulation. At this level, we have the
trajectories of each traffic agents of the driving scenario and we extract the last points of
their trajectories to define their goal g ∈ G. Finally, a driving policy π ∈

∏
is assigned to

each traffic agents, workers and actor, according to the scenario specifications. For instance,
while the actor is assigned a learnable policy, workers can be either DICM,CIDM or replayed
agents. Each real driving episode can be represented as depicted in fig.2.10 based on all agents
trajectories with color gradients on top of the road-network. For this work, we mainly fo-
cused on three kind of road-networks of the Interaction dataset [214]: a roundabout called
DR_DEU_Roundabout_OF , a map with lane merging DR_DEU_Merging_MT and a
complex intersection DR_USA_Intersection_EP0. We realised experiences separately on
each of them since expert demonstrations are significantly different. We restrict our experi-
ences on those maps to limit the computational load of trainings. In case multiple maps are
used simultaneously for training, we need to collect huge amount of transitions (At least more
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Figure 2.10: Driving episodes on three different maps used in our work:
DR_DEU_Roundabout_OF ,
DR_DEU_Merging_MT and DR_USA_Intersection_EP0.

than 500K per training iterations) to guarantee monotonic improvement of our policy which
implies waiting for several days before obtaining final results14.

2.3 Conclusion

In this chapter, we proposed a general and scalable approach for learning driving policies
for traffic simulation that decompose the problem in multiple stages with different levels of
complexity. Our goal is to tackle the first step that consists in acquiring basic driving skills
similar to human drivers. To this end, we first explained how we structured our driving policy
with a routing module that conditions a maneuver planner that can take action in simulation.
In order to evaluate our model, we designed our own driving simulator that can load real
world scenarios and can be animated by different categories of rule agent agents for interactive
training.

14More engineering work is necessary to fully exploit the potential of Ray and Rllib with distributed training
and simulations, and devices comparable to the one used in DOTA 2 [12] may be required.
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3.1. DRIVING POLICY DESIGN

In this chapter, we study how to design the maneuver driving policy that compose our
hierarchical driving policy. We first explore how to configure the decision making process and
how to efficiently represent the driving scene in sec.3.1. In a second time in sec.3.2, we analyse
open loop and closed loop performances of our driving policies built with different neural
network architectures and trained with supervised learning to imitate experts short term plans.

3.1 Driving policy design

In chap.2, we explained that the maneuver policy has to exploit the reference path pt provided
by the routing module and the current scene observation to take action. We first explain how
to parameterize actions in sec.3.1.1 before detailing how we represent the local driving scene in
the observation in sec.3.1.2.

3.1.1 Action space

In this section, we study how the maneuver driving policy should represent the action for
sequential decision making. We first explain in sec.3.1.1.1 how the maneuver policy is structured
and what are the common action space in traffic simulation in sec.3.1.1.1 before explaining how
to use curvilinear coordinates to specify the action in sec.3.1.1.2.

3.1.1.1 Encoding a maneuver

The maneuver policy receives the current observation ot and the traffic free reference path to
follow and should infer the action to perform for the next decision step that last δtd. The
action should be consistent with the latent goal encoded in the traffic free reference path pt and
socially consistent given the context provided in ot. Since this mapping requires interpretation
of the driving scene which may evolve in various ways, neural networks appears as a natural
solution. The maneuver policy is hence decomposed in two consecutive blocks : πθ = hθh ◦ bθb .
The backbone first encodes (ot, pt) into a latent representation zt = bθb(ot, pt) as detailed in
the next section 3.1.2 and in a second time a policy head infers the action at = hθh(zt). This
decomposition separates decision making from representation learning knowing that the latent
representation zt may be reused for various purpose1. In the following we analyse how we can
represent a maneuver in at such that reinforcement learning can be applied downstream. In
previous works, driving policies trained with reinforcement learning employed various action
spaces [229, 210]. High level maneuver specifications like lane keeping, giving or taking the way,
following a front neighbor can be used to define a finite action space but it requires specific

1In Reinforcement learning, we commonly use the same latent representation to decouple representation
learning and policy or value learning[177]
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3.1. DRIVING POLICY DESIGN

controllers to perform each discrete action. Those solutions lack flexibility because each ma-
neuver may be executed in various ways for various amount of time and the transition between
maneuvers may not always be smooth. In contrast, it is also possible to output directly the
full trajectory as done in [8] but this formalism is not adapted for Reinforcement learning since
a trajectory is high dimensional RN and exploring all of them at a given state is impossible.
In motion planning for automated vehicle, plans are usually computed based on dynamical
model of the vehicle before being sent to the control stack [53]. Since dynamical models can be
difficult to discretize, simple kinematical model are usually preferred for simulation purposes.
Various works in reinforcement learning for automated vehicles specify their action space based
unicycle or bicycle kinematical model such that policy already integrate limitation of displace-
ment. One convenient specification is to use longitudinal acceleration and brake and control
the turn rate the vehicle similarly to trajectory prediction [164, 191]. At each time step the
action at = [at, δt] represents linear acceleration at and turn rate δt. In simulation, the unicycle
kinematical model is discretized and the trajectory is updated at each time step by integrating
the action from the previous position at time t−∆T .

v(t)− v(t−∆T ) =

∫ t

t−∆T

a(τ)dτ (3.1)

θ(t)− θ(t−∆T ) =

∫ t

0

δ(τ)dτ (3.2)

x(t)− x(t−∆T ) =

∫ t

t−∆T

v(τ).cos(θ)dτ (3.3)

y(t)− y(t−∆T ) =

∫ t

t−∆T

v(τ).sin(θ)dτ (3.4)

Leveraging a model based approach, it is possible to discretize the unicycle kinematical model
and to plan several action for an horizon hp instead of just a single step. We explain in alg.8
how to implement a fully differentiable planner. For numerical approximation we can use the
midpoint approximation of the speed and heading as done in [191] for computing the next
position (x(t), y(t)):

θ̃(t) = θ(t−∆T ) +
δ(t−∆T )

0.5 ∗∆T
(3.5)

Even if we can back-propagate through the whole plan, note that the model does not integrate
the dynamics of other agent which restricts direct application of this fully differentiable planner
to simple driving scene with few traffic interactions. Additionally, actions [at, δt] are not defined
relative to a route but relative to the current configuration of the vehicle. This is particularly
embarrassing during exploration because the maneuver policy is not guided or directed by prior
knowledge of the task : the fact that we know exactly which route to follow. In most of the
cases once the path to follow is specified, we do not want to follow another one and should stay
close to it, except if the situation makes this path irrelevant which should be detected by a
separate module. Note that the reference path provided by our routing module is just a spatial
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3.1. DRIVING POLICY DESIGN

representation: there is no temporal information provided in pt : the purpose of the maneuver
policy is to compute decisions step by step to build a trajectory around the path. In the next
section, we propose a method that remains continuous but which expresses actions relative to
the traffic free reference path pt.

Algorithm 8 Planning with discretize unicycle
1: INPUTS:

• H: planning horizon

• ∆T : time discretization

• x(t), y(t), θ(t), v(t) initial state

• at:t+H = [a(t), a(t+∆T ), ...., a(t+H)

• δt:t+H = [δ(t), δ(t+∆T ), ...., δ(t+H)

2: for t in [∆T, 2.∆T, ..., H] do:
3: ṽ = v(t−∆T ) + a(t)

0.5∗∆T
4: δcap = cap(δ(t−∆T )

5: θ̃ = θ(t−∆T ) + δcap
0.5∗∆T

6: x(t) = x(t−∆T ) + ṽ.cos(θ̃).∆T

7: y(t) = y(t−∆T ) + ṽ.sin(θ̃).∆T
8: θ(t) = θ(t−∆T ) + δcap.∆T
9: v(t) = v(t−∆T ) + a(t−∆T ).∆T

10: end for=0

3.1.1.2 Relative displacement in curvilinear coordinates

In order to benefit from the prior information brought by the traffic free reference path, we
leverage curvilinear coordinates to parameterize our action. Before detailing our method, we
first remind some essential requirements for the action space such that a safe and human
like driving policy can be learned. Learning human driving policy requires continuous action
space otherwise arbitrary expert trajectory can not be reproduced with arbitrary accuracy.
Concerning safety, it is essential to avoid collisions which mainly requires to control forward
longitudinal displacements along the path to follow such that the vehicle only smoothly commit
to the intersection when the path is free. On fig.3.1, we explained how we configure our action
for the ego agent in red with respect to the traffic free reference path p(ge) that leads to the
destination denoted ge. The ego agent is located at Xa

t and its traffic free reference path
p(ge) is represented in black. The path can be very long and in practice the next action
only exploit a piece of it that we represented in violet and that we call the command Ct.
Note that the command is composed of points that constitute the traffic free reference path
except the first point of the command c0 that is the projection of Xa

t on p(ge). We denote the
curvilinear coordinates of position Xa

t with respect to path p(ge) with the curvilinear abscissa
sat and the ordinate nat given the Frenet-Serret frame (O(sat ), tt, nt). The ego agent controls
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the longitudinal displacement dsat and the next ordinate nat+1 at the position corresponding to
abscissa sat +dsat according to the local Frenet-Serret frame (O(sat +ds

a
t ), tt+1, nt+1). We choose

this representation because if we express curvilinear coordinates with respect to the command
Ct then the action at = (dsat , n

a
t+1) corresponds to the curvilinear coordinates of the next

position desired Xa
t+1. Note that on the fig.3.1, the next position desired Xa

t+1 corresponds to
the next position of a reference trajectory represented in red. As explained before, the action
space should enable to reproduce trajectories of experts which is possible with curvilinear
coordinates in condition that the expert trajectory stays close to the reference path such that
there exists a one-to-one mapping between the two curves. In practice, most trajectories of the
Interaction Dataset [214] verifies this condition and what strongly matters is the granularity of
the reference path which should be composed of numerous points such that the curvature does
not explode when there are abrupt turns. Another problem occurs when the ego agent is ahead
of the expert which should be imitated. In this situation, we can allow backward displacement
to compensate the advance but the behaviour will turn highly unrealistic. Another possibility
is to disable backward displacement and force ds ∈ [0, dsmax] and let the agent adapting its
strategy and potentially recover the expert trajectory a bit later in the episode. We choose
this solution because our driving scenarios do not require backward displacements along the
reference path. Concerning lateral control, we choose to directly control the lateral offset
, nat+1 rather than a shift dnt because in any case it is necessary to infer the Frenet-Serret
frame (O(sat + dsat ), tt+1, nt+1) and especially the normal nt+1 at O(sat + dsat ) to understand
how far will be the agent from the centerline. Since at = (dsat , n

a
t+1) only controls the next

position, the heading of the vehicle is not fixed. Instead of learning a maneuver policy that
outputs (dst, nt+1, dθt) = πmaneuver(πplanner(ot, pt)), we chose to use the heading defined by the
tangential vector tt+1 to update the ego agent heading at the next step θt+1. This approximation
is reasonable as long as the curvature of the path is small and the lateral position nt+1 is not
too big. Controlling a heading knowing that we do not use the bicycle kinematical model to
update the state (x, y, θ) is purely artificial and does not bring real skills. Indeed the point
of our action space is to decouple longitudinal and lateral control to ease exploration during
reinforcement learning trainings.

3.1.2 Observation space

In this section, we explain how we encode the driving scene context such that the maneuver
planner can infer the appropriate action. We start to review how driving scenes are commonly
represented in autonomous driving in sec.3.1.2.1, thereafter we propose a first method to encode
the scene in sec.3.1.2.2 and we explain in a last section 3.1.2.4 how to improve the representation
of other agents contexts with a pointNet like architecture.
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Figure 3.1: Action space in curvilinear coordinates

3.1.2.1 Driving scene representation

We aim to infer the appropriate action at = (dsat , n
a
t+1) based on the path pt and on a represen-

tation of the driving scene context encoded in an observation. Multiple elements of the scene
influence the decision and should consequently be integrated in the observation. In the follow-
ing, we explained how we designed our observation space. As explained in sec.3.1.1.2 any action
dsat , n

a
t+1 is expressed with respect to the command polyline Ct whose points are necessary to

infer the next position (xt+1, yt+1). The command should consequently be integrated in the ob-
servation but before understanding where an action leads, it is desirable to understand where
the agent is allowed to go. Providing information about the local road-network is essential but
the level of description can highly impact simulation performances2. Rasterized representation
of the road-network with a top view perspective are very popular but their accuracy is limited
to the image resolution and rendering engines tend to slow down parallel simulation rollouts
critical for reinforcement learning [94]. We choose sparse representations based on points as
polylines or polygons to represent elements of the road similarly to other works in trajectory
prediction [48, 110]. In addition to the command, we provide the lane corridor in which the
agent is expected to move during the next decision steps given the command as depicted in
blue in fig.3.1. The lane corridor is built with the successive lanelets that are associated to the
traffic free reference path. Indeed, the route that leads to the goal is computed with the lanelet
graph as explained in chap.2 so the path built upon the centerline of lanelets has an associate
sequence of lanelets. We concatenate left and right borders of the consecutive lanelets to build

2Speed and memory consumption
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left and right borders of our lane corridor. While the lane corridor indicates where the ego
agent should move, it does not indicate where other agents are going or at least where they
could move. Bringing more information about the road structure can be crucial especially on
intersections where other agents can come for the left or right side. Even if other agents goal
are not accessible at least from the point of view of the real decision maker, the knowledge
about the road-network topology offers a strong inductive bias. Recent histories of neighbors
also condition their next displacements and complement the knowledge of the road topology as
shown in various works in the field of trajectory prediction [51, 48, 110]. We choose to consider
only the five nearest neighbors of the ego agent because most of the interactions on the driving
scenes considered do not require more than five agents at a time. For decision making, the ego
agent history also matters because other agent may already be influenced by it and ego agent
should control its speed based on its past trajectory in order to avoid abrupt acceleration or
braking. Since the ego agent should avoid collisions with its neighbors, it should also integrate
the information about its own spatial extension as well as other agents spatial extensions that
we call footprints3. Lastly some meaningful quantities as the current lateral position nt, the
previous longitudinal speed dst−1 and some indicators as off-road driving ioff indicators can be
useful for decision making.

3.1.2.2 Encoding vectorized observation

In the previous section, we listed which elements of the driving scene context should be inte-
grated to the observation such that the observation backbone can compute a latent represen-
tation zt = bθb(ot, pt) for decision making. In the following, we propose a first architecture for
bθb where each components is first embedded separately by encoders EL, Ec, Enh, Eec, Eh, Ef as
shown in fig.3.2 before being aggregated through a last module called aggregator. All purely
geometric components as the lane corridor L = [[Lj = [(xi, yi)]i∈[1,20]]j∈[r,l], the agents footprints
F = [(Xrl, Xfl, Xrr, Xrl)i]i∈[ego,1,...,5], and the command P = [(xpi , y

p
i )]i∈[1,51] are encoded with

separate networks that share the same structure. Note that all geometric points as well as
agents positions are beforehand normalized according to spatial bounds specified in the ob-
servation space. We get inspired by pointNet architectures that operates on set of geometric
points and encode spatial features [152]. Similarly to pointNet, we compute local features for
each point and global features for the whole entity and we finaly combine them with a MLP to
obtain the final embedding of the geometric entity as depicted on the right in fig.3.2. All agents
footprints embeddings are concatenated in increasing order of their distance with respect to
the ego agent to form the footprints embedding ef . Ego agent history and other agent histories
are encoded with two separate network that share the same structure : masked position are
first projected in a higher dimensional space and then provided to a GRU module [26] which
generates history embeddings enh and eh. Note that we choose to initialize the hidden state of
the GRU with zeros instead of the hidden state at the previous decision step to avoid back-

3The footprint is just the four corners of the polygons that defines the vehicle’s shape.
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propagation through time. History embeddings of each agents are concatenated in increasing
order of their distance with respect to the ego agent to form neighboors histories embedding
enh. Concerning the ego agent state, it is encoded in eec with a simple MLP .
In order to combine all embeddings vectors eL, ec, enh, eec, eh, ef we use a network called aggre-
gator in fig.3.2 which can be implemented with two different architectures. The first one that
we called FCBaseline, consists in simply concatenating all embeddings and applying a MLP on
top to extract the latent observation vector zt.

Figure 3.2: Neural network architecture of a basic driving policy with the lightest observation back-
bone called FCBaseline.

3.1.2.3 Aggregating multiple components

While the FCBaseline architecture offers a simple solution to combine scene components infor-
mation, it does not enable to understand which components matters for the decision making.
Previous works applied spatial attention mechanism to build policy network that actively select
important, task-relevant information from visual inputs [128]. The model generates attention
maps which can uncover some of the underlying factor used to solve the task. Attention was also
used in a multi agent setting to better extract relation between agents that need to cooperate
to win a football game [171]. Those applications are similar to ours where we need to interpret
vectorized scene components to take actions. We leverage the multi head attention mechanism
[193] to build the second architecture for the aggregator that we called FCBaseline_Attentive.
More specifically, we use cross attention to build N specific queries based only on the follow-
ing components eL, ec, eeh, eec, eef which relates to information of the ego agent as well as the
lane corridor while keys and queries are computed based on all embeddings. This enables to
understand how the next action that depends on the command and ego information should be
shaped based on the whole context. In order to build querries, keys and values from component
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embeddings, we proceed the following way. We start to reshape all embeddings into vectors of
same size equal to 16 as depicted in fig.3.3 and stack them to form a matrix of size: [17x16].
From this matrix, we extract the query matrix Q ∈ R7×16 which is composed of the seven first
terms while the keysK ∈ R17×16 and the values V ∈ R17×16 contains all component embeddings.
The multi head attention layer denoted MHA operates as follows with h = 8 heads:

MHA(Q,K, V ) = cat(h1, h2, ..., hh).W
O (3.6)

where WO ∈ Rh.dk×dm (3.7)

hi = Attention(Q.WQ
i , K.W

K
i , V.W

Q
i ) (3.8)

WQ
i ∈ Rdm×dk (3.9)

WK
i ∈ Rdm×dk (3.10)

WQ
i ∈ Rdm×dk (3.11)

Attention(Q,K, V ) = softmax(
Q.KT

√
dk

).V (3.12)

dk : 32, dm : 16 (3.13)

The output MHA(Q,K, V ) is then added to initial querries Q to obtain the final latent ob-
servation zt. Note that we applied layer normalization on keys, querries and values as in [171]
contrary to transformers. Since the order of the stacked semantic components does not change
at each decision step we do not apply positionnal encoding which is often used for language
processing where words order contains semantics.

Figure 3.3: Neural network architecture of a basic driving policy with an observation backbone called
FCBaseline_Attentive that uses an aggregator implemented with multi head attention

In sec.3.2.1 we will analyse how the attention mechanism affects the task performances and
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we will also investigate if interpretation can be made on the attention weights.

3.1.2.4 Encoding the local map

In the two previous sections, we proposed an architecture that encodes the scene context from
the point of view of the ego agent. We used the same architectures to encode spatial features
but separate networks were used to encode the command, agents footprints and the ego agent
lane corridor. Those architectures do not enable to relate spatial components with each other
because embeddings are built separately. Additionally, the representation of the road-network is
restricted to the lane corridor which makes difficult for the ego agent to predict how neighbors
are likely to move. This can be problematic on intersections where the ego agent should
sometime learn to give or take the way. In this section, we propose a second architecture that
enables to unify and relate all observation components. This architecture is based on VectorNet
[48] which uses a hierarchical graph neural networks to encode the scene decomposed in multiple
geometric entities such as as polygons or polylines themselves composed of elementary bi-points.
Since the road-networks of our driving scenarios are based on the lanelet map format whose
elementary components are points and linestrings, we adapted VectorNet to work directly on
sequence of points. Similarly to VectorNet, we use a hierarchical structure that first builds
local features for each polylines before exchanging information at a global level between each of
them. Features of the global interaction graph will be reused later to decode the next actions
for the ego agent.
Before detailing our architetcure, we introduce some modifications in the observation where we
replace the lane corridor built upon a sequence of consecutive lanelets, with the set of lanelets
that surround the ego agent in a radius lower than R = 20meters. The set of lanelets contains
the ones that constitute the lane corridor but also incorporates lanelets on which neighbors
may move during the next decision steps. For each lanelet, we not only represent left and
right borders as polyline but also the associate centerline. Hence all components provided
in the observation expect the ego state which is not processed at this level reduced to a set
of polylines for geometric entities : lanes, agents footprint, command and agents histories.
Polyline are sampled at regular spatial interval for static entities and at a fixed period of 100ms
for trajectories.
The new observation backbone called PointNet_MHA that outputs the latent representation
zt = bθb(ot, pt) operates at two stage : it first exploits local subgraphs to extract polylines
features and then use a global interaction graphs to relates all polylines with each others.
Each polyline defines a local subgraph and each point of the polyline constitute a node which
is connected with all other points of the polyline. To build polyline feature we stack three
subgraph layers that each transforms node features v(l)1 , v

(l)
2 , ...v

(l)
Nmax

of polyline Pi at level l into
node features v(l+1)

1 , v
(l+1)
2 , ...v

(l+1)
Nmax

as follows:

v
(l+1)
i = φrel(genc(v

(l+1)
i ), φagg({genc(v(l)j )})) (3.14)
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where v(l)i is the node feature for the l-th layer of the subgraph network, and v
(0)
i is the initial

node feature characterized in terms of relative position with respect to ego agent. The function
genc(·) transforms the individual node features while φagg(.) aggregates the information from all
neighboring nodes with a max pooling operator, and φrel is the relational operator between node
vi and its neighbors implemented as a concatenation as depicted in fig.3.4. Finally, to obtain
polyline level features, we compute p = φaggpol({v

(Lp)
i }) where φaggpol(.) is again max-pooling.

To model global interactions between node features P (l) = p1, p2, ..., pP we use another GNN
that considers full connectivity ( A adjacency matrix is full of ones) of the polylines graph.

{p(l+1)
i } = GNN(P (l),A) (3.15)

The GNN can be implemented with self attention such that the future trajectory τt:t+T =

φtraj(p
(Lt)
i ) from the polyline nodes corresponding to the ego agent p(Lt)

i at the last layer L of
the global graph, can be decoded with φtraj as in [48] .

P (l+1) = softmax(PQ.P
T
K).P V (3.16)

where PQ = P (l).WQ ,PK = [P (l) ⃝ t].WK and P V = P (l).W V . In our setting, we do
not want to infer a trajectory but the next actions conditioned on a reference path represented
by the command. In contrast to the Urban Driver[165] our action is not specified relative
to ego position in cartesian coordinates but with respect to the reference path in curvilinear
coordinates. Therefore, we choose to build the query matrix PQ based on three polyline
features : the ego agent history, the ego agent fooprint and the command. We expect the query
to provide meaningful information with the latent observation zt that will later be used to infer
the action. Note that similarly to the Urban Driver, we choose to concatenate the type of each
polyline in addition to the polyline features when the keys are built PK = [P (l) ⃝ t].WK such
that polylines of different vehicles trajectories, polyline of static entities can be distinguished.

3.2 Imitating human drivers

In this section, we aim to analyse if our observation backbones are powerful enough to learn a
driving policy. Before applying reinforcement learning, we propose to analyse the efficacy of our
architectures on a supervised learning tasks. Since supervised learning can also be considered
at a pretraining step, we propose a method to acquire general representations before applying
RL. We propose to pretrain our neural networks to plan multiple decisions instead of a single
one. We explore different ways of planning in a model free fashion in section 3.2.1 or with a
transition model in sec.3.2.2 and we analyse their performances in open loop and closed loop.
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Figure 3.4: Encoding the local scene context with PointNetMHA observation backbone network

3.2.1 Imitative planning

In this section, we first study how to pretrain our networks based on supervised learning in
sec.3.2.1.1 and we later propose a planner architecture that can imitate short term trajectories
of experts in sec.3.2.1.2.

3.2.1.1 Extending decision making

Training a high capacity model tabula-rasa from random initialization with reinforcement learn-
ing such that it outputs robust decision without using any prior knowledge about the environ-
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ment seems inefficient [140]. Taking appropriate decisions requires good scene understanding
which cannot be acquired when the RL agent starts to learn with a single scalar reward. An
action should be characterized by the way it influences state transition therefore state repre-
sentation that aims to compute actions should account for future state evolution but usually
do not for model randomly initialized [22]. The fact that RL optimization objectives can be
biased and very noisy due to exploration can consequently rapidly lead to over-fitting because
observation embedding get overspecialized for learning a policy with high expected return but
not necessarily a policy that performs always well everywhere [216]. Pretraining an encoder
zt = bθb(ot, pt) in RL is a common practice that can alleviate over-fitting [37, 208]. Unsu-
pervised pretraining from downstream tasks is common for visual applications and provides
task agnostic features which can be used for training [88]. Some pretraining methods also rely
on predictions tasks either on some part of the state [103] either in a latent space leveraging
amortized variational inference in POMDPs [102]. In multi agent environment, predicting the
evolution of the scene is difficult because other agents may behave in very specific way in each
situation. In case other agents are replayed in the driving scenario, learning the dynamic only
helps locally when the ego agent is not too far from the reference expert. Even if learning
reactive behavior with RL still help to avoid collision in this setting, what really matters for
long term simulations in presence of replay agent is to closely imitate expert strategy in the
long term. In this way the ego agent can not only react to other traffic agent but will also avoid
being trapped in some situation far from the expert trajectory where no adaption may be pos-
sible. Based on these considerations we propose a pretraining method that consists in planing
multiple decisions instead of a single one which is equivalent to apply multi step conditional
imitation learning [63]. Since the observation backbone is used to plan multiple decision steps,
the features learnt for the first decision will also be refined for taking consistent future decisions
and should consequently get more robust to observation artefacts. However we do not intend
to use the full plan for closed loop simulation except for the first decision step because at each
simulation step we will replan and adapt to unexpected changes.

πθ(ot, pt) = hθh ◦ bθb(ot, pt) = hθh(zt, pt) = [at, ..., at+H ] (3.17)

Contrary to imitative models, we learn directly an imitative planner and not a predictive model
of expert like behaviors that requires an additional optimization step in a latent space to build
a path that lead to the goal [158].

3.2.1.2 Planning as an expert

In order to extend the single step decision making we choose to plan the trajectory that the
ego agent has to follow given the current observation ot and the traffic free reference path
pt. Since we aim to learn a representation that improves the performances of our agents in
closed loop evaluation, the first planning step should corresponds to the action that the agent
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will effectively execute in the environment. We expect that pretraining our agent to plan as
an expert from offline data, can ease downstream reinforcement learning training with online
interactions. Instead of directly planning with a sequential procedure that requires next states
predictions or a latent representation [60, 59], we were inspired by simpler models in the motion
prediction literature. In order to predict trajectories of some vehicles in a driving scene, some
works condition their predictions on anchors ak that can be either paths [20] or goal locations
[226] and then operate trajectory prediction assuming that future states st:t+H are conditionally
independent from each other. To be more specific, in Multipath [20] they made the simplifying
assumption that uncertainty is uni-modal given intent ak, and they model the next state as a
Gaussian distributions dependent on each waypoint akt of an anchor trajectory:

ϕ(skt |ak, ot) = N (skt |akt + k
t (ot),Σ

k
t (ot)) (3.18)

Gaussian parameters µkt (ot),Σk
t (ot) are predicted by the model for each time-step of each anchor

trajectory akt . In the Gaussian distribution mean akt + µkt (ot), the term µkt (ot) represents a
scene-specific offset from the anchor state akt . This allows the model to refine the static anchor
trajectories to the current context, with variations coming from specific road geometries. The
time-step distributions are assumed to be conditionally independent given an anchor, i.e., they
write ϕ(skt |ak, ot) instead of ϕ(skt |ak, ot, s1:t−1). This modeling assumption allows to predict
for all time steps jointly with a single inference pass, making the model simple to train and
efficient to evaluate. We adapted this approach to the planning setting where we want to
plan the next trajectory to follow given a reference path. Since the first step of the trajectory
should correspond to the first action we choose to represent the trajectory plan in curvilinear
coordinates. The first action parametrize the longitudinal displacement dst with respect to
the current curvilinear abscissa and the next lateral ordinate nt+1. Instead of representing
the next steps of the plan the same way we propose a slight modification for the longitudinal
displacement dst+h′ which will always represent the displacement dst′with respect to the initial
curvilinear absissa st such that dst′ = st′ − st

πθ(ot, pt) = hθh ◦ bθb(ot, pt) = hθh(zt) ∼ [at, ..., at+H ] (3.19)

= [(dst, nt+1), (dst+1, nt+2), (dst+H−1, nt+H)] (3.20)

This choice enables to avoid planning with respect to fixed positions akt sampled uniformly
on pt which corresponds to the anchor ak in Multipath[20]. Indeed, providing displacement
in curvilinear coordinates with respect to different anchor points akt at every decision step t

may require to predict negative longitudinal displacement dst with respect to akt which are
not contained in our action space. Similarly to Multipath, all steps of the plan are considered
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independent with each others and consequently from previous steps.

p(at, ..., at+H |ot, pt) =
H∏
h=0

p(at+h|, at+h−1..., at, ot, pt) (3.21)

=
H∏
h=0

p(at+h|, ot, pt) (3.22)

at+h = [dst+h, nt+h+1] (3.23)

dst+h ∼ N (.|µdst+h
(ot, pt), σdst+h

(ot, pt)) (3.24)

nt+h+1 ∼ N (.|µnt+h+1
(ot, pt), σnt+h+1

(ot, pt) (3.25)

(3.26)

Note that each step of the plan is computed with the same observation embedding zt as rep-
resented in fig.3.5 which helps to compute consistent sequence of displacements from only
the current observation. Since each planning step is expressed with curvilinear coordinates
(dst′ , nt′+1) with respect to pt it is not easy to make the relation with the associate location
in cartesian coordinates (xt′ , yt′). In order to favor spatial representations that are critical for
decision making, the reference path pt is provided in the form of a polyline with a sequence of
cartesian coordinate as well as its curvilinear abscissa in addition to the command component
Ct already embedded in zt as explained in sec.3.1.2.2.

pt = [(x0, y0, s0), ......, (x50, y50, s50)] (3.27)

The coordinates are expressed with respect to the ego agent current frame and the initial curvi-
linear abscissa is s0 = 0. Based on pt and the complementary observation embedding zt, the
planning head outputs a vector that defines the means µ and the standard deviations σ of the
longitudinal and lateral components of each of the fifteenth planning steps of the plan. Since
decisions are assumed independent as well as the lateral and longitudinal components, we call
our planner Independent Longitudinal Lateral (ILL) planner. In order to validate our assump-
tions and the efficiency of our architecture, we first train our ILL planner on demonstrations
of two driving scenario databases Huge_R_Basic and Huge_I_Basic detailed in annexes.2.
We want to understand if the planner is able to generalize expert like plans in curvilinear coordi-
nates on new scenarios. In the following, we first propose to compare open loop performances of
the planner with different observation backbones: FCBaseline_basic, FCBaseline_Attentive
and the PointNet_MHA. We observe in tab.3.2.1.2 that the best performances are obtained
with the PointNet_MHA architecture which has more capacity than other architectures and
which also benefits from the information of the local road-network contrary to the two other
baselines that only have access to the lane corridor. We note that the attention mechanism of
the FCBaseline_Attentive architecture did not considerably improve the test performances
compared to FCBaseline_Basic. This can be explained by the fact that the databases are

60



3.2. IMITATING HUMAN DRIVERS

Figure 3.5: Architecture of the independent longitudinal and lateral planner named Planner_ILL:
on the top we represented the bi-variate Gaussian distributions that defines consecutive steps of the
plan where the first is represented in red and corresponds to the action effectively taken in simulation.

Huge_R Huge_I
ADE-1.5(m) FDE-1.5(m) ADE-1.5(m) FDE-1.5(m)

FCBaseline_basic 0.28 0.38 0.27 0.45
FCBaseline_Attentive 0.26 0.32 0.24 0.41

PointNetMHA 0.23 0.26 0.21 0.37

Table 3.1: Open loop test performances comparison between several IIL planner with different ob-
servation backbones.

small because based on a single map with limited number of demonstrations. The restriction
on the amount of data is only justified for making fair comparisons between the contribution of
real demonstrations on a set of scenarios and the contribution of RL trainings on the same set
of scenarios4. We posit that pretraining on a larger database would certainly be beneficial but
it would become unfair to compare the contribution of supervised and RL trainings since RL is
primarily used to compensate unbalanced amount and diversity of demonstrations. Finally, we
observe that the smallest backbone FCBaseline_basic reached reasonable test performances
which suggests that it could be used for downstream RL fine tuning in closed loop.

4Using scenarios from multiple maps implies to add several days of training with RL to obtain reasonable
results which considerably slows down experiments.
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In fig.3.2.1.2, we provide some qualitative test examples generated with PointNet_MHA which
shows that the planner is understanding the scene context. At the entrance of the roundabout,
the ego agent’s plan shortens because the left agent already committed has the priority whereas
the plan extends forward along the center-line when the lane is free. On the map with the in-
tersection, we observe that the planner also interprets the context to take or give the way with
respect to other neighbors.
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Figure 3.6: Qualitative results of plans generated by PointNetMHA_Planner_IIL in open loop
by the ego agent represented in red. The observations provided to the backbone are represented on
the figure. Plans represented in cyan are projected from curvilinear to cartesian coordinates with
respect to the command represented in grey. The longitudinal uncertainty provided by the standard
deviation is represented with circles in dark blue. The ground truth trajectory of the associate expert
is represented in red.
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We choose to focus our attention on a relatively small architecture : FCBaseline_basic
since we intend to apply RL trainings downstream without freezing the backbone which may
need to acquire specific features to accurately predict the policy state value or refine ac-
tions selection on new situations seen in closed loop simulations. Sophisticated backbone
as FCBaseline_Attentive or PointNet_MHA requires considerably more interactions and
hyper-parameter search to be properly trained with RL as shown in chapter. 4.
Given that the ILL planner is able to plan with reasonable performances in open loop 5, it is
interesting to check how it behaves in closed loop : when the first action of the plan is executed
at every decision step of the episode. In the next experience, we compare closed loop perfor-
mances of our ILL planner between different backbones. In contrast to the previous results, we
do not compute ADE-1.5 with respect to the expert plan, but we consider the average distance
error along the whole episode with respect to the expert trajectory with ADE-5 and ADE-15.
Additionally we also report the rate of episodes with at least a collision (CR%) as well as the
relative time spent off-road during the episode (Off%) to understand if the policy effectively
learned a safe driving strategy.

Huge_R Huge_I
ADE-5(m) ADE-15(m) Off% CR% ADE-5(m) ADE-15(m) Off% CR%

FCBaseline_basic_BC 5.20 13.6 10.30 55 5.82 14.1 11 45
FCBaseline_basic_Planner_ILL 4.25 10.64 8 46 4.80 11.62 8.2 42

FCBaseline_Attentive_PlannerILL 4.13 11.20 7.5 44 4.83 11.20 8.3 41
PointNetMHA_Planner_ILL 3.82 8.62 6.2 42 4.55 9.41 5.1 40

Table 3.2: Closed loop test performances comparison between several observation backbones.

The results provided in tab.3.2 shows that short term imitation performances as ADE-5
remain relatively low even if the agent is already starting to drift but the long terms imitation
performances confirm that the driving policy ends up very far from the expert trajectory and
finally fail to adapt as shown by high level of collisions and off road driving. This problem
is known as the distributional shift [30, 176, 43] and was mainly pointed out in behavioural
cloning which aims to learn single step decisions from expert demonstrations. We also trained
a baseline only on the first decision of the expert plan similarly to behavioural cloning and we
reported its closed lop test performances in the first row of tab.3.2. We observe that this baseline
reached lower results that our planner trained on 15 steps which proves that better features
are acquired by our training method compared to standard behavioural cloning. However the
ILL_planner is still suffering from gradual deviations which lead to failure and that cannot be
avoided. To illustrate the deficiencies of the ILL planner in closed loop, we provide qualitative
results in fig.3.2.1.2 with representative failures that occur in the test database. All situations
are considerably different from states visited by the expert which can explain that the policy
struggles to adapt on those new situations.

5The observation used to process the plan comes from the expert observation,( equivalently state) distribu-
tion.
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Figure 3.7: Qualitative results of plans generated in closed loop by the FCBaseline_Planner_ILL

3.2.2 Model based planning

In the previous section, we explained how to extend single step decision making into planning
but our method did not explicitly model the evolution of the ego agent state under the decision
making process. This limitation reduces the ability to generalize how to plan outside the
expert state distribution and resulted to numerous failures due to distributional shift. We first
propose in sec.3.2.2.1 to integrate a transition model in the planner such that it can better
predict state evolution and not only optimal actions. We subsequently explain in sec.3.2.2.2
how the planner can leverage additional simulation data during pretraining in conjunction with
expert demonstrations.
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3.2.2.1 Integrating a transition model

In order to better generalize the impact of consecutive actions on the ego agent future states,
we can integrate a state transition model in the planning process. The state transition model
should ideally predict the next state st+1 reached by the agent when it takes action at in state
st. In the previous section, all the steps of the plan were computed jointly and they are only
linked implicitly based on the observation embedding zt while in this section we make explicit
the fact that action at+h depends on actions at:t+h−1. The main difficulty of modelling the state
transition comes from the fact that the trajectories of other agents surrounding the ego agent
need to be predicted. Indeed, the ego agent state or simply its current observation contains
information relative to neighbors locations which influence ego agent’s decisions. Another minor
difficulty comes from the fact that actions in curvilinear coordinates needs to be converted into
cartesian coordinates to obtain the future state location and the analytical expression which
depends on the reference path pt should be learnt. In order to avoid to predict all the details
of the next state st+1 that do not all necessarily matter for the next decision, our transition
model operates in a latent space. As depicted in fig.3.2.2.1, we introduce an auto-regressive
planner that generates each action based on the prediction of the current latent state and on
the previous action. At the beginning of the planning procedure, the observation embedding
is concatenated with the flattened command vector Ct and the ego agent configuration before
being embedded into an initial latent state ho. Note that the ego agent configuration (sc0, n

c
0)

is defined with respect to the reference path pt whose curvilinear abscissa origin is taken at
the current position of the ego agent hence sc0 = 0 and nc0 = nt. We choose to concatenate the
command and the ego configuration to facilitate the computation of the plan which can easily
benefits from the initial lateral offset nt as well as the curvilinear abscissa of each waypoints
of the command. Once a latent state ht is available we apply a first transformation on ht to
obtain a policy latent state hπt that also depends on the previous action at−1. The policy latent
state is later decoded by a policy head which provides the next action at to execute through
a sampling operation. In order to predict how the action at influences the next state, we use
a second GRU cell [26] that takes as input at and that update hπt into the next latent state
ht+1. Since we have a new latent state ht+1, we can repeat the procedure to obtain each action
of the plan that we store as a vector. In contrast to the previous section, our auto-regressive
planner makes each decision at based on the previous action at−1 and on a latent representation
of the state ht. The policy latent state denoted hπt is just an intermediate representation that
enables to derive the next action at before predicting the next latent state. Since each action is
parametrized by a bi-variate gaussian for the longitudinal displacement and the lateral offset,
we can train the planner by maximizing the likelihood of the expert plan as done previously.

argmaxθEot,at:t+h∼ρ∗ [log(pθ(at+H , ..., at|ot)] (3.28)
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Figure 3.8: Architecture of the auto regressive planner called Planner_AUTOREG

In the following, we first check that the auto-regressive planning procedure does not hurt
performances of the planner in open loop with respect to the previous method. The results

Huge_R Huge_I
ADE-1.5 FDE-1.5 ADE-1.5 FDE-1.5

FCBaseline_basic_Planner_ILL 0.28 0.38 0.27 0.45
FCBaseline_basic_Planner_Autoreg 0.26 0.32 0.25 0.39

Table 3.3: Open loop test performances comparison between several IIL planner with different ob-
servation backbones

provided in tab.3.2.2.1 shows that the auto-regressive planner reached slightly better perfor-
mances in open loop which confirms that the transition model can be trained efficiently even
with two consecutive GRU cells. We do not expect the open loop performance to be radically
better since our training data are limited but we expect that plans look better in closed loop
evaluation since the transition model should at least enforce consistency between consecutive
steps of the plan. The test performances in closed loop reported in tab.3.2.2.1 show better

Huge_R
ADE-5(m) ADE-10(m) ADE-15(m) Off% CR%

FCBaseline_basic_Planner_ILL 4.25 8.42 11.64 8.0 46
FCBaseline_basic_Planner_Autoreg 3.95 6.32 9.10 7.0 38

Huge_I
ADE-5(m) ADE-10(m) ADE-15(m) Off% CR%

FCBaseline_basic_Planner_ILL 4.80 7.80 11.62 8.2 42
FCBaseline_basic_Planner_Autoreg 3.96 6.22 10.70 7.2 37

Table 3.4: Closed loop test performances comparison between the ILL planner and the AU-
TOREG_ILL planner.

performance for the AUTOREG_Planner_ILL architecture than the previous method. It
appears that the average distance errors given by (ADE-5,ADE-10,ADE-15) grow much faster
with the Planner_ILL than it does for the AUTOREG_Planner_ILL architecture. To
illustrate improvements of the auto-regressive method in closed loop simulation, we provide
qualitative results in fig.3.9 of plans in situations where the agent is starting to deviate from
the expert trajectory. While the Planner_ILL tends to generate paths that are not consistent
(longitudinal and lateral accelerations are not smooth), the AUTOREG_Planner_ILL tries
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to compensate smoothly the lateral deviations by generating a trajectory that starts from the
current pose. This kind of adaptation enables to compensate distributional shift because it grad-
ually changes the state contrary to abrupt reactions that can be seen with the Planner_ILL
that do not integrates that consecutive states cannot change too quickly.

Figure 3.9: Qualitative results of plans generated on test scenarios from the same starting out of
expert distribution with an initial lateral offset: on the left side the Planner_ILL and on the right
side AUTOREG_Planner_ILL.

3.2.2.2 Learning from interactions

In this section, we investigate how to efficiently train the state transition model to improve
the closed loop performances of the planner. We know that planning accurately a sequence
of actions as an expert does not necessarily enable to understand how a plan influences the
future states of the ego agent. Since the driving scenes are generally populated with multiple
agents which are also part of the ego agent future states, it is not straightforward to model
how ego agent plan [at, ...at+h] is going to influence individual positions of each of its neighbors.
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Predicting multi agent interactions for more than one second under a SDV plan in presence
of diverse drivers is extremely challenging especially because we ignore the behaviour of other
participants as well as their intent [194, 159]. However predicting how actions influence the
ego agent configuration is easier because it mainly depends on the ego agent physical model
which in our setting reduces to converting curvilinear coordinates into cartesian coordinates.
Since our auto-regressive planner uses a latent state representation, it is not directly possible to
isolate ego agent future configuration and other agent future configurations. Instead of explicitly
predicting the environment evolution we propose to use an auxiliary loss called prediction loss
LT based on environment transitions in order to improve the latent state representation of
the planner. This loss does not directly improve the decision making but aims to improve the
transition model used for planning. The loss LT can be computed on transitions in the form
of (at−1, ot, at, ot+1) collected by an arbitrary behaviour policy in the environment. In case we
call our auto-regressive planner at step t on observation ot it would output the following latent
state htt+1 for the first planning step.

zt = b(ot) h
t
t = bp(zt, ct, xt) k

t
t = gπ(h

t
t, at−1) h

t
t+1 = dT (k

t
t, at) (3.29)

In case the planner is queried directly at the next step t+1 it would output the following latent
state to represent the one effectively reached and provided through ot+1.

zt+1 = b(ot+1) h
t+1
t+1 = bp(zt+1, ct+1, xt+1) (3.30)

Note that in the transition, actions at−1 and at are not necessarily optimal but partially explain
how the agent went from ot to ot+1. The fact that we also consider at−1 to model the transition
from ot to ot+1 is reasonable in the sense that previous action normally condition other agents
future reactions. Since we want the planner to acquire consistent representations of the influence
of an action at on next state st+1,we should constrain ht+1

t+1 to match with htt+1.We use the mean
square loss on batch of transitions to compute the loss that should be minimized:

argminθLT (θ) LT = EB∼πb [0.5 ∗ (htt+1(θ)− ht+1
t+1(θ))

2] (3.31)

The loss LT can be computed on the support of the expert state distribution provided by an
expert dataset but the reason why we introduce this loss separately from the planning loss is
related to the fact that it does not requires optimal expert actions. Since closed loop evaluation
necessarily approximate the environment dynamic either with replayed agents either with rule
based agents, we can choose to compute LT with transition generated during simulation roll-
outs by the current version of the planner. We expect that better predicting state transitions
induced by the current planner may help the planner to better understand which action enables
to reach a given latent state. The question that remains is related to the way the prediction loss
should be back-progapagated : should we freeze one of the two term htt+1, h

t+1
t+1 or should we let

69



3.2. IMITATING HUMAN DRIVERS

the gradient flow twice through htt+1 and ht+1
t+1? Detaching the latest representation ht+1

t+1 would
enforce the transition model dT to update htt based on actions at and at−1 but the backbone
should be detached htt = bp(zt, ct, xt) in this case.

LT = EB∼πb [0.5(h
t
t+1.detach()− dT (gπ(htt.detach(), at−1), at))

2] (3.32)

This formulation enforces the planned latent representation htt+1 to match with the initial
latent representation ht+1

t+1 provided by the backbone but it does not help the backbone to find
an optimal representation. In contrast, if we do not detach anything from the computational
graph, then the planned representation htt+1 will still align with the initial latent representation
ht+1
t+1 but latent representations can get arbitrarily big or small since their difference is minimized.

We choose to add a L2 regularization terms to prevent the network parameters from changing
abruptly in case the backbone is detached.
In the following, we investigate the influence of both version of prediction loss on the planner
performances.

In a first experience, we analyse how evolve open loop performances when the prediction

Algorithm 9 Autoreg planner pretraining with the prediction loss
1: INPUTS:

• expert data: De

• S: associate scenario database

• c: cost function for the prediction loss

2: for i=1,2,...Nepoch do
3: for k=1,2,... do
4: B ∼ De sample expert data
5: L(θ) = Eot,at:t+h∼B[log(pθ(at+H , ..., at|ot)] compute planning loss
6: if i%Ndata collection = 0 then
7: Di ←collectTrajectoriesWithPlanner(πθ)
8: end if
9: if i > Ndata collection then

10: B ∼ Dπi sample policy data
11: L(θ) = L(θ) + EB∼πb [c(h

t
t+1(θ), h

t+1
t+1(θ))]

12: end if
13: θk+1 = θk + α.∇θL(θ)
14: end for
15: end for

loss LT is used in addition to the planning loss during training. The training procedure that
explains how simulation data are generated and used to compute the prediction loss is detailed
in alg.9.

According to results in tab.3.5, we observe that both version of the prediction loss did not
deteriorate final open loop test performances but they did not bring significant improvements
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Huge_R Huge_I
ADE-1.5 FDE-1.5 ADE-1.5 FDE-1.5

FCBaseline_basic_Planner_Autoreg 0.26 0.32 0.25 0.39
FCBaseline_basic_Autoreg_pred_loss_detached 0.25 0.31 0.23 0.36

FCBaseline_basic_Autoreg_pred_loss 0.24 0.28 0.22 0.32

Table 3.5: Open loop test performances of the auto-regressive planner trained with the prediction
loss

either. It appears that the prediction loss does not provide more guidance than the planning
loss on the expert support. Additionally, we noted that the detached version of the prediction
loss is considerably more unstable during training: the prediction loss exhibits peaks at each
new trajectory collection which reveals that the latent state representation is still significantly
changing. The other version of the prediction loss progressively vanish during training which
means that the planner can finally exploit a fixed state representation to compute actions.
In a second experiment, we analyse how the transition loss LT influence the closed loop perfor-
mances of the planner. We also report the average amplitude of the transition loss LT during
each test episodes. Note that LT represents the average discrepancy between the representa-
tions of the next state and what the planner expects to reach. The smaller LT

h the smaller
the representation error between the planned latent state htt+1 and its effective representation
ht+1
t+1 which means a priory that replanning at ot+1 won’t considerably change the previous plan.

The variation in replanning can also be calculated based on the difference between the planned
action att+1 and the action effectively taken at+1

t+1 at the next decision step t + 1. We chose
to compute the re planning error only with the longitudinal components expressed in meters
because the longitudinal behaviour is more difficult to learn .

ereplan =
∣∣dst+1

t+1 − dstt+1

∣∣ (3.33)

Small values of ereplan indicates that the planner is adopting a long term strategy because it
does not change significantly during consecutive replannings. However small values of ereplan
does not mean that the driving strategy is optimal in terms of collision avoidance because
LT is reward free and just indicates that the planner reached the state it intended to reach
during the planning which means that it partially control its environment. We observe in
tab.3.2.2.2 that both auto-regressive planners trained with the prediction loss outperform the
baseline trained only with the planning loss even if the rate of collision is still important. We
observe that long term imitation errors tend to reduce which means that the planner better
understand how to take action and which state should be reached. This does not mean that
the planner can learn the sequence of states that enables to avoid crashes which explains the
remaining high rate of collision. We note that the detached prediction loss led to significantly
lower performances: more specifically the replanning error ereplan is higher and closed to the
baseline which means that the planner does not reached what it had planned and consequently
replans a different action. In contrast the replanning errors ereplan of our best planner trained
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Huge_R
ADE-5 ADE-15 ereplan Off CR

FCBaseline_basic_Autoreg 3.95 9.1 0.32 7.0 38
FCBaseline_basic_Autoreg_pred_loss_detached 3.81 8.56 0.16 6.1 36

FCBaseline_basic_Autoreg_pred_loss 3.41 8.20 0.05 4.3 34
Huge_I
ADE-5 ADE-15 ereplan Off CR

FCBaseline_basic_Autoreg 3.96 10.70 0.24 7.2 37
FCBaseline_basic_Autoreg_pred_loss_detached 3.93 8.70 0.14 6.3 34

FCBaseline_basic_Autoreg_pred_loss 3.54 8.32 0.06 3.3 32

Table 3.6: Closed loop test performances comparison when the prediction loss is used to trained the
auto-regressive planner.

with the other prediction loss where the backbone is not detached show that during replanning,
the action at+1

t previously planned and the next decision at+1
t+1 almost always match which means

that decision are taken for more long term.

3.3 Conclusion

In this chapter, we explained how we can efficiently parameterize actions based on curvilinar
coordinates with respect to the reference path provided by the routing module. We later
explain how to encode the local scene context with different neural network architectures and
showed that they enable to learn to plan short term trajectories as human drivers in open
loop evaluation. In order to improve the performances of the short term trajectory planner
in closed-loop evaluation, we proposed an auto-regressive planner model that better integrates
the impact of planned actions on futures states which enable to reduce deviations with respect
to the expert trajectory.
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Chapter 4

Learning driving policies from domain
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4.1. LEARNING TO DRIVE WITH REINFORCEMENT LEARNING

In this chapter, we study how to apply reinforcement learning for basic traffic rules for
learning driving policies. In sec.4.2, we explain how to train a driving policy on a large scenario
database with actor critic policy gradient algorithms. In a second time, we explain in sec.4.2
how to improve test performances of the driving policy by modifying the training procedure of
the actor-critic network.

4.1 Learning to drive with Reinforcement Learning

4.1.1 Principles

We introduce the theory at the basis of all algorithms that we will use in this chapter. We
consider an infinite-horizon discounted Markov decision process (MDP) defined by the tuple
M = ⟨S,A, T , r, ρ0, γ⟩ where S is the set of states and A the set of actions, T : S×A → P(S)
the transition probability function, r : S×A → R the reward function, ρ the initial distribution
over states, and γ ∈ [0, 1) the discount factor. The return of a trajectory τ = (s0, ao, s1, .....)

is denoted η(τ) =
∑∞

t=0 γ
tr(st, at). In reinforcement learning the objective is to optimizes the

expected discounted rewards J(π):

π∗ := argmaxπ∈ΠJ(π) (4.1)

J(π) = Es0∼ρ,τ∼π[η(τ)] (4.2)

J(π) = Es0∼ρ[V π(so)] (4.3)

J(π) = Es0∼ρ0,aτ∼π(.|ot),sτ+1∼p(sτ+1|sτ ,aτ )[
∞∑
τ=0

γτr(sτ , aτ )] (4.4)

Each policy π induces a stationary discounted state distribution by:

dπγ(s) =

∫
S
ρ(so)

∞∑
t=0

γt.P(st = s|so, π)ds0 (4.5)

as well as value functions Qπ, V π that quantify mean average return obtained by a policy
starting from respectively a given state s or a given state s followed by action a:

Qπ(st, at) = Eρ,π,T [
∞∑
l=0

γl.R(st+l, at+l, st+l+1)|st = s, at = a] (4.6)

V π(st) = Eρ,π,T [
∞∑
l=0

γl.R(st+l, at+l, st+l+1)|st = s] (4.7)

(4.8)

In order to understand the effects of applying action a from state s on the policy return, we
also introduce the advantage function of policy π denoted Aπ(s, a). Intuitively, it represents
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the change in the expected return when we apply action a in state s and then follow policy
π compared to directly following policy π from state s. In case the advantage is positive, it
means that choosing action a in state s and then following the policy leads to a return that is
better than the average return we obtain following the policy directly from state s.

Aπ(s, a) = Qπ(s, a)− V π(st) (4.9)

In the following, we consider a model free setting where the environment dynamic is unknown
for the policy in contrast to model based approaches that leverage an environment model to
take action [34]. Learning a transition model is possible but relatively difficult because we
do not have access to a real interactive simulation environment but only to a restricted set of
driving data on specific driving scenes. Therefore, the environment model is expected to quickly
overfit the driving data in the dataset without providing consistent guidance for closed loop
simulation. Intuitively, during simulation the policy will experience situations largely different
from the one provided in the driving dataset because policy actions influence the next states
distributions. Instead of learning a full model we chose to directly learn a compact state value
function according to model-free reinforcement learning. Two categories of algorithms have to
be considered: value-based methods such as Rainbow [66] or policy-based approaches such as
TRPO [168]. The main principle of value-based methods is to approximate the fixed point of the
Bellman equation through generalized policy iteration (GPI)[182]. Value based methods were
mostly used for discrete action settings with successful results but our driving policy operates
on a continuous action space for generating trajectories. In contrast Policy-based algorithm
were rather used in continuous setting and directly learn a parameterized policy through a
policy improvement phase. Policy based methods where later improved based on actor critic
architectures that leverage a state value function to reduce high variance of policy gradients.
In this work, we investigate how policy gradient actor critic methods can learn driving policies
on numerous driving scenarios. Before explaining more in details those algorithms, we first
explain how to define a reward function for learning a driving policy.

4.1.2 Reward engineering

In order to learn a driving policy with model free reinforcement learning, we need the specify
the associate reward function. We first review common practices in inverse reward design in
Sec.4.1.2.1 before detailing how we designed our own driving reward in Sec.4.1.2.2.

4.1.2.1 Inverse reward design

RL basically consists in optimizing the expected discounted return of a policy to learn a target
behaviour based on a Markovian reward r(st, at, st+1) that only depends on the current transi-
tion (st, at, st+1). In general, the return should be distinguished from the performances because
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the reward signal contains not only the true utility signal which reflects the global performance
but also some learning guidance called shaping terms. For complex tasks like driving, its is
difficult to evaluate a driving behaviour based on a single scalar signal that would define the
utility. Usually the true utility is unknown and driving performances are usually evaluated with
multiple criterion that act as proxies and which can be integrated in the the reward function.
Building a reward function for a desired behaviour is known as the agent alignment problem
[58]. There are many different reward specifications under which an optimal policy has the
same performance guarantees on the task. This freedom in choosing the reward function, in
turn, leads to the fundamental question of reward design: what are the right criteria that one
should consider in designing a reward function ?
Specifying a consistent reward value for each transition (st, at, st+1) mostly relies on domain
knowledge. Since rewards should also stay interpretable, they are usually decomposed in a
weighted sum of terms composed of bonus and penalties. For instance, when an agent reach an
intersection, it should avoid collisions while crossing the intersection in a short time. Collisions
can be penalized by a penalty term rc while a bonus rf can be provided when the agent moves
forward. Finding appropriate values for rc and rf such that agent safely drive on arbitrary
intersections is however tricky and time consuming because it requires to run the RL algorithm
to check the resulting behaviour. Reward mis-specifications for some transition (st, at, st+1) can
let the policy trapped in local optima where the exploration mechanism is inefficient.
To compensate exploration deficiencies, the reward often requires some shaping terms so that
the agent can be guided along the whole training from states of low utility towards states of
higher utility. Sparse reward functions that just indicate achievement of the task does not
enable to explore efficiently high dimensional state space. This problem is exacerbated by the
fact that the policy or the value estimator can be poorly initialized. Another limitation of ex-
ploration, comes when actions are sampled from infinite support distribution such as Gaussian
and then clipped during exploration phase [21]. This situation happens for example when we
do not allow backward displacements for a driving policy on a straight lane. In this case some
action may not have any consequences on the next state which force the reward to depend on
the action.
Sometimes the dependencies between states and actions are even more subtle when the outcome
of a selected action is delayed. For instance, a collision may be induced by the commitment of a
vehicle in an intersection some time before the collision occurred. Discovering which action(s)
are really responsible for the delayed outcome is known as the (temporal) Credit Assignment
Problem (CAP) [123]. In some situations, the reward cannot stay markovian because it depends
not only on the previous action but on part of the action history, hence it should be modeled as
R(.|st+1, at, st, ...at−T , st−T ). Based on this short insight, we propose a simple yet interpretable
reward function for learning a driving policy in order to avoid as much as possible unexpected
behaviour after policy optimization.
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4.1.2.2 A reward for driving

In our framework, traffic agents are endowed with a hierarchical policy πhierarchal(ot, gt) =

πmaneuver(πrouting(ot, gt)) = πmaneuver(pt, ot)) where pt represents the traffic free reference path
to follow for the next decision steps. The maneuver policy is supposed to select an action at

that at short term matches with the plan pt and the social context of the driving scene. In the
long term the policy should be able to follow the whole route that is only locally represented by
the traffic free reference path pt at each decision step. The action space already enable to guide
the agent along the route to follow because we are using curvilinear coordinates with respect
to pt to specify the action at = [dst, nt] where dst indicates the desired longitudinal shift from
current abscissa st and nt+1 indicates the next lateral ordinate at abscissa st + dst. The path
acts as an abstract sub-goal but the agent also needs to behave in a socially consistent way while
respecting traffic rules. Engineering a sophisticated reward is a problem in itself as explained
in Sec.4.1.2.1 and it mainly depends on the driving task, lane merging [62], over-passing on
highways [130] but our goal in this chapter is to design a basic reward signal to acquire general
driving skills for driving. For practical applications, traffic simulations will take place on a
bounded map and will have a finite temporal extent denoted H and traffic agents are expected
to behave consistently during the whole episode. However, some agents may only be alive for
h < H steps because they start closed to the map borders so the episode termination is not
triggered by the environment in itself but by simulation restrictions. Therefore, we consider the
driving task as a continuing task with a discount factor γ chosen such that the return mainly
takes into account the rewards for the first steps. For intrepretability, the reward signal is
expressed as a weighed sum of terms that isolate different aspects of the driving :

r(s, a, s′) =
n∑
i=1

wi.ri(s, a, s
′) (4.10)

socially consistent interactions:

• collision penalty: rc(st, at, st+1) = 1(st ∈ Scol or st+1 ∈ Scol).(1.0+ ds
dsmax

) where Scol is a
subspace of states with ego agent in collision. The penalty corresponds to the event and
not to the root cause which highly depends on the context. Note that we can either stop
the episode after a collision occurred or let the simulation continue.

• sophisticated penalties: More sophisticated signals could be added to avoid abrupt
over-passing or to incite the agent to keep safety distances. However those signals highly
depend on the context. For instance, keeping a safety distance with a front neighbor
moving in the same lane as the ego agent is different from keeping a safety distance at a an
intersection area with other intersecting agents. Introducing penalties for safety distances
make the global reward less interpretable because it interfere with the collision penalty.
In order make the reward as simple as possible we chose to only consider rc(st, at, st+1)

for socially consistent interactions.
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task completion:

• forward moving bonus: In order to encourage the agent to move forward, we give
a bonus that increases when the longitudinal speed ds gets closer to the optimal speed
dsoptimal and stagnates above. This bonus is only provided when dsmin ≤ ds ≤ dsmax

otherwise the agent goes either too fast or too slow.

rmf (st, at, st+1) = 1(dsmin ≤ ds ≤ dsmax).min(
ds

dsoptimal
, 1.0)

traffic rule consistency:

• lateral jerk:rlj(st, at, st+1) Since the agent directly controls the lateral position nt+1

with respect to the route at the abscissa st + dst then the lateral position can easily
oscillates during exploration if nothing is done. To restrict lateral positions variations we
add the following lateral jerk penalty which assigns a negative value configured with the

offset = 0.4 when |nt+1 − nt| ≤ dnmax = 0.3. rlj(st, at, st+1) = e−
|nt+1−nt|
dnmax − offset

• lateral distance penalty: since the agent controls the lateral position with respect to
the route, it should not drive too far from the center-line even if some freedom should be
given as long as the agent stays in the associated lanelet. We assign the minimum value
on the center-line bonus_on_route = 0 which decreases linearly up to penalty on border
when |n| = nmax where nmax denotes the maximum distance allowed with respect to the
route center-line. In case the agent is farther than nmax route then the penalty slope gets
bigger. Note that the lateral distance to the route cannot be bigger than nmax which
triggers an episode termination.

rldp(st, at, st+1) = 1(n < nmax route).pin(n) + 1(n ≥ nmax route).pout(n) (4.11)

pin(n) =
(penalty on border − bonus on route)

nmax route
. |n|+ bonus on route (4.12)

pout(n) = max(a. |n|+ b,max penalty) (4.13)

a =
(max penalty − penalty on border)

(nmax − nmax route)
(4.14)

b = penalty on border − a ∗ nmax route (4.15)

• penalty moving too fast: when the agent moves to quickly, we don’t directly penalize
it until dsoptimal ≤ ds ≤ dsmax but we reduce the bonus and when it exceeds dsmax then it
gets penalized. This strategy let some freedom to the agent which has to find the optimal
speed through exploration.

rmtf (st, at, st+1) = 1(ds > dsmax).
(dsmax − ds)
dsoptimal

(4.16)
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• penalty moving too slow: in case the agent moves too slowly on the road, we keep the
same formula as rmf but we highlight that the speed is the one provided in the action and
not the effective speed between st and st+1. As a consequence, negative speed which does
not result to any change of the state can still be penalized smoothly. Since the action
space is continuous and since exploration is restricted it is important to avoid sparse
reward with no gradient.

rmts(st, at, st+1) = 1(dsmin > ds).
ds

dsoptimal
(4.17)

Given all the above terms, we need to choose their respective weights. Before choosing them,
we first normalize the reward terms so that their range of values lie in [−1.0, 1, 0] which makes
reward weights wi more interpretable. One important consideration for training is the relative
importance of terms with each other. Ideally during training, we first want the agent to start
moving forward while it avoids off-road driving. Subsequently the agent should learn to avoid
most of collisions and lastly we want it to drive at optimal speed without jerk in a socially
consistent way. To achieve this result, we can play with the reward weights by assigning high
weights to reward terms of sub-tasks with high priority and low weights to secondary sub tasks.
Note that its is also possible to change the weights during training to progressively acquire new
skills but we did not explore this solution to simplify the framework. Evaluating and comparing
rewards with each other is a problem in itself [202] and we resort to an experimental procedure
to check which reward hypothesis is most appropriate to learn a consistent driving behaviour.
We do not evaluate the driving behaviour based on the magnitude of the return but based
on some driving performances such as the rate of episodes with at least one collision (CR%),
the average time spent offroad during an epsiode (Off%), and the averaged distance traveled
with respect to an expert(L%). We also evaluate qualitatively driving episodes leveraging the
rendering engine of our simulator. Given our reward model we call a reward hypothesis the
associate list of weights [wmts, wmtf , wldp, wlj, wmf , wc] and we tested few reasonable hypothesis
to understand which is the best. We will expose the analysis that consider two of the most
important weights in the formula : wc which weights collisions and wmf which encourage the
agent to move forward. Inappropriate values could either lead to a driving behaviour that
almost never moves if a collision is likely or to a driving behaviour that moves even if collision
occur.
In the following experience, we trained a driving policy on a driving database calledHuge_R_basic
generated on a roundabout from the Interaction Dataset [214] and whose composition is detailed
in annexes .2. We restrict this experience on one type of scene to highlight that optimal reward
weightings mainly depends on the environment dynamic and choosing appropriate weights for
multiple type of scenarios requires massive amount of hyper-parameters search. During our
experience, we fine-tuned PPO hyperparameters on the training database and we only provides
the best driving training performances obtained for each reward hypothesis. We observe that
the best trade off is obtained by reward hypothesis r2 which enables to move at least as far
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hypothesis wmts wmtf wldp wlj wmf wc CR\% Off\% L\%
r1 0.1 0.1 0.5 0.02 0.2 1.0 6.3 2.5 95
r2 0.1 0.1 0.5 0.02 0.2 2.0 4.5 2.6 120
r3 0.1 0.1 0.5 0.02 1.0 1.0 7.3 3.3 130
r4 0.1 0.1 0.5 0.02 1.0 2.0 5.1 4.3 123

Table 4.1: Training performances of PPO trained from scratch for different reward hypothesis

as the expert while avoiding most of the collisions. Other reward hypothesis tend to neglect
rare collision incident which can be observed depicted with blue points on fig.4.1 where safety
distances with front neighbors are often underestimated which does not let enough time to
the ego agent to adapt. For the next sections, we will use the following weights to define our

Figure 4.1: Driving behaviours comparison for different reward hypothesis: the agent is represented
in dark red while the virtual expert is represented in shaded red. The collisions with replayed agents
in green are represented with blue points.

synthetic reward.

wmts = 0.1, wmtf = 0.1, wldp = 0.5, wlj = 0.02, wmf = 0.2, wc = 2.0

4.1.3 Learning with policy gradients

In this section, we introduce the core principles of actor critic policy gradient algorithms. We
detail all the algorithms that we use to train train our driving policy and we also stress their
strength and deficiencies. Recent works, highlighted that the efficiency of policy gradients
highly depends on implementation details[188, 95, 39], so we considered essential to provide
them with clarity.

4.1.3.1 Vanilla Policy gradient

Stochastic policy gradient[183] aims to optimize the expected return of a stochastic policy
πθ with the objective J(θ) = Es0∼ρ,τ∼πθ [R(τ)]. We consider a smooth class of parameterized
stochastic polices Π = {π(.|s; θ) : s ∈ S, θ ∈ Θ}. Policy search is achieved by stochastic gradient
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ascent on the policy parameters θ:

θ∗ = argmaxθJ(θ) =
∑
τ

P(τ |θ).R(τ) (4.18)

The general idea consists in increasing the probability P(τ |θ) of trajectories τ of high return
collected under policy πθ. The gradient of the objective ∇J(θ) requires the knowledge of P(τ |θ)
which expresses as follows in case the state st+1 is independent from τ0:t = [s0, a0, ..., st](Strong
Markov assumptions):

P(τ |θ) =
H∏
t=1

p(st+1|st, at).πθ(at|st)ρ(s0) (4.19)

In model free setting we do not have access to the analytical expression of the dynamic
p(st+1|st, at) so ∇θJ(θ) should not depend on it. It happens that

∇θJ(θ) = ∇θ

∑
τ

P(τ |θ).R(τ) =
∑
τ

P(τ |θ).∇θP(τ |θ)
P(τ |θ)

R(τ) (4.20)∑
τ

P(τ |θ).∇θln(P(τ |θ).R(τ) = Eτ [∇θln(P(τ |θ).R(τ)] (4.21)

As p(st+1|st, at) and ρ(s0) do not depend on policy ∇θln(P(τ |θ) =
∑H

t=1∇θln(πθ(at|st)) hence
we obtain :

∇J(θ) = Eτ∼πθ [
H∑
t=1

∇θln(πθ(at|st).R(τ)] (4.22)

Note that R(τ) =
∑H

t=1 r(s
(i)
t , a

(i)
t ) contains all trajectory rewards but at time t, past rewards

are independent from the current action at so we can rewrite :

∇θJ(θ) = Eτ∼πθ [
H∑
t=1

∇θln(πθ(at|st).R(τt:H)] (4.23)

where R(τ (i)t:H) =
∑H

k=t r(s
(i)
k , a

(i)
k ). In practice, the expectation can be approximated with m

trajectory samples:
1

N

N∑
i=1

H∑
t=1

∇θln(πθ(a
(i)
t |s

(i)
t ))R(τ

(i)
t:H) (4.24)

Note that if all rewards of the return are positive then R(τ
(i)
t:H) will increase the probability of

each action within τ (i)t:H which does not provide real guidance to choose actions that are better
than the ones chosen during trajectory collection. One trick is to normalize all the rewards
collected during trajectory collection such that only the largest rewards contribute to increase
the likelihood. However, maximizing the likelihood of trajectories with high reward does not
guarantee to maximize the average return. Additionally, for a pair of state action (st, at) and
a policy πθ, the returns of trajectories collected by a policy πθk starting from (st, at) can be
very different which means that the policy gradient 1

N

∑N
i=1

∑H
t=1∇θln(πθ(a

(i)
t |s

(i)
t ))R(τ

(i)
t:H) will

83



4.1. LEARNING TO DRIVE WITH REINFORCEMENT LEARNING

have a high variance. One possibility is to subtract a state dependant baseline which does not
introduce too much bias in the policy gradient while reducing variance. However the objective
should still push πθ(a

(i)
t |s

(i)
t ) toward higher returns regions. In case the state baseline does not

depend on at as for instance the average return over all trajectories it does not introduce bias.

∇θJ(θ) = Eτ∼πθ [
H∑
t=1

∇θln(πθ(at|st).(R(τt:H)− b(st))] (4.25)

∇θJ(θ) = Eτ∼πθ [
H∑
t=1

∇θln(πθ(at|st).(b(st))] = 0 (4.26)

b(st) = Eτ∼pτ (πθ)[R(τ)] =
1

|D|
∑
τ i∈Γ

R(τ
(i)
t:H) (4.27)

Note that this baseline is even independent from the state st which prevent in certain situation
from detecting if the return collected from st denoted R(τt:H) is getting higher than before.
According to the definition of the state action value function

Es0∼ρ,τ∼πθ [R(τ)] = Es0∼ρ[p(s0).
∑
a∈A

πθ(a0|s0)Qπθ(s0, a0)] (4.28)

it is possible to replace the sample return Rτt:H with Qπθ(st, at) which gives:

1

N

N∑
i=1

H∑
t=1

∇θln(πθ(a
(i)
t |s

(i)
t ))(Qπθ(s

(i)
t , a

(i)
t )− V πold(s

(i)
t )) (4.29)

The new term Qπθ(s
(i)
t , a

(i)
t ) − V πold(s

(i)
t ) = Aπold(at, st) perfectly fits our desiderata because it

represents the advantage of doing a(i)t at s(i)t instead of following the mean of the distribution
πold(.|st) and then following πold. Indeed R(τ it:H) − V πold(s

(i)
t ) ̸= Qπθ(s

(i)
t , a

(i)
t ) − V πold(s

(i)
t )

because sampling τ it+1:H once is not representative of the average performance of the policy for
time-steps t+ 1 : H. When policy gradient resorts to one of Qπθ(s

(i)
t , a

(i)
t ), V πold(s

(i)
t )or both it

becomes an actor critic method. However accurately estimating Aπθ(at, st) while training πθ

remains a challenge especially for long simulations.

1

N

N∑
i=1

H∑
t=1

∇θln(πθ(a
(i)
t |s

(i)
t ))(Aπold(at, st)) (4.30)

Vanilla policy gradient methods are prone to instabilities in continuous state and action spaces
which has led to development of Trust-Region Learning(TRL) [168] that aims to enforce stable
monotonic improvements at each training iteration. A bigger class of algorithm inspired from
TRL was recently developed [95] and they reached state-of-the-art performances on a variety of
tasks [38, 12]. In the following, we introduce the methods we used to train our driving policies
with our synthetic reward model. We extensively compare their performances on our scenario
databases in sec.4.1.3.7.
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4.1.3.2 Natural policy gradient

We start to explain the main principles that rules all algorithms that we implemented. In vanilla
policy gradient, we try to maximize the policy objective (θ) over variables θ while sampling
actions from a stochastic policy πθ. Given the direction provided by the policy gradient ∇θJ(θ),
we should locally modify πθ by a small amount ϵ to observe a gain in the return. Unfortunately
gradient descent in parameter space does not take into account the distance between policy
distributions πθ and πθnew . One way to constrain two stochastic policies to stay close is to
constrain their KL divergence. Natural policy gradient [82] proposed an update rule which
adds a constraint to the original objectiveargmaxdJ(θold + d)

DKL(πθold ||πθold+d) < δ
(4.31)

The Lagrangian of the constrained problem expresses as:

L(θ, λ) = J(θ + d)− λ(DKL(πθ||πθ+d)− δ) (4.32)

In order to solve numerically this optimization problem we can use the first order Taylor ex-
pansion for the loss and second order for the KL in the neighborhood of θold and we obtain

argmaxdJ(θold) + d.∇θJ(θ)|θ=θold −
λ

2
.dT∇2

θ(DKL(πθold||πθ)|θ=θold .d+ λ.δ (4.33)

Note that the Hessian computation ∇2
θ(DKL(πθold ||πθ)|θ=θold can be quite expensive for deep

neural networks but fortunately the Hessian of a KL divergence matches the definition of a
Fisher information matrix which is easier to compute:

∇2
θ(DKL(πθold ||πθ)|θ=θold = F (θold) = Es∼πold [Ea∼πold(.|a) [∇θln(πθold(.|s)).∇θln(πθold(.|s)T )]]

(4.34)
The Fisher Information Matrix defines the local curvature in distribution space for which KL-
divergence is the metric. It indicates how much we can change the distribution if you move
the parameters θ a little bit in a given direction. In case we substitute the Fisher information
matrix, the Lagrangian becomes:

L(θ, λ) = J(θold) + d.∇θJ(θ)|θ=θold −
λ

2
.dT .F (θold).d+ λ.δ (4.35)

According to Kuhn-Karush-Tucker conditions, the optimum is obtained when ∇λL(d, λ) = 0

and ∇dL(d, λ) = 0

∇d(J(θold) +∇θJ(θ)|θ=θold .d−
λ

2
.dTF (θold)− δ).d+ λ.δ) = 0 (4.36)

d =
2

λ
.F−1(θold).∇θJ(θ)|θ=θd (4.37)
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The natural gradient is gN = F−1(θold).∇θJ(θ)|θ=θd and the update step should be θnew =

θold + α.gN . The step size is chosen based on the fact that DKL(πθold ||πθ)|θ=θold should not
exceed δ. Due to optimality conditions:

∇λ(J(θold) +∇θJ(θ)|θ=θold −
λ

2
.dTF (θold).d+ λ.δ) = 0 (4.38)

(4.39)

Consequently, we can express the update step size

dTF (θold).d = δ.2 (4.40)

α.gTNF (θold).α.gN = δ.2 (4.41)

α =

√
δ.2

gTNF (θold).gN
(4.42)

Note that Natural policy gradient belongs to a broader class of algorithms unified in [148] which
uses a first-order approximation of the loss L(θ) and constrains the step with a quadratic norm.
Therefore, each modification δθ of the vector of parameters θ is computed via the solution:
δθ = −α.M(θ)−1.∇θL(θ)of the following minimization problem:minδθ∇θL(θ)

T δθ

δθTM(θ).δθ ≤ ϵ2
(4.43)

where ∇θL(θ) is the gradient of the loss L(θ), and M(θ) a symmetric positive-definite matrix.
The methods differ by the matrix M(θ), which has an effect not only on the size of the steps,
but also on the direction of the steps.

Algorithm 10 Natural Policy Gradient
1: Repeat:
2: collect trajectories τi ∼ πθk and store in Γk
3: Estimate adavanatge Â

πθk
t (a

(i)
t , s

(i)
t )

4: Form sample estimate for

• natural gradients gN
• Fisher information matrix

5: compute natural policy update:
6: θnew = θ +

√
δ.2

gTNF (θold).gN
. ˆF−1(θold).∇θJ(θ)|θ=θd

Note that the implementation of the Natural Policy Gradient [82] requires to invert the
fisher information matrix which can be very expensive for deep neural network with thousands
of parameters.
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4.1.3.3 Trust region policy optimization

Trust Region Policy Optimization(TRPO)[168] extends the idea of natural gradients with a
specific policy objective J(θ). It has been shown that it is possible to relate the expected
return J(πθ) = Es0∼ρ,τ∼πθ [η(τ)] of policy πθ and the expected return of another policy πold

using advantages [81]:

J(πθ) = J(πold) + Es∼dπθγ [Ea∼πθ(.|s)A
πold(s, a)]] (4.44)

J(πθ) = J(πold) + Es∼dπθγ ,a∼πθ(.|s)[A
πold(s, a)] (4.45)

While this relation seems interesting it stays difficult to optimize in practice because the ex-
pectation depends on s ∼ dπθγ and a ∼ πθ(.|s) whereas state action pairs (s, a) used to compute
expectations are collected with dπoldγ and ππθold . TRPO does an approximation and uses impor-
tance sampling to compensate :

J(πθ) = J(πold) + Es∼dπoldγ ,a∼ππθold (.|s)
[
πθ(.|s)
πθold(.|s)

Aπold(s, a)] (4.46)

Similarly to the Natural policy gradient, TRPO formulates a constrained problemargmaxθJ(πθ))Es∼S[DKL(πθold(.|s)||πθ(.|s))] < δ
(4.47)

whose Lagrangian is similar except that the objective is now based on the advantage:

L(θ, λ) = J(θold) + ∆θ.∇θJ(θ)|θ=θold −
λ

2
.∆θT .F (θold).∆θ + λ.δ (4.48)

As explained in the previous sec.4.1.3.2, the maximum of L which is quadratic in ∆θ is

∆θ =
1

λ
.F (θold)

−1.∇θJθold(θ) (4.49)

Instead of computing the inverse of the Fisher information matrix, which is quadratic with
the number of parameters θ, TRPO proposed to use conjugate gradients to iteratively ap-
proximate it. After the conjugate gradient optimization step, the constraint DKL(πθold||πθ) =
Es∼S[DKL(πθold(.|s)||πθ(.|s))] < δ is however not ensured anymore. So TRPO explicitly enforces
the trust-region constraint in DKL(πθold ||πθ) < δ by a line search: it computes the KL-term for
θ = θk+1 and checks if it is larger than the threshold δ, in which case, the step size is reduced
until the constraint is satisfied. Even if we maintain the constrain, the monotonic improvement
of the policy is not fully guaranteed in practice because of advantage estimation errors[95]. Ad-
ditionally running conjugate gradient descent on deep neural network still requires high number
of iterations to reach a good estimate of xk = H−1

k .gk. In theory it requires at most as many
steps as gk dimensions.
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Algorithm 11 TRPO
1: INPUTS: initial policy paramaters θ0
2: for k = 0, 1, 2, ... dodo:
3: collect set of tarjectories Γk with πθk
4: Estimate advantage Â

πθk
t

5: for i = 0, 1, ..., NTRPO do:
6: for B in Γk
7: compute policy gradient gn
8: KL-divergence Hessian-vector product Hk.gk
9: Use CG with ncg iterations to obtain xk = H−1

k .gk

10: estimate the update step ∆k =
√

δ.2
gTk Hk.gk

.xk

11: adapt the step size with backtracking line search with exponential decay:
12: θk+1 = θk + αj.∆k
13: end for
14: end for

Algorithm 12 Line Search for TRPO

1: compute proposed policy step =
√

δ.2
gTNF (θold).gN

. ˆF−1(θold).∇θJ(θ)|θ=θd)

2: exponential decay : [α0, α
1
0, ..., αj = αj0, ..., α

L
0 ]

3: for j = 0, 1, ..., L : do
4: compute the update θ = θk + αj.∆k
5: if Jθk(θ) ≥ 0 and DKL(πθold ||πθ) < δ then
6: accept the update and set θk+1 = θk + αj.∆k
7: break
8: end if
9: end for

4.1.3.4 Proximal policy optimization

Proximal Policy Optimization(PPO)[167] was proposed to overcome the problems of TRPO.
They investigate how to obtain a lower bound of TRPO’s objective:

J(θ) = Es∼ρπθold ,a∼πθ(.|s)[
πθ(.|s)
πθold(.|s)

Aπold(s, a)] (4.50)

Without a constraint, the maximization of J(θ) would lead to excessively large policy updates.
The authors searched how to modify the objective, in order to penalize changes to the policy
that make rθ(s) = πθ(.|s)

πθold (.|s)
very different from 1.0, i.e. where the KL divergence between the

new and old policies would become high. They first proposed an algorithm called KL-PPO
with an adaptive KL penalty :

J(θ) = Es∼ρπθold ,a∼πθ(.|s)[
πθ(.|s)
πθold(.|s)

Aπold(s, a)] + βtEs∼S[DKL(πθold(.|s)||πθ(.|s))] (4.51)

where the penalty is updated at each PPO mini batch iteration based on the gap with the
target d = Es∼S[DKL(πθold(.|s)||πθ(.|s))] < δ. The following heuristic was used :
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if d < δ then
βt ← βt/2

else if d > δ then
βt ← βt.2

end if

The update rule rarely leads to stable improvements in practice. Instead of constraining
DKL(πθold(.|s)||πθ(.|s))] < δ which constrains the policy distribution πθold(.|s), one can directly
constrain rθ(s) =

πθ(.|s)
πθold (.|s)

. Therefore, they proposed the following surrogate loss:

J clip(θ) = Es∼ρπθold ,a∼πθ(.|s)[min(rθ(s).Aπold(s, a), clamp(rθ(s), 1− ϵ, 1 + ϵ).Aπold(s, a)) (4.52)

The effect of clipping the importance sampling weight can be illustrated in two interesting
situations. In case the advantage is positive then the action a should be made more likely and
rθ(s) should increase up to 1 + ϵ. In case the advantage is negative, the action a should be
made less likely and should be decreased without getting lower than 1− ϵ which would imply
a large policy update.
PPO takes the minimum of the clipped and unclipped objective, so that the final objective
gets a lower bound of the unclipped objective. While the left part of the min operator is the
surrogate objective of TRPO, the right part restricts the importance sampling weight to stay
in ]1− ϵ, 1 + ϵ[. Note that clamping remove the gradients which may prevent a lot of samples
to contribute to the update. In practice, the sample based objective is estimated on set of
trajectories Γk.

J clip(θ) = Eτ∈Γk
[
T∑
t=0

[min(rθ(s).Aπold(s, a), clamp(rθ(s), 1− ϵ, 1 + ϵ).Aθk(s, a)]) (4.53)

Instead of sampling full trajectories τ ∈ Γk to compute J clip(θ), PPO selects mini-batches of
samples in Γk so that data looks more i.i.d during gradient descent. PPO is prone to breaking

Algorithm 13 PPO
for k = 0, 1, 2, ...do do;

collect set of trajectories Γk with πθk
Estimate advantage Â

πθk
t

for i = 0, 1, ..., NPPO do
for B in shuffle(Γk) do

compute policy gradients gn with J clip(θ)
update θk with Adam

end for
end for

end for

the core principles of trust regions that aims to constrain the update size but a recent unifying
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work [95] showed that PPO belongs to a much broader class of algorithms called the Mirror
Learning space with convergence guarantees under mild conditions.

4.1.3.5 Mirror descent policy optimization

Previous algorithms PPO, KL-PPO, TRPO try to constrain the consecutive policies to remain
close to each other by enforcing a trust region. Those algorithms mainly differ in the way they
enforce this trust-region constraint. We could ask to which extent enforcing the hard constrain
of TRPO really matters for achieving strong performances. While KL-PPO use a regularization
with an adaptive coefficient, TRPO enforces it explicitly through a line-search procedure that
ensures that the new policy is selected such that its KL-divergence with the old policy is below
a certain threshold. PPO simplifies the problem and use a clipping strategy but it does not
prevent the policy ratios to go out of bounds, and only reduces its probability [199, 39]. Mirror
Descent Policy Optimization(MDPO) [188] aims to unify those methods leveraging the Mirror
Descent algorithm (MD)[131, 9] which is a first order trust-region optimization method for
solving constrained convex problems

x∗ = argminx∈Cf(x) (4.54)

where f is a convex function and the constraint set C is convex and compact. In each iteration,
MD minimizes a sum of two terms: a linear approximation of the objective function f at the
previous estimate xk, and a proximity term that measures the distance between the updated
xk+1 and current xk estimate

xk+1 ∈ argminc∈C ⟨∇f(xk), x− xk⟩+
1

tk
.Bψ(x, xk) (4.55)

where Bψ(x, xk) = ψ(x) − ψ(xk) − ⟨∇ψ(xk), x− xk⟩ is the Bregman divergence associated
with a strongly convex potential function ψ, and tk is a step-size determined by the MD
analysis. Unlike the MD optimization problem, the objective function in policy optimization
π∗ = argmaxπEs0∼ρ[V π(s0)] is not convex in θ but it was shown that MD-style RL algorithm
can still be derived [49].

πk+1 ← argmaxπ∈ΠEs∼ρπ [Ea∼π[Aπk(s, a)]−
1

tk
KL(s, π, πk)] (4.56)

. Since the trust-region optimization problems in the update rule cannot be solved in closed
form, its is approximated with multiple steps of stochastic gradient descent (SGD) on the
objective functions. The on-policy MDPO update rule for a parameteric policy πθ consist in
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solving :

θk+1 ← argmaxθ∈ΘΨ(θ, θk) (4.57)

Ψ(θ, θk) = Es∼ρπθk [Ea∼πθk [
πθ(a|s)
πθk(a|s)

Aπθk (s, a)]− 1

tk
KL(s, πθ, πθk)] (4.58)

Note that the clipping ratio of PPO does not appear and the KL regularization is weighted by
a law motivated by MD theory which sets tk = 1 − k

K
where K is the maximum number of

iterations. MDPO uses an annealed schedule to update tk, starting from 1 and slowly bringing
it down to near 0. Contrary to TRPO which enforces a constrain with the forward KL(πk, π),
MDPO is consistent with the MD update rule in convex optimization and uses the reverse
KL(π, πk). Since reverse KL(πθ, πk) is mode-seeking it stops the distribution from collapsing
to a very narrow mode of πk and should consequently less hurt exploration than the forward
KL[188]. Since Gaussian distribution are used, KL divergence can be computed in closed form
and using the reverse KL does not induce sampling issues. One major difference between PPO
and MDPO is the way they apply gradient descent on the objective. PPO use mini batch
gradient descent on the training batch Γk to perform a policy update while MDPO use the
whole training batch. Performing a single gradient step ∇θΨ(θ, θk)|θ=θk on the whole training
batch reduces to vanilla policy gradient because KL(s, πθk , πθk) = 0 which shows that multiple
iterations NMDPO > 1 on the training bach Γk are necessary to approximately enforce the trust-
region constraint in MDPO. In practice, the training batch can contain numerous trajectories
(more than 100000 transitions) which prevents from computing gradients in one shot. Instead
of computing∇θΨ(θ, θk)|θ=θk on the whole training batch Γk, we use NB mini-batches of size
|B| to compute gradients and then average all NB |B| gradients before updating the parameters.
Note that we don’t average all |Γk| gradients before applying a single gradient step because it
would considerably slow down the training.

Algorithm 14 MDPO
for k = 0, 1, 2, ..., NMDPO do

collect set of trajectories Γk with πθk
Estimate advantage Â

πθk
t

θ
(0)
k = θk

for i = 0, ...., NMDPO do
θ
(i+1)
k ← θ

(i)
k + η.∇θΨ(θ, θk)|θ=θ(i)k

with Adam
end for
θk+1 = θ

(m)
k+1

end for

4.1.3.6 Advantage estimation

In order to guarantee policy improvement, previous algorithms highly rely on the quality of
advantage estimation which determines if an action should be made more likely based on the
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advantage magnitude and sign. Advantage estimation suffers from a bias-variance trade off
which penalizes the policy gradient. In case the advantage is estimated with TD(1)[181], then
the advantage estimates will have a low variance due to the critic low variance but in case the
critic is biased then the advantage estimate get biased.

1

N

N∑
i=1

H∑
t=1

∇θln(πθ(a
(i)
t |s

(i)
t ))(r(s

(i)
t , a

(i)
t , s

(i)
t+1) + γ.V̂ π

ψ (s
(i)
t+1)− V̂ π

ψ (s
(i)
t )) (4.59)

In case the advantage estimate use the trajectory return and the average return b = Eτ∼pπθ [R(τ)]
then the policy gradient is unbiased but has high variance because of the single trajectory return
R(τ

(i)
t:H).

1

N

N∑
i=1

H∑
t=1

∇θln(πθ(a
(i)
t |s

(i)
t ))(R(τ

(i)
t:H)− b)) (4.60)

Note that increasing the parameter k in the following advantage estimate reduces bias of the
advantage but increase its variance.

Â
(k)
t =

k−1∑
l=0

γl.δVt+l = −V (st) +
k−1∑
l=0

γl.rt+l + γk.V (st+k) (4.61)

The generalised advantage estimator [166] is built upon this observation and introduces an
additional parameter λ to balance bias and variance.

Â
GAE(γ,λ)
t = (1− λ).(

∞∑
l=0

λl.Â
(l)
t ) (4.62)

Using the TD residuals δVt = −V (st) + rt + γ.V (st) and the geometric series formula, we
can express ÂGAE(γ,λ)

t efficiently so that it can be computed based on collected transitions
(st, at, st+1).

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)l.δ
Vϕ
t+l (4.63)

Assuming that the value function estimator V πθ
ϕ has a low variance with respect to the true

value function V πθ we have V(ÂGAE(γ,λ)
t , λ→ 1)) > V(ÂGAE(γ,λ)

t , λ→ 0)) because when λ→ 1

then ÂGAE(γ,λ)
t → Â∞

t which has a high number of terms in the summation which usually means
higher variance. In contrast B(ÂGAE(γ,λ)

t , λ→ 1)) < B(ÂGAE(γ,λ)
t , λ→ 0)) because when λ→ 0

then ÂGAE(γ,λ)
t → Â1

t recovers TD(0) which should have less variance but more bias.
Estimating advantages highly relies on the quality of the value function used to compute the
TD residual δVϕt . However estimating the value of states that are less visited or states visited
just before episode termination is hard. The value of states less visited is likely to be biased
because the value network was trained on very few number of returns. The other issue is
induced by episode termination which is necessary due to the structure of the road network
which is bounded and not closed. For instance estimating the value of a state at the extremity
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of a lane that goes out of the map is problematic because we do not have access to simulation
returns for this state since the episode is terminated at this level. Hence the value for those
states may be highly biased. We discuss influence of episode termination on the value function
in sec.4.1.4.1

4.1.3.7 Performances comparison of policy gradient algorithms

Since TRPO,PPO or MDPO algorithms are still all used for practical applications in various
continuous domains [12, 118, 188] for different motivations, we first chose to compare them in
our own setting where we simulate a traffic with replayed traffic workers. We train TRPO,
PPO and MDPO on the scenario database called Huge_R_basic extracted from Interaction
dataset whose composition is detailed in annexes .2. We compare the best training performances
obtained with the best hyper-parameters found through intensive search. We let each algorithm
train for 200 training iterations with a training batch of 100000 transitions which means that
20M millions of transitions will be generated. We chose the lightest observation backbone
network called FCBaseline_basic introduced in chap.3 to build our actor critic architecture.
We select most relevant safety metrics that are expected to be improved according to our
simple reward model detailed in sec.4.1.2: the rate of episode with at least one front collision
(FCR%), the rate of episode with at least a collision (CR%) and the rate of time spent off-road
(Off%) per episode. We first note that TRPO is much more computationally expensive than

Huge_R Huge_I Huge_M
FCR% CR% Off% FCR% CR% Off% FCR% CR% Off%

MDPO_scratch 2.1 4.0 2.4 1.0 5.0 2.1 1.5 3.2 2.1
PPO_scratch 3.0 4.5 2.6 1.5 6.5 2.5 2.0 3.5 2.2

TRPO_scratch 15.2 23.4 6.6 18.3 28.6 8.3 10.2 15.4 5.2

Table 4.2: Training performances comparison between SOTA actor critic policy gradient algorithms
on Huge_basic_driving scenario database

other algorithms since the backbone remains relatively large1 which requires numerous iteration
for the conjugate gradient descent2. We observe than PPO and MDPO largely outperforms
TRPO but we note that performance gains of MDPO are relatively low compared to PPO.
We suspect that advantage estimates have a limited accuracy at each epoch which prevents
from changing the policy parameters with the appropriate magnitude or orientation. As a
consequence enforcing the MDPO regularization with an increasing weight during training
makes impossible to improve the performances in case the policy is trapped in a local optimum.
We found experimentally that accumulating the gradients of 5 mini-batches of size 50 for the
MDPO update led to the best final training performances. Using a bigger batch which means
averaging more than 250 gradients per update did not lead to further improvements which

1There are much more than 2 hidden layers in our policy network contrary to the original architecture used
in [166]

2We also tried to freeze a backbone pre-trained with BC but experimental results were not better
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confirms a recent theory that explains how to determine the optimal batch size based on an
empirical estimate of the gradient noise scale for PPO like algorithms [4]. Additionally we had
to clamp MDPO regularization after 100 iterations in case the KL terms gets too big otherwise
the KL gradients tends to make training performances unstable3. Since MDPO appears less
suited for large scale training contrary to PPO as shown for instance in [12], we chose a PPO
like implementation for training our driving policy in the next sections.

4.1.4 Influence of the value function

In this section we analyse how training the value function influences the performances of the
driving policy. We first explore in sec.4.1.4.1 how episode termination should be handled
during training without hindering value estimation. Second, we analyse how the value should
be estimated to obtain stable policy improvements in sec.4.1.4.2

4.1.4.1 Episode termination

Intuitively, traffic simulation can be considered as a continuing task with infinite horizon as
explained in sec.4.1.1. Since we use a hierarchical driving policy π = πmaneuver ◦ πplanner the
maneuver policy has constantly to follow a reference path which only ends in case the vehicle
has to park. In practice, we are not interested in parking but rather driving toward a long term
goal that will never be reached in simulation. Since the roadmap is bounded the simulator has
to end the episode when the agent is about to leave the map or when the agent visits undesired
states. For continuing task we can model termination with absorbing states. In case an agent
enters an absorbing state then it gets definitely trapped in it whatever action it does. Therefore
the agent constantly receives a reward denoted ra which implies that the true value at sa for
policy π is V π(sa) = Eπ[

∑∞
k=0 γ

k.rundesireda ] = rundesired
a

1−γ .
Absorbing states could be used in different situations: when the agent drives largely off-road or
collides with an associate negative reward ra < 0 to encourage the agent to avoid those states.
In contrast when the agent leave the map while staying on road we could set ra >= 0 to make
such ending more attractive. However this can encourage the agent to leave prematurely the
map and absorbing state for collision can make the agent over cautious. Another possibility is
to keep bootstrapping at any episode ending as suggested in [143] to evaluate the discounted
return of the last state reached. The problem with this technique is that learning accurate
estimate V π(sT ) is hard because the value function approximator cannot be trained on sT since
we do not have downstream trajectory to compute value targets for regression.
We analyse experimentally how bootstrapping at the end of episodes or inserting absorb-
ing states influence the driving policy performances. We train a PPO driving policy on
Huge_R_basic dataset for 100 training iterations, in two different ways. First, we use ex-

3Training performances tend to oscillate
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clusively absorbing states in case the agent is too far from the road or when it collides and
we assign rlata = rcola = −2.0. In case the agent passes the limit of the map while staying safe
on the road, then it triggers an episode ending and we assign a reward renda . Secondly, we
launch another experience where we increase the value of the reward provided when the simu-
lation ends renda without failure to encourage the agent to finish the episode properly. Finally,
we realised an experience where the value function is always bootstrapped at the end of the
episodes. We study the final training performances measured with the rate of episode with at
least a collision (CR%), the average time spent almost motionless per episode (ML%) 4, and
the average distance traveled relative to the expert per episode (L%). In the first experience

rlata rcola renda CR% ML% L
PPO_absorbing_col_lat -2 -2 0 4.5 5 96

PPO_scratch_absorbing_lat -2 -2 3 5.5 0.0 140
PPO_boostraping Vϕ(sT ) Vϕ(sT ) Vϕ(sT ) 4.5 0.1 120

Table 4.3: Experiment : Influence of episode termination on training performances.

PPO_absorbing_col_lat, we observe that the agent avoids collisions but tends to stay almost
motionless close to the end of the map before the simulator triggers a termination. This can
be explained by the value assigned to renda which makes termination less attractive than stay-
ing more time alive. In contrast, in the second experience PPO_scratch_absorbing_lat we
observe that the agent tends to drive faster than a human expert would do with slightly more
collisions. In this setting the value assigned to renda seems too high which shows that absorbing
state would requires more hyper-parameter search to work as expected. Finally, in the last
experience with only value bootstrapping PPO_boostraping, we note that collision rate is the
lowest and the agent does not stay motion less on the border of the map. This means that the
value function can also provides guidance for driving at end of episodes. Even if the distance
traveled on the map is still different from the expert, the bootstrapping strategy appears as the
best without making harder the implementation.

4.1.4.2 Value objective

The state value function plays a key role in advantage estimation which drives policy improve-
ments. The value approximator V π

ϕ of policy π is learnt through regression of the episode
discounted return. The value target should ideally represent the expected discounted return of
the state s.

V target(s, t) = Eπ[
∑∞

k=0 γ
k.rt+k|St = st]

In practice we estimated it based on a trajectory TD return η =
∑T−t

k=0 γ
k.rt+k + V π

ϕk−1
(sT ) or

based on the previous value estimate and the advantage estimate [39, 6] as follows:
4By motionless we mean that longitudinal speed is lower than 5km.h−1

95



4.1. LEARNING TO DRIVE WITH REINFORCEMENT LEARNING

V target
t = V π

ϕk−1
(st) + A

GAE(γ,λ)
ϕk−1

(st, at)

The value objective is computed based on trajectories collected by policy πθk−1
and stored in

the training batch Γπθk−1
. In case we use the TD return as a target, the objective5 express as

follows:

JV (ϕ) = Eτ∼Γπθk−1
[
1

2
.(Vtarget(s, t)− V π

ϕ (s, t)
2) (4.64)

V target(st) =
T−t∑
k=0

γk.rt+k + V π
ϕk−1

(sT ) (4.65)

In case we use the other value target based on advantage and previous value, the objective is
expressed with some clipping to limit the changes of the value target that suffer from the high
variance of advantage estimates.

JV (ϕ) = max((Vϕ(st)− Vtarget)2, (clip(Vϕ(st), Vϕk−1
(st)− ϵV , Vϕk−1

(st) + ϵV )− Vtarget)2)
(4.66)

Vtarget(st) = V π
ϕk−1

(st) + A
GAE(γ,λ)
ϕk−1

(st, at) (4.67)

Estimating the value function is critical for the policy objective because it determines the sign
of the next advantage estimates which will make an action more likely or not. Since the scale
of the reward can considerably vary depending on weights of bonus and penalties, it induces a
range of trajectory returns with high magnitudes. Instead of normalizing the reward we find
it more convenient to normalize the return especially because value targets are computed in a
decentralized way. Indeed during data collection after an episode end, there is a post-processing
phase which enable to compute discounted return and advantage. Since we need to wait the
end of data collection to estimate the mean reward and its standard deviation, this implies to
recompute all advantages. In contrast, computing the mean discounted return and its variance
on the training batch Γπθk−1

is straightforward. Therefore we normalize the value targets before
optimizing the MSE which give:

µV = Eτ∈D[V target] (4.68)

σV =
√
Vτ∈D[V target] (4.69)

Vtarget(s, t)N =
(Vtarget(s, t)− µV )

σV
(4.70)

JV (ϕ) = Eτ∼D[
1

2
.(Vtarget(s, t)N − V π

ϕ,N(s, t)
2) (4.71)

5Huber loss can be used to avoid exploding gradients
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Once the normalized value is trained, we apply the following affinity transform in order to
recover the value at the scale of the simulation rewards.

V π
ϕ (s, t) = V π

ϕ,N(s, t)
2.σV + µV (4.72)

In the following experiences, we aim to analyse the influence of different value objectives on the
policy driving performances. More precisely we trained a PPO driving policies with the same
hyper-parameters on the Huge_R_basic scenario database. The first two experiences use the
TD return as a value target while the experience is trained with the other value target. For the
first experience, we optimize the normalized value function while for the second we optimize
an normalized objective. We compare the final training performances after 100 training itera-
tions based on the rate of episode with collision (CR%) and the off-road driving rate Off% in
tab.4.4. We also show in fig.4.2 the evolution of the return during training to illustrate policy
improvements.

CR% Off%

PPO_scratch_MSE_Return_normalized 4.5 2.6
PPO_scratch_MSE_Return_unnormalized 5.8 3.0

PPO_scratch_MSE_GAE 6.2 3.63

Table 4.4: Influence of the value objective on
training performances of PPO.

Figure 4.2: Evolution of the return during
training for PPO trained with different value
objectives

We observe that PPO trained with the GAE value target is very unstable as shown on fig.4.2
since the advantage itself depends on the previous value approximator and errors tends to com-
pound. The other method based on the TD return for value targets led to better performances
and we observe that the use of value normalization significantly stabilize policy improvements
as shown on fig.4.2. For the remaining sections, we use the TD-return as a value target and we
always apply value normalization when we train the value function.

4.1.5 Influence of exploration

During training, the agent needs to explore which actions is the the most advantageous deci-
sions. In model free setting it is difficult to provide efficient exploration guidance because we do
not know how the world would have reacted. In sec.4.1.5.1 we study how the policy distribution
eanbles to explore. Next we propose to analyse the effect of an entropy regularization on the
policy performances in sec.4.1.5.2
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4.1.5.1 Policy distribution

In our setting the driving policy parameterize at each decision step t a multivariate gaussian
distribution N (µt(ot), σ(ot)) where the mean µ(ot) = [µdst , µ

n
t ] is composed of two components

the mean longitudinal shift µdst and the mean lateral ordinate µdnt desired at t +∆t. The two
components are assumed to be mutually independent to avoid coupling effects during training.
In most cases the lateral ordinate has to be reduced up to zero and the policy mainly control
forward displacements. The standard deviation σ(ot) = [σdst σ

n
t ] specifies how confident the

policy is on moving according to the mean action µ(ot) = [µdst , µ
n
t ]. During training, the policy

distribution is sampled in order to explore new actions more or less closed to the mean action
while in evaluation we use the mean action to drive. Exploration is done along the whole
episode trajectory, so errors related to inappropriate decisions accumulates along time which
may gradually lead the agent to undesired part of the state space. Understanding how much to
explore around a reference actions provided by the mean µ(ot) = [µdst , µ

n
t ] is complex because

it depends on the context and how other traffic agents would react. Practically, exploration is
mainly required for longitudinal control because policy needs to keep safety distance with front
or back neighbor or negotiate with another agent at intersection. During first training stages,
exploration is also required to understand that forward displacements at appropriate speed are
desirable because we want to follow a reference path. It appears that the context provided by
the observation could help to scale the variance. Using a neural network to compute the variance
σ(ot) = σθσ(ot) from the observation similarly to the mean µ(ot) = µθµ(ot) is a straightforward
possibility. However it is not guaranteed that the variance is updated the way we expect during
policy optimization. Note that the variance for PPO,TRPO,PPG, MDPO appears in three
type of terms : the one coming from the policy objective with the probability density, the one
coming from the constrain with the KL divergence and eventually the one coming from the
entropy. We will analyse the influence of the entropy term in the next sec.4.1.5.2 and restrict
our analysis to first two type of terms. As components are considered mutually independent we
analyse the gradient of the probability density of one component of the multivariate gaussian:
the one for longitudinal shift.

πθ(ds|ot) =
1

σθ(ot).
√
2.π

e
(−0.5∗( ds−µθ(ot)

σθ(ot)
)2) (4.73)

∇θπθ(ds|ot) = ∇σπ(ds|ot).∇θσ(θ, ot) +∇µπ(ds|ot).∇θµ(θ, ot) (4.74)

∇σπ(ds|ot) =
(σ(θ, ot)

2 + (ds− µ(θ, ot))2.
σ(θ, ot)3

πθ(ds|ot) (4.75)

∇µπ(ds|ot) =
(ds− µ(θ, ot)).

σ(θ, ot)2
πθ(ds|ot) (4.76)

∇θπθ(ds|ot) =
[
(σ(θ, ot)

2 + (ds− µ(θ, ot))2.
σ(θ, ot)3

.∇θσ(θ, ot) +
(ds− µ(θ, ot))

σ(θ, ot)2
.∇θµ(θ, ot)

]
.πθ(ds|ot)

(4.77)
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Note that if the standard deviation is allowed to take arbitrary small values when the pol-
icy improves and becomes more deterministic then the gradient can get indefinite which stops
gradient descent. The same problem occurs with the KL regularization added to the policy
objective of KL-PPO and MDPO because as the gaussian behavioral πold policy get more de-
terministic σ → 0 the KL divergence can result in large values which can cause cause numerical
instabilities as shown by its analytical expression and the illustration on fig.4.3. Note that
the standard deviation tends not only to vanish on states with huge return where it would be
desirable but everywhere else [162].

DKL(πθ(.|ot), πold(.|ot) ∝ ln(
σold(ot)

σθ(ot)
) +

σ2
ϕ(ot) + (µθ(ot)− µ0(ot))

2

2.σ2
old(ot)

(4.78)

To avoid this situation we can either use a softplus activation with a small positive offset equal

Figure 4.3: Evolution of the KL divergence between two univariate gaussian. The KL divergence is
smaller when the variance is larger

to σmin or clamp the variance when it gets smaller than σmin. In the first case, ∇θσ(θ, ot) will
vanish when σ(θ, ot) will get close to σmin while in the other case it will be zeroed. In case
the variance gets too big which can happen at initialization if weights of neural network are
not properly scaled, then exploration will be almost random which tends to slow down the
training process. Indeed, GAE can not be properly estimated if the average return of the agent
estimated by the value function has very high variance because it behaves randomly. Therefore
we also clamp the standard deviation if it gets bigger than a maximal threshold σmax. Note
that maximum standard variation for longitudinal shift is chosen such that policy is allowed
to accelerate or decelerate around µdst with reasonable amount. In order to avoid interferences
induced by ∇θσ(θ, ot) during training some works[167] use a free standard deviation parameter
for each component such that∇θσ(θ, ot) = 1. This choice is also convenient because it enables to
set the initial standard deviation σinitial at the beginning of training which is not possible when
σ depends on observation. In this setting, the policy network just contains an additional free
trainable parameters logStd which represents log(σinitial) where the initial standard deviation
can be chosen at the beginning of the training:

σ = clamp(elogStd, σmin, σmax) (4.79)

(4.80)

Another issue encountered with gaussian distributions is their infinite support which allows
arbitrary big value to be sampled. Even if action are clipped inside the simulator, their are
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side effects for the value function estimation of the policy. The value will learn that all actions
above the bounds have the same effects which will induce a bias in the policy gradient[27]. A
workaround is to resort to squashed gaussian distribution whose KL divergence and entropy
can be computed easily[6]. The approach consists in applying a tanh activation on top of the
gaussian distribution to bound the range of actions. This transformation changes the density
of actions : if action u is parameterized as u = tanh(x), where x is a sample from a Gaussian
distribution with probability density function pθ, then the density of u is

log(pu(u)) = logpθ(x)− log(tanh′(x)) (4.81)

where x = tanh−1(u). This additional log(tanh′(x)) term does not affect policy losses because
the gradient only use ∇θlog(pu(u)) = ∇θlog(pθ(x)). Similarly, this term does not affect the
KL divergences which may be used for regularization. The only term affected is the entropy
regularization as:

H(U) = −Eu[log(pu(u))] = Ex[−log(pθ(x) + log(tanh′(x))]. (4.82)

This additional log(tanh′(x)) term penalizes the policy for taking extreme actions which pre-
vents tanh saturation and consequently vanishing gradients. Moreover, it prevents the action
entropy from becoming unbounded.
In the following, we propose to analyse experimentally how the policy distribution influence
the training performances of a PPO baseline on the database Huge_R_basic. We compare
two implementations : one using state based standard deviation and one using free standard
deviation. We use a standard unbounded gausssian distribution with action clipping set inter-
nally in the simulator or a squashed gaussian distribution as detailed above with action clipping
enforced in the distribution. We expect to reach improved final performances for the best ex-
ploration strategy.As done previously, we consider the rate of episodes with collision (CR%)
and the off-road driving rate to evaluate the performances which are reported in tab. 4.5.

CR% OFF%
PPO_scratch_variance_unbounded_gaussian 30.4 22.4
PPO_scratch_variance_clamped_gaussian 4.5 2.6

PPO_scratch_variance_clamped_gaussian-free_std 5.5 4.0
PPO_scratch_variance_clamped_squashed_gaussian 5.1 4.1
PPO_scratch_variance_clamped_squashed_free_std 6.1 4.2

Table 4.5: Influence of policy distribution on training performances.

We observe in tab.4.5 that the PPO policies trained with free standard deviations reached
lower peak performances on the training set because the standard deviation get quickly clamped
at the lowest value which slows down exploration through sampling. In comparison, the two
policies trained with state based standard deviation reached better peak performances as shown
in tab.4.5 at the cost of instabilities on the return at the end of training because of the gradient
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on action densities ∇σπ(.|ot). It appears on tab.4.5 that the squashed gaussian distribution
do not provide quantitative improvements on the performances and this can be explained by
the fact that the induced distribution stays symmetric while the probability mass tends to
concentrate on extremities of the action supports. As a consequence low speed or high speed
become more likely during exploration compared to an unbounded gaussian support which is not
necessarily a good strategy in general expect when the driving agent faces an intersection where
it should either take or give the way. Since squashed gaussian introduce more computation
without strong improvements on the performances we choose to keep a state based variance
with an unbounded gaussian support for the remaining part of the work.

4.1.5.2 Entropy regularization

Exploration does not need to be equally large along the whole training. At initialization of
the simulation, the decision may be more uncertain than at the end. The main difficulty is to
provide enough exploration up to the end of training so that policy can constantly improve.
It is known that for continuous action spaces, PPO can prematurely shrink the exploration
variance, which leads to slow progress and may make the algorithm prone to getting stuck in
local optima [61]. To avoid premature convergence of the policy we leverage the Maximum
entropy reinforcement learning framework[231] that optimizes not only the policy expected
return but also its expected entropy. In practice we add to the policy objective an entropy
regularization term similarly to other works [118, 217]. For a multivariate gaussian distribution
N (x|µ,Σ) the Shannon entropy is given by:

H[X] =
1

2
ln(|Σ|) + D

2
(1 + ln(2.π)) (4.83)

In case of a bi-variate distribution whose components are mutually independent it reduces to:

H[X] =
1

2
ln(σ2

1.σ
2
2) + (1 + ln(2.π)) = H[X1] +H[X2] (4.84)

Note that the previous expression enables to keep an entropy bonus only for one component.
In our setting it is mainly the longitudinal component that requires exploration in order to
find efficient collision avoidance strategies in all situation. The entropy bonus is generally
weighted by a dynamic coefficient such that if the entropy gets bellow a given threshold then
we progressively increase the entropy coefficient whereas the coefficient get decreased when
policy entropy get big enough as suggested by the relation bellow that aims to maintain the
longitudinal standard deviation between [0.1, 0.15].

H[X] < Hmin = −0.88 went ← min(went ∗ 1.05, 0.05) (4.85)

H[X] > Hmax = −0.47 went ← max(went ∗ 0.9, 0.01) (4.86)
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CR% OFF%
PPO_scratch_variance_clamped_entropy_not_regularized 5.3 3.1
PPO_scratch_variance_clamped_entropy_regularized_fixed 4.5 2.6

PPO_scratch_variance_clamped_entropy_regularized_scheduled 4.7 2.9

Table 4.6: Influence of entropy regularization on training performances on Huge_R_basic scenario
database.

In the following experiences, we investigate if adding an entropy regularization significantly
helps to improve driving performance in the long term. We train a PPO policy on the
Huge_R_Basic database with a state base standard deviation with standard gaussian dis-
tribution. We chose to use an entropy regularization only for the longitudinal component of
the policy. We start with a fixed entropy bonus weighted by wentropy = 0.01 with no entropy
target such that the magnitude of the entropy bonus stays smaller than the policy objective. We
also train a policy with an adaptive entropy bonus on the longitudinal component as indicated
by equ.4.86. The final training results after 100 training iterations are provided in tab.4.6.

Figure 4.4: Evolution of return and entropy for different PPO policies trained with entropy regular-
ization’s strategies on Huge_R_basic

We observe on fig.4.4 that without entropy regularization, the longitudinal entropy ends
up to stagnate at the minimum value allowed by the minimum variance of the distribution6

which considerably limit further improvements. When we use a fixed entropy regularization we
note that the entropy tends to oscillate but with small amplitudes which helps to improve the
return up to a certain extent. When an adaptive entropy regularization is used, we reached
slightly better peak performances at the expense of return instabilities during training. Indeed,
maintaining the entropy inside bounds increasingly interferes with the policy objective if the
constrains are not satisfied after several training iterations. As a conclusion, we keep using a
fixed entropy regularization instead of an adaptive regularization strategy which would require

6The minimum standard deviation is set to σds = 0.01 which corresponds to an entropy equal to
0.5.log(2.π.σ2

ds) + 0.5 ≈ −3.18.
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more hyper-parameters search to properly scale the entropy weight.

4.1.6 Influence of pretraining

Pretraining can also be used in RL to learn priors over representations or dynamics. We first in-
vestigate in sec.4.1.6.2 how pretraining with expert actions can improve the policy performances
before proposing another pretraining method in sec.4.1.6.2 that better exploits the sequential
nature of decision making.

4.1.6.1 Pretraining a policy with expert data

In the previous chapter we already showed that the driving policy could be trained on expert
demonstrations to plan trajectories. Experimental results suggests that the network is able to
exploit suitable features from the observation. While open loop test performances are satisfying
i.e the learner plans similarly to the human drivers on the expert state support, closed loop
test performances which imply simulations and interactions reveal that collisions are numerous.
This problem is related to the distributional shift because the pretrained agent progressively
deviate from expert trajectory and encounters situations it never saw in the expert dataset.
New situations can be critical in terms of safety but since no expert demonstrations show how
to properly recover from those situations its is hard for the pretrained agent to adapt [30,
43]. However experiences in the previous chap.3 show that early five seconds of simulation
are generally well handled by the pretrained agents which suggests that pretraining could
potentially accelerate the RL training. However learning from expert trajectories may lead a
policy that exploit radically different features compared to a policy trained on noisy advantage
estimates. Fine tuning a pretrained policy with RL may overwrite features learnt from expert
demonstrations which is known as catastrophic forgetting [45]. One way to combat catastrophic
forgetting is experience replay [160], in which the old data is interspersed with the new data,
simulating i.i.d. data such that the network retains the old knowledge. In RL we can replay
expert demonstration stored in a separate buffer during online training and add an imitation
loss to the policy objective. The imitation loss can be progressively annealed so that RL can
adjust its behaviour if necessary when the agent faces situation out of expert distributions [79,
222]. However the two losses may still interfere because imitating the expert on safe situations
may not requires the same features as avoiding collision in all unsafe situations that may
occur at the beginning of the training. In the following, we first investigate how pretraining
by maximizing the likelihood of expert action on expert state distribution influence the final
driving performances. We train four baselines on the scenario database called Huge_R_basic
such that : one is trained with RL from scratch, another one is just pretrained with BC,
another is pretrained with BC and then fine-tuned with RL and a last one is pretrained with
BC fine-tuned with PPO with an additional imitation loss: L(πθ) = EB∼D[−log(πθ(ae|se))]
computed on expert data D added to the policy loss and decayed every training iteration
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J(πθ) = JPPO(πθ) + wILL.L(πθ). In all experiences where PPO is used, we report the final
training performances after 100 training iterations. While pretraining with BC enables to stay

ADE-5 CR% Off%
BC 5.20 55 10.30

PPO_scratch 4.80 4.5 2.6
BC_PPO_finetuned 4.43 4.7 2.8

BC_PPO_finetuned+imitation_loss_annealed 3.60 4.3 2.5

Table 4.7: Influence of pretraining and fine-tuning with PPO on training performances on
Huge_R_basic scenario database.

relatively close to the expert, it cannot stay safe during closed loop evaluation. We observe
in tab.4.7 that final performances of PPO trained from scratch measured in terms of safety
(CR%,Off%) are relatively close to other baselines pretrained with BC. We observe that the
best safety performances are reached with the initiation loss annealing but the gap with PPO
trained from scratch is tight. We think that the low data regime (relatively small amount of
training data) penalizes behavioural cloning 7 but we also realise that RL tends to learn new
features at the beginning of the training since we noted a moderate rise of collisions in early
RL training iterations which indicates that the policy neural network has to be deeply modified
before benefiting from RL fine-tuning. This issue is not related to over-fitting during supervised
learning because we stopped the BC training before it starts to overfit on the training data.
It can come from the value function that may exploit different features to predict the return
even if it is first trained on few trajectories before the policy is updated8. The imitation loss
tends to align features learned with the RL policy and the ones learned through supervised
learning during the first 50 training iterations but the last 50 training iterations are completely
dominated by the PPO loss. We noticed that keeping the imitation loss for more than 50
training iterations was detrimental for final safety performances. Those results suggests that
simply maximizing the likelihood of expert actions in addition to a PPO loss is not enough to
significantly improve safety performances reached with an RL based policy which motivates the
development of new algorithm introduced in chap.5.

4.1.6.2 Pretraining a planner

Instead of just regressing a single action at each decision step, it is also possible to parameterize
a policy as a planner which will just apply the first action given in the plan at each decision step
as detailed in chap.3. Learning to plan as an expert from an observation may enable to acquire
better representations of the environment dynamic before applying model free RL[169]. In or-

7Adding more examples would help to improve the driving performances but cannot solve the distributional
shift issue.

8Note that the value function is separated from the policy network but we initialize the value backbone
with the weights of the policy backbone before starting RL training. Additionally, the first data collection just
enables to update the value function.
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der to generate a plan, we can first consider that consecutive actions are independent with each
other which corresponds to the ILL planner introduced in chap. 3. The ILL planner models
the next fifteen actions as independent Gaussian variables where the longitudinal and lateral
components are also considered independent at each decision step. This assumption gives more
freedom to the network during training but still forces the backbone to extract features useful
for planing at every decision step. In the following, we compare the closed loop performances
on the scenario database Huge_R_basic obtained by a policy fine tuned with PPO for 100
training iterations and eventually pre-trained as an imitative planner. We observe in tab.4.8

ADE-5 CR% Off%
Planner_ILL_pretrained 4.25 46 8.0

Planner_ILL_PPO_from_scratch 4.80 4.5 2.6
Planner_ILL_pretrained_PPO_finetuned 4.30 4.4 2.7

Planner_ILL_pretrained_PPO_longitudinal_only_finetuned 4.27 4.4 0.0

Table 4.8: Influence of pretraining with the ILL planner on the training performances.

that just pretraining is not sufficient to learn how to avoid collision and that the agent should
stay on-road. Pre-training the policy only marginally improves the final collision rate of the
PPO agent even if the PPO agent start with a lower collision rate. We observe that pretraining
the planner and then only training the longitudinal part of the policy while setting the lateral
ordinate to 09 does not result in lower collision rates which indicates that the difficulty comes
from the environment dynamic and not necessarily to the additional lateral component.
The main limitation of the ILL planner is the lack of temporal consistency between actions
which may be exacerbated with the distributional shift. In contrast our auto-regressive planner
(Planner_ILL_AUTOREG) introduced in chap.3 enforces dependency between consecutive
actions through recursion in a latent state space. Interestingly, the Planner_ILL_AUTOREG)
also enables to exploit additional simulated data even during the pre-training stage without
queering an expert during the data collection. This is important because switching from pre-
training to RL finetuning induces a large change in the training data distribution exacerbated
by the exploration process. During the pretraining stage we propose to run data collection
periodically to build an online dataset of transitions generated by the current pre-trained pol-
icy in exploration mode10. The online dataset put transitions similar to the ones that the RL
training stage will induce which enables to reduce the change in the training data distribution
between the pretraining and the RL phases. To leverage the online dataset Donline, we propose
two losses computed on it as well an entropy terms that maintains exploration after pretraining
such that RL can work efficiently11. The first one denoted Lpredonline consists in a prediction loss
and only exploit state transitions (st, at, st+1) induced by sampling the policy as explained in
sec,3.2.2.2 in chap.3. The prediction loss is expected to enforce consistency between consecu-

9the agent stays on the centerline
10Note that exploration means that the action will be sampled from the first action distribution parametrized

by the planner
11If no entropy term is added during pretraining, the RL policy may not explore anymore after the pretraining.
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tive observations reached by following the policy. The second loss Lvalueonline is more related to the
downstream application of PPO algorithm for finetuning. Since PPO requires a value function
to estimate the advantage, the features exploited by the policy should ideally match the ones
used to predict the value. In this case the policy is expected to learn actions with high value
while the value is expected to accurately learn the value induced by consecutive actions selected
by the policy. For each trajectory collected in the online dataset Donline we compute a TD value
target and we learn a value approximator with an additional value head that exploit the obser-
vation embedding used in conjunction with the planner12. As a consequence, after each data
collection that are launched every N pretraining iterations the two set of losses expressed bellow
can be optimized with Stochastic Gradient Descent(SGD).

Lplanneroffline = Est,aet:t+H∼Doffline
e

[
H∑
k=1

−log(πθ(aet+k|, t+ k, st)] (4.87)

Lentropyonline = Est∼Donline
πθk−1

[(Htarget −H(πθ|st))2] (4.88)

Lvalueonline E
st,V

πθk−1
t+1 ∼Donline

πθk−1

[(V
πθk−1

t+1 (st)− V (st, θ, ϕ))
2] (4.89)

Lpredonline Est,at,st+1∼Donline
πθk−1

[0.5 ∗ (htt+1(θ)− ht+1
t+1(θ))

2] (4.90)

The data collection periodicity N during the pretraining phase is critical for the training sta-
bility because if we train for too many epochs the value function learned may get too different
from the value function of the current policy. We found experimentally that 5 epochs is the
best compromise: it reduces value loss peaks at each new data collection and it avoids to launch
data collection too frequently.
In the following, we compare how the planner Planner_ILL_AUTOREG performs on the
Huge_R_Basic scenario database when we apply pretraining and then train the planner with
PPO for 100 training iterations. We observe that pretraining the planner Planner_ILL_AUTOREG

ADE-5 CR% Off%
Planner_autoreg_pretrained 3.95 38 7.0

Planner_autoreg_PPO_from_scratch 4.80 4.5 2.6
Planner_autoreg_pretained_PPO_finetuned 4.1 4.5 2.1

Planner_autoreg_pretrained_PPO_finetuned_pred_loss 3.72 4.7 0.8
Planner_autoreg_pretrained_PPO_finetuned_value_loss 4.23 4.1 1.9

Planner_autoreg_pretrained_PPO_finetuned_value_pred_loss 3.74 4.2 1.1

Table 4.9: Influence of pretraining the auto-regressive planner and fine-tuning with PPO on training
performances

on the offline dataset Dofflinee enables to slightly reduce the collision rates and the off-road
driving rate compared to directly train from scratch. We also observe that during the five first

12Note that during downstream RL finetuning the value weights are copied in a separate value networks. The
basic neural network architecture for PPO used until here, uses two separate networks for the policy and the
value function
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second of simulation, the policy reproduce more closely the expert trajectory if we pre-train
the planner. We observe that the prediction loss further reduces the off-road driving rate while
the value loss reduces moderately the off-road driving rate and the episode collision rate. The
influence of the value is notable at the beginning of the RL training because it reduces the ini-
tial value error. However the value loss does not enable to significantly improve final training
performances because PPO is able to compensate the initial value error after some training
iterations. Finally we see that combining all the losses during pretraining with a weighted sum
(woffline = 1, wpred = 1, wvalue = 1, wentropy = 0.01) enables to reach the best final training
performances. Interestingly, pretraining with the Planner_ILL_AUTOREG resulted to bet-
ter final training performances than pre-training with the Planner_ILL as shown by the final
results in respectively tab.4.9 and tab.4.8.

4.2 Learning basic driving skills

In the previous section, we analysed driving performances on scenarios used for training in
order to understand how to properly configure RL training. In this section, we are interested
in understanding if the driving policy is able to generalize safe behaviour on new scenarios for
real use cases in traffic simulation. We first explain in sec.4.2.1 how our actor critic policy
gradient algorithm can be modified to get better test performances on scenarios unseen during
training. Secondly, we analyse the influence of backbone architecture on the test performances
in sec.4.2.1.3. Finally, we analyse the influence of the environment dynamic during training on
the test performances in sec.4.2.1.2.

4.2.1 Toward robust policy optimization

We first explain in sec.4.2.1.1 why generalization in RL does not benefit from the same guar-
antees as in supervised learning. Subsequently in sec.4.2.1.2, we propose to modify the actor
critic architecture of PPO such that the value can better guide the policy during training .

4.2.1.1 Generalization in reinforcement Learning

The sequential nature of RL changes the way an agent can generalize in new scenarios. Gen-
eralizing how to take the appropriate action at a given state does not only depends on the
state as it would have been in supervised learning but also to the transition dynamic at this
state. Since decision errors compounds at every decision step, starting from an unusual con-
text with differences in the environment dynamic can quickly lead to dramatic failures. RL
agents are prone to over-fitting to particular training distribution and tend to memorize spe-
cific environment dynamic [216]. A simple way to reduce over fitting first consists to introduce
more diversity and stochasticity in environment similarly to data augmentation methods in
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supervised learning [28]. Regularization methods have also proved their efficiency for policy
optimization as for instance L2 regularization, dropout or batch normalization [118]. In order
to obtain a policy that is robust to possibly out-of-distribution environments, Ensemble Policy
Optimization (EPOpt)[155] maximizes the expected reward over the fraction of environments
with worst expected reward which was shown to improve robustness to environment changes
[141]. More generally observation features may not transfer to new environments because the
agent may mistakenly correlates reward with certain spurious features from the observations
generated during training. Learning general representations for measuring behavioral similar-
ity between states without the influence of the reward was studied in [3, 177] but it requires a
metric on the state space which is not always easy to define. Another major issue for general-
ization, is influence of the discount factor on the estimation of the advantage function. In order
to balance bias and variance of advantage one can adjust the discount factor as suggested in
[186] or using hyperbolic discounting [129] when the length of episodes vary which is often the
case when real replayed episodes are used. In the following, we first propose to modify PPO
such that policy can better benefit from features learned by the value. Thereafter, we focus
our attention on the influence of the training environment on the test performances.

4.2.1.2 Decoupling Policy and Value

In order to guarantee robust policy improvements at each PPO iteration, we need to collect
large amount of trajectories on multiple scenarios otherwise the policy is likely to overffit on just
a subset of driving scenarios. Policy optimization on large training batch can be challenging
for the policy and the value function which may learn significantly different features for their
respective observation backbones since their networks are originally separated in PPO[167]. In
case the policy does not exploit the same features as the value then the value may struggle to
predict the return induced by the policy since it ignores how actions are taken. In case policy
and value function use the same observation backbone then policy and value optimization
should be done simultaneously but the gradients for the two objectives may be distributed in
a significantly different way due to high variance of advantages and value targets[4]. Phasic
Policy Gradient(PPG) [29] proposed to preserves the feature sharing between the policy and
the value function, while decoupling their training. Decoupling their training is interesting
because value learning tolerates higher level of sample reuse than the policy since the value
should learn accurately value targets13 while the policy should only be slightly modified along
the policy gradients directions in a trust region.
PPG operates in two alternating phases: the first one called policy phase trains the policy and
thereafter the value similarly to PPO. The second phase is called auxiliary phase which distills
useful features in the policy network through a value head VθvH . The value head is trained on a
buffer to regress values generated by a separate value function VθvS as depicted on the right side
in fig.4.5. The auxiliary phase occurs after several policy phase and exploits recent trajectories

13Low value bias is critical for accurate advantage estimate whose sign is particularly important

108



4.2. LEARNING BASIC DRIVING SKILLS

stored in a buffer as explained in algorithm 15.

LVhead(θ) = Est∼B[
1.0

2.0
.(Vhead(st, θt)− V target(ot))

2]V target(ot) = Vseparatehead(st, ϕt)orTDreturn

(4.91)
During the auxiliary phase, the policy backbone learns return based features but it is important
to preserve the policy outputs which are not intended to be changed during the auxiliary phase.
The auxiliary loss integrates a KL constrain with the last policy trained to avoid policy changes.

Ljoint = LVhead(θ) + β.Est∼B[KL(πold(.|st)|πθ(.|st)))] (4.92)

While PPG enables to align policy and value features while reducing interferences, the official

Figure 4.5: Actor critic decoupling

implementation still uses two separate backbones which slows down the training especially when
the backbone is very deep. Therefore we propose a shared backbone network E(st) depicted in
the left side of fig.4.5 with a specific training procedure to handle value and policy gradients
that flow through the backbone.VθV (st) = hϕV (E(st;ϕb))

π(.|st) = hϕπ(E(st;ϕb))
(4.93)

The above equations suggests that SGD for updating the policy and SGD for updating the
value can be done in two consecutive phases. First the policy can be updated θk → θk+1 on
the training batch with advantages estimated with fixed values V ϕk. In a second step the
value can be updated ϕk → ϕk+1 on the same training batch but without letting the gradient
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flowing through the backbone. Note that in this case the value function can only exploit the
encoding zt = E(st;ϕE) provided by the encoder updated during the policy phase E(st;ϕE)
but predicting accurate value estimate may require specific features not currently provided. For
instance, after the backbone get updated by the policy loss, it can happen than two observations
ot and o′t get close latent representation zt and zt′ because they require the same action whereas
their values are significantly different which will induce a bias for the value function. As a
consequence it may be more interesting to train first the value (V → π), freeze the observation
backbone and then train the policy head. We will analyse the influence of the update order in
the next experiences and we propose a training procedure that cycle between the two procedures
after each data collection as indicated by the colored arrows in figure 4.5. We call this variation
Cyclic Policy Gradient which modifies PPG algorithm at the policy phase as detailed in alg.15.
Inspired from the auxiliary phase, we also add a constrain on the policy when we start to train
the value and thereafter the policy with the backbone frozen. We apply the same principle when
we start to train the policy and we introduce two losses J (π→V ), J (→π) that we will replace the
standard PPO policy loss JPPO(θ) in our CPG algorithm. Instead of an auxiliary phase, we just
enable the value function head to be fine tuned for some additional epochs Efine on the training
batch with a loss denoted JV→π. Note that the actor critic architecture that we propose has
backbone parameters denoted ϕb, policy head parameters denoted ϕπ, value head parameters
denoted ϕV , policy parameters θπ = [ϕb, ϕπ] and value parameters θV = [ϕb, ϕV ].

J (π→V ) = E(st,at)∼B[J
PPO(θ) + βV .J

V (θ)] (4.94)

J (V→π) = JV (θ) + βπ.Est∼B[KL(πold(.|st)|πθ(.|st)))] (4.95)

In the next experiences, we aim to analyse if PPG and the modified version called CPG
can obtain better test performance than the standard variation of PPO thanks to new pol-
icy and value features. We first evaluate a standard PPO implementation with two separate
backbones and fully separate policy and value training. We evaluate another PPO baseline
where the backbone is shared where the policy and the value losses are summed during training
with no additional training for the value function. We evaluate a standard PPG implementa-
tion with separate backbones. Additionnaly, we also evaluate PPG algorithm with a shared
backbone with two training procedures. The first one, trains the whole policy network then
freeze the backbone and then trains the value head. The other one trains the whole value
network then freeze the backbone and then train the policy head. Finally, we also evaluate
CPG by first setting all the constrains to zeros with (βV = 0.0, βπ = 0.0) and then enforcing
the constrain with best weight values found experimentally (βV = 0.01, βπ = 1.0). Note that
we trained each algorithm on the Huge_R_Basic scenario database up to the point where
we observe stagnation or degradation of test performances which can be considered as begin-
ning of over-fitting. Regarding the architecture of the policy, we realised the next experiences
with the lightest backbone called FCBaselineBasic with the the auto-regressive planner head.
We first observe in tab.4.10 that the test performances of PPO_scratch_separate are very
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Algorithm 15 Cyclic policy gradient
for i = 1, 2, 3, ..., Nπ do

Γ← ParrallelRollouts(πk)
Policy phase
if i%2 == 0 then

for k = 1, 2, 3, ..., Eπ do
θk+1
π ← θkπ + α.∇θπJ

π→V (θkπ)
end for
for k = 1, 2, 3, ..., EV do

ϕk+1
V ← ϕkV + αv.∇ϕV J

V (ϕkV )
end for

else if i%2 == 1 then
for k = 1, 2, 3, ..., EV do

θk+1
V ← θkV + α.∇θV J

V→π(θV )
end for
for k = 1, 2, 3, ..., Eπ do

ϕk+1
π ← ϕkπ + απ.∇ϕπJ

PPO(ϕkπ)
end for

end if
Value fine-tuning
if i%Nfine == 0 then

for k = 1, 2, 3, ..., Efine do
ϕk+1
V ← ϕkV + αϕV .∇ϕV J

V (ϕkV )
end for

end if
end for

train:CR% train:Off% test:CR% test:Off%
Planner_autoreg_PPO_from_scratch 4.5 2.6 17.4 5.3

Planner_autoreg_PPO_from_scratch_shared_summed 5.2 3.2 21.1 6.3
Planner_autoreg_PPG_scratch_separate 4.4 2.5 9.6 4.3

Planner_autoreg_PPG_scratch_shared_policy_then_value 4.0 2.8 14.4 5.7
Planner_autoreg_PPG_scratch_shared_value_then_policy 4.4 2.8 16.4 5.8

Planner_autoreg_CPG_scratch_unconstrained 4.6 2.6 13.4 5.3
Planner_autoreg_CPG_scratch_constrained 3.9 2.4 9.4 4.3

Table 4.10: Comparison of training and test performances of CPG with respect to several baselines
on Huge_R_Basic scenario database.

limited with high collision rates on new test scenarios. Sharing the backbones and summing
the policy in value losses is not beneficial as shown by PPO_scratch_shared_summed test
results. The test results of PPG are better than the PPO baselines but the collision rate is still
high for practical use cases. We notice that the versions of PPG that uses a shared backbones
obtain competitive results with PPG_scratch_separate which shows that reducing interfer-
ences between objective enables to use a single backbone and hence fewer parameters. We
Note that the unconstrained version of CPG obtained slightly better performances than the
PPG baselines with a shared backbone which shows that cycling has a positive effects. Re-
markably, the application of CPG with soft constrains brings more significant improvements in
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terms of collision rate. The CPG_soft_constrained reached competitive results with the best
PPG baseline: PPG_scratch_separate with only one observation backbone and outperforms
PPG_shared_policy_then_value and PPG_shared_value_then_policy. The main limi-
tation of CPG_soft_constrained is related to the soft constrains weights which require some
hyper-parameters search to work properly. However PPG also requires search to determine the
periodicity of the auxiliary phase and the strength of the KL penalty in the auxiliary loss.

4.2.1.3 Influence of observation backbone architectures

We saw that the policy and the value can share the observation backbone to acquire efficient
representation however features extraction mainly depends on the observation encoding which
provides all information about the scene context. In this chapter we applied actor-critics policy
gradient methods leveraging the lightest backbone we developed : FC_baseline_basic since
it enables fast forward and backward pass through the computational graph and hence fast
training14. The main drawback of the observation backbone FC_baseline_basic is that the
observation does not provide the local road-network but only the lane corridor where the pol-
icy is expected to move which deprives the value and the policy from important priors about
other agents future displacements. In contrast, we have shown in chap.3 that the observation
backbone called PointNetMHA can provide an embedding of the local context represented
as a 2D point cloud at the cost of a higher computational load. Since the network ha a con-
siderably more capacity and leverage an attention mechanism to extract appropriate features
from the context, it could in theory learn more advanced decision making. In the following
we propose to analyse the test performances that can be acquired with different observation
backbones when the policy is first pre-trained on real data as detailed in sec.4.1.6.2 and then
fine tuned with CPG with soft constrains. We compare the test performances of several obser-
vation backbones : the ones that only have access to the lane corridor to represent the map
(FCBaselineBasic,FCBaselineAttentive) and the backbone that has access to a local repre-
sentation of the map(PointNetNHA). We realised our experiences on the scenario data-base
called Huge_R_basic and we fine tune with RL for 200 training iterations. We provide the
test performances in tab.??. We observe in tab.4.11, that the pretraining phase bring signif-

Huge_R Huge_I Huge_M
CR% Off% CR% Off% CR% Off%

PointNetMHA_Planner_autoreg_pretrained_CPG 5.4 2.6 8.4 2.7 4.4 3.5
FCBaselineAttentive_Planner_autoreg_pretrained_CPG 6.2 2.2 9.8 2.5 6.2 3.7

FCBaselineBasic_Planner_autoreg_pretrained_CPG 6.4 2.9 9.4 3.2 6.0 3.6
FCBaselineBasic_Planner_autoreg_scratch_CPG 9.4 4.3 13.4 3.8 8.3 4.3

Table 4.11: Comparison of test performances for different observation backbones on Huge_R_basic
scenario database..

icant improvements in test performances and notably on complex scenarios like the ones on
14In general, the training we realised lasted almost 2 days running on a RT2080 GPU with 50 parallel

simulations for data collections.
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the intersection. This can be explained by the fact that collision avoidance strategy on new
scenarios with a replayed traffic are more difficult to handle when the policy start to drift from
the expert trajectory because other agents won’t adapt their strategy. We observe that the best
final test performances were obtained by the pretrained PointNetMHA backbone which has
almost no front collisions but can still get collided from the back or from the sides. Note that
the pretraining phase is essential for PointNetMHA which cannot be trained efficiently from
scratch with RL due to its considerable size (777250 parameters). We observe that remaining
crashes are almost all caused by the choice of an inappropriate action made at some critical
time step which prevents the agent from adapting to the future traffic that is nonreactive since
replayed from real demonstrations. Intuitively the policy enters in a kind of trap where it is
often impossible to adapt because there is not enough space between the policy and other traffic
agents as shown in fig.4.6. The virtual expert in shaded red chose another strategy compared
to the policy in dark red which got trapped between an agent on its left and an agent in the
back. In the next section we use interactive rule based traffic agents instead of replayed traffic
agents which enables to reduce this kind of issues.

Figure 4.6: A critical situation where the driving policy represented in dark red got trapped between
two replayed traffic agents: the image on the left side represents the situation before the trap closes
and the image on the right represents the collision with a blue point.

4.2.2 Influence of environment dynamic

In this section, we propose to investigate how the environment dynamic influences the test
performances on new scenarios eventually interactive. We first analyse in sec.4.2.2.1 how re-
placing replayed traffic agents with interactive traffic agents during training influences the test
performances on replayed and interactive scenarios. In a second time, we study in sec.4.2.2.2
how increasing the diversity of interactive agents influences the test performances on replayed
and interactive scenarios.
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4.2.2.1 Replayed or Interactive traffic

In chap.2, we explained how to design interactive agents based on an extension of the rule based
IDM model [190] such that it can better handle intersections with fewer collisions. We intro-
duced a decentralized version called DIDM and we have shown in sec.2.2.3.2 that it can evolve
more safely than IDM agent for scenarios of the Huge_R_basic database. In this section, we
propose to train a driving policy with the lightest observation backbone FCBaselineBasic on
the basis of all real scenarios taken from the Huge_R_basic database but for each scenario
originally simulated with replayed, we replace the replay agents with the DIDM agents which
gives the scenario database called Huge_R_basic_synthetic_DIDM . Instead of just includ-
ing replayed agents in the environment dynamic, as in Huge_R_basic_replayed database
or just interactive DIDM agents as in the Huge_R_basic_synthetic_DIDM database, we
propose to simulate each real scenario twice: once with replay agents and a second time with
a DIDM agents which gives the database called Huge_R_basic_mixed_DIDM . Whereas
Huge_R_basic_replayed andHuge_R_basic_synthetic_DIDM only have 750 training sce-
narios the Huge_R_basic_mixed_DIDM database have twice more. We train our policy
from sratch on the different scenario databases with the same training batch size equal to
100000 transitions and we report the performances on test set of Huge_R_basic once with
replayed agents and once with DIDM agents to understand if the driving policy can generalize
a safe strategy with various environment dynamic. Regarding the architecture of the policy,
we realised the next experiences with the lightest backbone called FCBaselineBasic with the
the auto-regressive planner head. As in the previous section we use CPG with soft constrains
to train the actor citic architecture. We observe in tab.4.12 that CPG trained only with replay

test
replay workers DIDM workers

CR% FCR% CR% FCR%
Planner_autoreg_CPG_scratch_replayed 9.4 4.2 15.4 10.2

Planner_autoreg_CPG_replayed_pretrained 6.4 4.1 18.4 13.3
Planner_autoreg_CPG_scratch_synthetic_DIDM 34 3.4 6.2 4.0
Planner_autoreg_CPG_scratch_mixed_DIDM 10.8 3.7 12.1 7.1

Planner_autoreg_CPG_pretrained_mixed_DIDM 7.4 3.7 7.6 4.1

Table 4.12: test performances of driving policies trained with different environenement dynamics

agents obtain better test performances on replayed scenarios at the expense of high collision
rates on synthetic scenarios which means that the driving policy tends to over adapt to a spe-
cific dynamic. When the driving policy is trained from scratch on synthetic scenarios it reaches
the best test performances on synthetic scenarios but it gets often collided from the back on
replayed scenarios because non reactive replay worker do not stop to avoid collisions in contrast
to DIDM agents. We note that a reasonable trade off is reached when the driving policy is
trained on both replayed and interactive scenarios. Additional pretraining as done in the expe-
rience CPG_pretrained_mixed tends to improved test performances on replayed scenario but
slightly degrades test performances with DIDM workers. It appears that extending the scenario
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database with different environment dynamic during training enables to control the trade off
between high test performances in presence of replayed agents and high test performance in
presence of interactive agents.

4.2.2.2 Diversity of traffic agents

In this section, we investigate how the diversity of environment dynamics influences the test
performances of our driving policy. Instead of just using one category of rule based agents
namely DIDM agents, we also propose to use CIDM workers introduced in chap.2 which obeys
a centralized strategy to handle intersections. CIDM agents take their decisions at an in-
tersection according to a centralized strategy that defines rule of priorities which enables to
reduce the rate of collisions as shown by the results in sec.2.2.3.3. Similarly to previous sec-
tion, we build a mixed database called Huge_R_basic_mixed_DIDM_CIDM from the
Huge_R_basic database where each scenario is simulated three times : once with exclusively
replay agents, once exclusively with CIDM workers, and once exclusively with DIDM agents.
As in the previous experiences we use the same CPG hyper-parameters for all trainings: the
only difference is the scenario sampling procedure during data collection. In a last experience
called CPG_pretrained_mixed_CIDM_DIDM_single, we also add simulations on each
real scenarios where all traffic agents are removed which means that only the actor remains
in the scene. On those scenarios, we expect that the policy will move at the optimal speed
(40km/h) up to the end of the scenario without stopping which means that the driving task that
consists in following the reference path, consistently with the context, is properly understood.
In the last column of tab.4.13, we indicate the rate denoted rmotion_less of episodes for which
the agent spends more than 5% of the time of the episode almost motionless. We consider that
the agent should not spend more than 5% motionless to observe a realistic trajectory. Note
that the agent can start at low speed or sometime slows down at intersections which explains
why we choose the threshold at 5% and not zero. Similarly to the previous section, we observe

test
replay workers DIDM workers CIDM workers single

CR% FCR% CR% FCR% CR% FCR% rmotionless
Planner_autoreg_CPG_replayed_pretrained 6.4 4.1 18.4 13.3 12.6 8.1 15

Planner_autoreg_CPG_pretrained_mixed_DIDM 7.4 3.7 7.6 4.1 5.6 4.2 13
Planner_autoreg_CPG_pretrained_mixed_CIDM 7.6 3.8 9.6 5.4 3.2 2.8 12

Planner_autoreg_CPG_pretrained_mixed_DIDM_CIDM 7.3 3.8 8.1 5.3 4.3 3.2 13
Planner_autoreg_CPG_pretrained_mixed_DIDM_CIDM_single 7.3 3.8 7.8 5.3 4.1 3.5 0

Table 4.13: Test performances of driving policies when the environment dynamic get more diverse
due to inclusion of multiple traffic agents.

in tab.4.13 that training with interactive agents such as DIDM or CIDM enables to obtain the
best test performances when the environment dynamic includes respectively DIDM or CIDM
agent but the test performance with replay worker is not improved. When interactive workers
are mixed as in experience CPG_pretrained_mixed_DIDM_CIDM we note that a better
trade off on test performances is reached: we gain more improvements in collision rate than
we loose in total over all categories of traffic agents. One surprising result is that on some
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simple single agent scenario, the policy sometime tends to suddenly decrease its speed as if it
was seeing some neighbors coming as depicted on fig.4.7. We observed that simply adding in
the training database, scenarios where the actor is alone is sufficient to remove those undesired
behaviours as shown by the last column of tab.4.13.

Figure 4.7: Situations where we notice abrupt stopping of the policy whereas the policy is alone: the
image on the left represents the starting position and the image on the right represents the position at
which the agent stays 5 seconds later(ds<5km/h).

4.3 Conclusion

In this chapter, we explained how we can learn basic traffic rules to the driving policy with
reinforcement learning. We first detailed how we designed our synthetic driving reward before
studying how to configure actor-critic policy gradient algorithms for stable training on hundreds
of driving scenarios. In a second time, we explained how to improve test performances of
the driving policy on new scenarios unseen during training. Decoupling the training of the
policy and the value function while sharing a common backbone revealed critical and we also
showed that synthetic interactions generated with rule based agents considerably improves test
performances robustness to environment variations.
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5.1. LEARNING TO IMITATE HUMAN DRIVERS

In this chapter, we explain how we can leverrage human driving demonstrations to learn
a realistic behaviour that are able to generalize safe driving strategies in new situations. In
section 5.1, we first show how to imitate humane drivers on real driving scenarios based on real
demonstrations before investigating to which extent we can generalize and interpret the learned
driving behaviours on new scenarios in sec.5.2. In a last section 5.3, we propose new methods
to combine human demonstration and domain knowledge to acquire more robust strategies in
new situations.

5.1 Learning to imitate human drivers

Massive amount of driving data are available nowadays and it is possible to reconstruct expert
trajectories based on the driving scene context for relatively long period. Those offline data
coming from real world could be used to teach a policy how to drive with human style and
preferences which is particularly interesting for practical applications in traffic simulation. We
first review which existing methods better fit our desiderata in 5.1.1 before applying one of the
most promising for our use case in sec.5.1.2.

5.1.1 Inverse decision modelling

Understanding and generalizing how human drivers takes decision based on an ego-centric
observation is very challenging because agents are often partially rational due to biological,
psychological, and computational factors [76]. Obtaining a transparent understanding of exist-
ing behaviors is impossible. We first give preliminary definitions in 5.1.1.1, before reviewing few
approaches in secs.5.1.1.2.5.1.1.3,5.1.1.4,5.1.1.5,5.1.1.6, that deals with this problem and that
share common basis that we will highlight. Based on this study, we will motivate our method
for learning from human demonstrations.

5.1.1.1 Preliminaries

We introduce fundamental notions that we will used later in this chapter. We consider an
infinite horizon discounted Markov decision process to model our problem M defined by the
tupleM = (S,A, p, r, ρ0, γ) consisting of a continuous state space A, a continuous action space
A and the transition function p(s′|s, a). The agent makes decision through a stochastic policy
π and receives a reward from a reward function r : S ×A → R discounted at every step by the
discount factor γ ∈ [0, 1]. The agent is spawned according to a starting state distribution ρ0

on S satisfying ∀s ∈ Sρ0(s) > 0 .
The stochastic policy π ∈ Π induces a Markov chain Mπ = (S0, A0, S1, A1, ...) which can be
built by first taking a random starting state s ∼ ρ0, then choosing an action a ∼ π(.|s) and then
either restart the chain with probability 1− γ or choose the next state s′ ∼ p(.|s, a) otherwise.
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The Markov chain Mπ of π induce a stationnary distributions called an occupancy measure:
Definition: Occupancy measures The Markov chain Mπ induced by π has a stationnary
distribution(that does not change with time):

1. State OM : ρπ(s) =
∑∞

t=0 γ
t.P (St = s|π, p) whose normalized (discounted) version is

denoted ρπ(s) = (1− γ)ρπ(s)

2. State action OM : ρπ(s, a) = π(a|s)
∑∞

t=0 γ
t.P (St = s|π, p) whose normalized version is

denoted ρπ(s, a) = (1− γ)ρπ(s, a)

3. State transition OM ρπ(s, s
′) =

∫
a∈A ρπ(s, a).p(s

′|s, a)da

4. joint OM ρπ(s, a, s
′) = ρπ(s, a).p(s

′|s, a)

Intuitively, discounted stationary state (state-action) distribution measures the overall “fre-
quency” of visiting a state (state-action).
Theorem:(Syed [184] and [69]) In a single environment, the occupancy measure ρπ(s, a)
satisfies the Bellman flow constraint :

∀(s, a, s′) ∈ S ×A× S ρπ(s, a) = ρ0(s)π(a|s) + γ.

∫
(s′,a′)∈S×A

π(a|s).p(s|a′, s′).ρπ(s′, a′) (5.1)

and the policy π whose occupancy measure is ρπ is unique. That is, the occupancy measure
and the policy are in an one-to-one relationship. The mapping ρπ 7→ π defined by π(a|s) :=

ρπ(s,a)∫
a′∈A ρπ(s′,a)

) is a bijection between Π and the set of measures on S ×A satisfying the Bellmann
flow constraint.
Note that the expected cumulative reward ofMπ, i.e. the expected sum of rewards r(st, at) up
to the first restart of the chain, is given by

E[
∞∑
t=0

γt.r(st, at)] =
Eρπ [r(s, a)]
(1− γ)

=

∫
(s,a)∈S×A

ρπ(s, a).r(s, a) = ⟨r, ρπ⟩ (5.2)

5.1.1.2 Imitation Learning

Imitation learning is the most straightforward way to learn directly from demonstrations be-
cause it removes the burden of a reward function which is often not compatible or unknown.
The simplest approach to imitation learning is Behavior Cloning [7] where an agent policy
directly regresses on expert actions (but not states) using supervised learning.

argminπEρexp(s)[KL(πexp(a|s)||ππ(a|s)] = argmaxπEρexp(s,a)[log(ππ(a|s)] (5.3)

However IL suffers from a fundamental problem called distributional shift[176]. Unlike super-
vised learning, training and testing states distribution are drawn from different distributions,
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induced by the expert and the learned policies respectively. At test time policy actions influ-
ence the distributions of the next states so an imitated policy, even with a small training error,
may visit a state out of the expert demonstrations, which causes a larger decision error and a
transition to further unseen states. Consequently, the policy value gap accumulates along with
the planning horizon. It was shown in [207] that given an expert policy πE and an imitated
policy π such that Eρexp(s)[KL(πexp(a|s)||ππ(a|s)] ≤ ϵ,we have for an infinite horizon MDP, a
value gap such that :

V πexp − V π ≤ 2
√
2, Rmax

(1− γ)2
.
√
ϵ (5.4)

Therefore, the training objective of imitating expert behavior is not perfectly aligned with the
true objective of performing the task correctly. Meanwhile, the policy value gap is only linear
w.r.t. the horizon for a concurrent method called GAIL and introduced in sec.5.1.1.6 such that
Df (ρ

exp(a|s)||ρπ(a|s)) < ϵ, is only O(
√
ϵ

(1−γ)). Numerous attempts to apply supervised learning
methods for learning driving policies reveals that generalization is still insufficient and com-
pounding errors are still a major concern[8, 30, 43]. Disagreement regularized BC[16] operates
by training an ensemble of policies on the expert demonstration data, and uses the variance of
their predictions as a cost minimized with RL together with a supervised behavioral cloning
cost. However prediction uncertainty is not guaranteed to help how to recover from critical sit-
uations or how to adapt to new situations : it can just help to avoid drifting from the support
of the expert state occupancy measure in some situations. To overcome the distributional shift,
methods such as DAgger [161] and Dart [101] assume an interactive access to an expert policy
to complement expert demonstrations on new situations . At training iteration n they leverage
all the n sets of expert trajectories interventions as well as the initial expert demonstration
represented by ρagg(1:n)(s) = 1

n

∑n
i=0 ρ

π(i)
(s) to optimize the learner policy

argminπEρagg(1:n)(s)[KL(ρ
exp(a|s)||ρπ(a|s)] (5.5)

The same principle was applied for learning driving policies with the support of a coach. Roach
[225] uses and advisor policy to complement the trajectories of a policy when it fails due to
some specific events. Once the event occur, an advisor policy generates a corrective trajectory
few steps before the event and the policies is trained with an additional objective to match the
advices Eρadvisor(s)[KL(πadvisor(a|s)||ππ(a|s)]. However this solution is often impractical because
it requires the access of an interactive expert which is often human. Additionally expert are not
always able to recover a safe strategy from arbitrary state reached by the policy when evaluated
in closed loop.

5.1.1.3 Inverse reinforcement learning

Instead of just imitating expert actions, another approach consists in making expert actions
optimal under a learned reward function. Given a set of demonstrations from an expert policy
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πe, IRL[133] is the problem of seeking a reward function from which we can recover πE through
RL. Inverse RL interprets the expert as the optimal policy under some unknown reward func-
tion. IRL consists in learning a reward function r ∈ R or equivalently a cost function c ∈ C
where (c = −r) from expert demonstrations as an intermediate step before applying Rl on top
of it. However, IRL is an ill-defined problem since (1) any constant reward function on expert
support 5.1.1.1 can rationalize every expert and (2) multiple rewards meet the criteria of being
a solution [133]. Maximum entropy IRL (MaxEntIRL) [230] is capable of solving the first issue
by seeking a reward function that maximizes expert’s return along with Shannon entropy of
expert policy.

IRL(πE) = argmaxr∈RS×Aminπ∈ΠEπE [r(s, a)]− Eπ[r(s, a)]−H(π)) (5.6)

where H(π) denotes the γ-discounted causal entropy of the policy H(π) = E(s,a)∼ρπ [
−log(π(a|s)

(1−γ) ].
Intuitively, MCE-IRL seeks for a reward function that assigns high rewards to expert demon-
strations and low rewards to all the others, in favor of high entropy policies. The corresponding
RL problem follows to derive a policy from this reward function which is embedded in the inner
loop of IRL.

RL(c) = argminπ −H(π) +−Eπ[r(s, a)] (5.7)

Solving an IRL problem involves repeatedly solving the optimal reward for a given policy which
makes IRL algorithms prohibitive to learn policies for large MDPs and high dimensional state
spaces.

5.1.1.4 Offline reinforcement learning

While imitation learning exploits expert demonstrations in the form of state action pair it also
possible to exploit offline data from RL like transitions (st, at, rt, st+1) with Offline Reinforce-
ment Learning [105]. Offline reinforcement learning (RL) algorithms as BCQ[47] or CQL [99],
seek to learn an optimal policy without active data collection from a fixed dataset D com-
posed of (s, a, r, s′) generated by a behaviour policy, interacting with the environment. One
strong requirement of vanilla offline RL to obtain reasonable performances is uniform coverage
of state action space. From a practical standpoint, expert datasets have often a very restricted
support which can harm performances of offline algorithms [157]. More problematically, offline
RL assumes an access to a reward function which is usually unknown at least for autonomous
driving since we ignore what utility human drivers are maximizing. Some works dealing with
autonomous driving on highways [124] introduced a custom reward that will be assigned to
transitions collected with the behavioural policy but consistent rewards for scenarios with com-
plex road-networks are more difficult to design and more importantly may not lead to realistic
driving behaviours [34].
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5.1.1.5 Apprenticeship learning

In Apprenticeship Learning [1], rather than learning a cost, its goal is to find a policy π whose
performance is close to that of the expert for any possible cost in a known set R.

AL(πe) = argminπ∈Π −H(π) + supr∈R[Eρπe [r(s, a)]− Eρπ [r(s, a)]] (5.8)

This keeps the state-action occupancy measures of the agent and the expert in proximity, re-
quiring the AL agent to find a path back to the expert trajectories in states that are unobserved
by the expert. This differs from BC, in which the agent’s policy is undetermined in these un-
observed states.
Previous approaches enforced some restrictions on the set R which often relies on linear combi-
nation of basis function [184, 1]. Unfortunately for high dimensional state spaces those feature
function are often unavailable and need to be learned. To avoid this issue, [204] has shown
that apprenticeship learning can be reformulated as minimizing an Integral Probability Met-
rics. Given two probability measures, p and q defined on a measurable space, S, the integral
probability metric (IPM) is defined as:

γF(p, q) = supf∈F |
∫
S
fdp−

∫
S
fdq| (5.9)

where F is a class of real-valued bounded measurable functions on S. For a classR of symmetric
reward, the IPM is defined by

γF(ρπe , ρπ) = supr∈R[Eρπe [r(s, a)]− Eρπ [r(s, a)]] (5.10)

By appropriately choosing R, various popular distance metric between ρπe and ρπ can be
obtained. To make our choice on γF(ρπe , ρπ) we draw a connection with the field of optimal
transport [146] that considers the question of how to transport one distribution to another
while minimizing the amount of effort expended. The Wasserstein-p distance between two
distributions and ν on metric space (M,d) estimates the amount of work that needs to be
done to convert one probability distribution to the other, as measured by the ground metric d.

W p
d (µ, ν) = inf ξ∈Π(µ,ν)Ex,y∼ξ[d(x, y)p]

1
p (5.11)

where Π(µ, ν) is the space of joint distributions △(M×M) whose marginals are µ and ν re-
spectively. If we restrict our attention to the Wasserstein-1 metric, the Kantorovich-Rubinstein
duality allows us to express the Wasserstein-1 distance as follows :

W (µ, ν) = supϕ∈L1Ex∼µ[ϕ(x)]− Ex∼ν [ϕ(x)] (5.12)
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where, L1is the set of all 1-Lipschitz functions from M to R such that:

f ∈ L1 ⇔ sup(x,y)∈M×M
|f(x)− f(y)|

d(x, y)
≤ 1 (5.13)

It was shown that the reward function r(s, a) can be treated as a Kantorovich potential in the
dual form of optimal transport (OT) problem [204] when the set of reward R is composed of
1−Lipshitz function. [219, 204, 23, 172] proposed Wasserstein Adversarial Imitation Learning
(WAIL) which considers the IPM γF(ρπe , ρπ) = W d

1 (ρπ, ρπe) on a metric space (S ×A, d) and
solve the problem:

argminπ −H(π) +W d
1 (ρπ, ρπe) (5.14)

argminπ −H(π) + supϕ∈L1E(s,a)∼ρπe [ϕ(s, a)]−E(s,a)∼ρπ [ϕ(s, a)] (5.15)

Note that depending on the distance metric d on (S ×A, d) enforcing the constrain ϕ ∈ Lip(1)
may get more difficult since sup((s,a),(s′,a′))∈(S×A)×(S×A)

|f((s,a))−f((s′,a′))|
d((s,a),(s′,a′))

≤ 1. In our case S × A
reduce to a subset of Rm so we selected the appropriate norm to enforce ϕ ∈ Lip(1) based
on the gradient penalty [57] or spectral normalization [125]. The outer problem for recovering
the policy requires to apply RL with the current reward. The choice of the reward function
form was studied in [204, 219], but we choose to consider the form proposed in [114] based
on a state distribution matching problem instead of the commonly state action distribution
matching problem. The original problem can easily be reformulated based on the state transi-
tion occupancy measure ρπ(s, s′) =

∫
a∈A ρπ(s, a).p(s

′|s, a)da 5.1.1.1. At every time step, [114]
proposed to provide the following reward:

r(st, st+1) =
1

T
[ϕ(st, st+1)− E(s,s′)∼τe [ϕ(s, s

′)] (5.16)

In case the MDP is episodic of horizon T we can interpret the reward expression from the policy
return expression:

J(π) =
T∑
t=1

Est,st+1∼π[r(st, st+1)] =
T∑
t=1

E(st,st+1)[ϕ(st, st+1)− E(s,s′)∼τe [ϕ(s, s
′)]]

T
= −W d

1 (ρπ, ρπe)

(5.17)
So optimizing the policy gradient consists in minimizing the 1-Wassertein distance between the
state distributions of the expert ρe and the one of the learner ρπ. We will study the efficiency
of those methods for our use case in sec.5.2.1.2

5.1.1.6 Imitation learning as divergence minimization

It was shown that imitation learning and inverse reinforcement are mutually connected and can
be reformulated as a divergence minimization problem [44, 50] which reveals better to compen-
sate distributional shift than BC and also more sample efficient than IRL. The starting point is
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certainly the algorithm known as Generative Adversarial Imitation Learning (GAIL) [69] which
proved that applying RL to a cost function learned through IRL with a cost regularizer ψ l is
equivalent to

IRL(πE) = argmaxr∈RS×A − ψ(c) + (minπ∈Π − Eρπ [r(s, a)]−H(π)) + Eρπe [r(s, a)] (5.18)

RL ◦ (IRLψ(πE)) = argminπ −H(π) + ψ∗(ρπ − ρπE) (5.19)

where ψ∗ is the convex conjugate of the regularizer ψ that measures a discrepancy between
the induced occupancy measures of the expert and the learned policy. By choosing a specific
regularizer ψ, the problem can be reformulated into

π∗ = argminπDJS(ρπe , ρπ)− λH(π) (5.20)

argminπDKL(ρπ|
ρπe + ρπ

2
) +DKL(ρπe|

ρπe + ρπ
2

)− λH(π) (5.21)

=argminπEρπe [log(
ρπe

ρπe + ρπ
)] + Eρπ [log(

ρπ
ρπe + ρπ

)]− λH(π) (5.22)

=argminπmaxDEρπe [log(D(s, a))] + Eρπ [log(1−D(s, a))]− λH(π) (5.23)

We can change the normalized occupancy measure to the normalized version because the con-
stant normalizer is irrelevant in minimization. Concerning the introduction of the discriminator
D(s, a) : S × A → (0, 1) (binary classifier), it is valid because at optimally the discriminator
value is given by

D∗(s, a) =
ρπe(s, a)

ρπe(s, a) + ρπ(s, a)
[55] (5.24)

This principle can be extended to a broader class of measure discrepancy called f-divergences.
Let P , Q be two distributions with density functions p, q. For any convex, lower-semi continuous
function f : R+ → R satisfying f(1) = 0 , the f-divergence is defined as:

Df (P ||Q) =
∫
X
q(x)f(

p(x)

q(x)
)dx (5.25)

Different choices of f enables to recover popular divergences KL,RKL,Pearson,Total variation,
Jeffrey,Jensen-Shannon as summarized in tab5.1.1.6[136] but this formulation does not allow
direct optimization because we do not have access to the densities.[134] leveraged a variational
representation of f in the definition of the f-divergence to obtain a lower bound on the di-
vergence. We shortly provide the derivation for clarity. Every convex, lower-semi continuous
function f has a convex conjugate function f ∗(t) = supu∈dom(f){u.t−f(u)} and it can be shown
that function f can be expressed as follows f(u) = supt∈dom(f∗){t.u − f ∗(u)}. Therefore, we
can rewrite the f divergence as follows:

Df (P ||Q) =
∫
X
q(x).supt∈dom(f∗){t.

p(x)

q(x)
− f ∗(t)}dx (5.26)
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Since f is convex, the Jensen inequality allows to swap integration and supremum:

Df (P ||Q) ≥ supt∈dom(f∗)

∫
X
q(x).{t.p(x)

q(x)
− f ∗(t)}dx (5.27)

We now introduce a class of functions Tω ∈ T with Tω : X → R to compute the supremum.

Df (P ||Q) ≥ supT∈T (

∫
X
p(x).T (x)dx−

∫
X
q(x).f ∗(T (x))dx (5.28)

Df (P ||Q) ≥ supTw∈T (Ex∼P [Tw(x)]− Ex∼Q[f ∗(Tw(x))]) (5.29)

Since we want to follow the generative-adversarial approach [55] for learning a generative model
Qθ of the true distribution P we need this lower bound to be tight. It was shown in [134] that
a tight bound can be obtained for

T ∗(x) = f ′(
p(x)

q(x)
) (5.30)

In that special case, we can learn the generative model Qθ by finding a saddle-point of the
following f-GAN objective function:

L(θ, w) = Ex∼P [Tw(w)]− Ex∼Q[f ∗(Tw(x))]. (5.31)

The associate optimization problem expresses as

minθmaxTwEx∼P [Tw(x)]− Ex∼Qθ
[f ∗(Tw(x))] (5.32)

Note that we recover the same optimization problem with the approach of [69] apart from the
entropy regularization term if we take a cost regularizer such that ψf (c) = Eρexp(s,a)[f ∗(c(s, a))−
c(s, a)] as shown in [50]. To optimize on a given finite training data set, we approximate the
expectations using mini-batch samples and we alternate between training the generator and
the discriminator as detailed in alg.16

f f ∗ gf Df (ρ
exp(s, a)||ρπ(s, a)) f ′(1) dom(f∗) T π,optimalw (s, a) f-max

−log(u) −1− log(−u) −e−u RKL(ρπ(s, a)||ρexp(s, a)) -1 R− − ρπ(s,a)
ρexp(s,a)

AIRL

u.log(u) eu−1 u KL(ρexp(s, a)||ρπ(s, a)) 1 R 1 + log(ρ
exp(s,a)
ρπ(s,a

) FAIRL

u.log(u)− (1 + u).log(1+u
2
) −log(2− eu) log(2)− log(1 + e−u) DJS(ρ

exp(s, a)||ρπ(s, a))− λHcausal(π) 0 t < log(2) log( 2.ρπ(s,a)
ρexp(s,a)+ρπ(s,a

) GAIL
1
2
|u− 1| u 1

2
.tanh(u) DTV (ρ

exp(s, a)||ρπ(s, a)) 1 R 1
2
.sign(ρ

exp(s,a)
ρπ(s,a)

− 1) Dagger

To solve this problem for different f-divergences, we also need to respect the domain dom(f ∗)

for Tw . To this end, we express Tw(x) = gf (Vw(x)) where Vw : X → R is an arbitary function
and gf : R → dom(f ∗) is an activation function that maps to the domain of f ∗. In order to
obtain a discriminator with Tw, we enforce gf to be a monotone increasing function so that a
large output Vw(x) corresponds to the belief that the sample x comes from the data distribution
P . It appears that the variationnal function Tw(x)can be seen as a classifier whose threshold
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Algorithm 16 f-GAN training iteration
[1]

sample Xp = [x1, ..., xB] from P

sample XQ = [x
′
1, ...., x

′
B] from Qθk

Update wk+1 = wt + η.∇wL(θk, wk)
Update θk+1 = θk − η.∇θEx∼Q[f ∗(Twk

(x))]

is given by f ′(1) since T ∗(x) = f ′(p(x)
q(x)

). The f-GAN theory was extended to imitation learning
with a unified algorithm called f − max [50, 85]. In the context of imitation learning we
aim to match the state action occupancy measure of the learner ρπ(s, a) with the state action
occupancy measure of the expert ρexp(s, a).

maxTwE(s,a)∼ρexp(s,a)[Tw((s, a))]− E(s,a)∼ρπθ (s,a)[f
∗(Tw((s, a))] (5.33)

maxπθEτ∼π[
∑
t

γtf ∗(Tw(st, at))] (5.34)

The divergence choice matters and leads to different learner policies. Let p(x) be the true distri-
bution density, and q(x) be the approximate distribution learned by minimizing its divergence
from p(x). For the KL divergence DKL(P ||Q) =

∫
X p(x).log(

p(x)
q(x)

)dx we observe that when
p(x) = 0 then the discrepancy between q(x) > 0 and p(x) will be ignored. On the other hand,
for the Reverve-KL(RKL) divergence DRKL(P ||Q) =

∫
X q(x).log(

q(x)
p(x)

)dx, when the learner out-
put q(x) = 0 it does not capture the discrepancy between q(x) and p(x) > 0. Therefore, the
KL divergence can be used to better learn multiple modes from a true distribution p(x) (mode-
covering), while RKL divergence will perform better in learning a single mode (mode-seeking).
GAIL uses the Jensen-Shannon divergence that only discourages the policy from placing more
mass than the expert has.
This unified perspective provides some intuition why AIL outperforms BC in the low data
regime. Behaviour cloning’s objective Eρexp(s)[KL(ρexp(a|s)||ρπ(a|s)] = −Eρexp(s,a)[log(ρπ(a|s)]
is optimized to match the conditional distribution π(a|s), whereas the policy learnt with
f − MAX algorithms is explicitly encouraged to match the marginal state distributions as
well. Choosing the right divergence for recovering accurately the expert policy is crucial es-
pecially because the policy is optimized based on trajectories and not on a single step as in
GAN[55] which is much harder. It is even possible to learn an admissible f - divergence by
learning a function f with the discriminator that satisfies the convexity constrain and f(1) = 0

as proposed in f − GAIL [223]. However this technique does not explain how to shape func-
tion f such that policy can better learn the expert policy which is the main concern of AIL
algorithms.
The deficiencies of BC suggests that simply trying to match the state marginal distributions
Df (ρ

exp(s)||ρπ(s)), rather than the state conditioned action distributions could be sufficient to
learn an expert policy and even a reward[46]. Recovering expert state marginal distribution
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while learning a stationary reward was proposed in f-IRL algorithm [135] however they compute
the gradients of the f-divergence based on an objective that requires computing the covariance
over agent trajectory distribution ρ(τ) which can be extremely brittle in high dimensional state
space.

5.1.2 Adversarial imitation learning

In this section we explain how we scale up the Adversarial Imitation Learning approach for
learning a human-like driving policy on numerous real driving scenarios. We first detail how we
designed the neural network architecture of the discriminator-actor-critic in sec.5.1.2.1. Sec-
ondly we explain how we set-up the whole pipeline in sec.5.1.2.2 and we provide quantitative
results on imitation performances on real driving scenarios. Thereafter, we explain how to con-
sistently improve long term imitation performance thanks to horizon curriculum in sec.5.1.2.3
before studying how to balance policy and discriminator trainings to guarantee stable improve-
ments in sec.5.1.2.4. In a last section.5.1.2.5, we analyse which reward formulation ends up in
the best performances and how to properly end an episode that turns unrealistic.

5.1.2.1 Discriminator actor critic architecture

AIL algorithms requires a discriminator in addition to the actor critic network used to train
the policy. Since policy and discriminator compete in a two player game[55], they need to share
the same observation backbone network such that the policy can exploit similar features than
the discriminator and then fool it. To this end, we implemented on one side an actor critic
architecture that uses the FCBaslinebasic observation backbone network and on the other
side a discriminator that use an instance of the backbone. We choose the FCBaslinebasic
backbone because it is a light architecture that enables fast training with reasonable open loop
performances reported in chap.3. The discriminator is supposed to distinguish state-action
pairs between expert and learner but as the action representation is considerably smaller than
the observation we also propose to feed the discriminator with the states transitions (st, st+1).
Optimal discriminator can still be expressed in terms of occupancy measure:1

D∗(s, a) =
ρπe(s, a)

ρπe(s, a) + ρπ(s, a)
(5.35)

D∗(s, s′) =
ρπe(s, s

′)

ρπe(s, s
′) + ρπ(s, s′)

(5.36)

We propose two implementations depicted on fig.5.1: the first one represented on the left
of fig.5.1 encodes the observation action pair (ot, at) with our observation backbone and an
additional action encoder implemented with a simple MLP. Observation and action embedding

1Since real scenarios are replayed: the transition dynamic can be considered as deterministic so the optimal
discriminator for state transitions can directly be expressed with ρe(s, s

′) and ρπ(s, s
′)
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(zDt , z
a
t ) are then aggregated with a simple concatenation and the discriminator label is obtained

after applying the discriminator head on zDt ⊙zat . The main limitation of this simple architecture
is related to the fact that an action represented as at = (dst, nt) stores less information about
the transition than the next observation and the discriminator may just ignore information
encoded with the action. Consequently, we propose a second architecture for the discriminator
that process the transition based on consecutive observation pairs (ot, ot+1). We first encode
the two observation with the discriminator observation backbone to obtain (zDt , z

D
t+1) and then

aggregate them by substraction ∆zDt = zDt+1 − zDt before feeding the discriminator head. We
expect that rewards provided by this discriminator will provide better guidance for the policy
than the other architecture that may rather focus on how much the current state belong to
the expert state distribution which does not provide a strong feedback on how to modify the
probability of taking action at given observation ot on the policy side. We will analyse the impact
of the different discriminator architectures in sec.5.1.2.5 where we also study the influence of
the reward function.

Figure 5.1: Discriminator-Actor-Critic network architectures

5.1.2.2 Large scale training on real driving scenarios

In contrast to most previous applications of AIL algorithms which aimed to imitating syn-
thetic demonstrations generated by RL experts [93] or a very restricted number of real driving
demonstrations mainly on highways [98, 14, 10, 71] we want to leverage huge amount of real
and highly interactive driving scenarios to learn realistic driving policies. Another main differ-
ences with respect to applications in robotic manipulation [200] or character animation [144]
is related to the nature of the simulation environment which is multi agent in our case. To
better meet the needs of our application we designed our own training framework based on
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Rllib reinforcement learning library [109]. The whole framework was specifically designed to
handle large scale traffic simulations with thousands of driving scenarios on various maps. In
the following, we detail the generic implementation of the AIL training procedure which is
illustrated in fig.5.2. AIL algorithm described in 5.1.1.6, consist in repeating a main training
operation until the driving performances get satisfying. To maintain stable improvements of
the policy we will discuss more in depth several techniques in sec. 5.1.2.4 and more specifically
horizon curriculum in sec.5.1.2.3.
At training initialization, the pipeline is fed with an expert database De that is composed of
a set of driving scenarios each endowed with a reference expert trajectory τe. The database
is decomposed in a training set Detrain and a validation set Devaldiation composed of respectively
N s
train and N s

val scenarios. The training operation starts with data collection that generates
a training batch Γ composed of nΓ transition (ot, at, ot+1) samples collected by the most re-
cent driving policy πθk−1

. This training batch is created by aggregating trajectories provided
by NS instances of simulation that operate in parallel each initialized with a specific list of
driving scenarios [S

(i)
j ]j∈Ji . During each episode, a single actor is animated by the same pol-

icy πθk while others called workers are replayed based on ground truth episodes. As long as
the total number of transitions collected is lower than the training batch size each simulator
i continues to launch simulation following the list of scenarios [S

(i)
j ]j∈Ji . Depending on the

scenario assignment [[S(i)
j ]j∈Ji ]i∈[1,...,Ns] the training batch can contain multiple episodes for the

same driving scenario such that advantage estimation can be made more accurate2. Usually,
we choose a training batch size at least as big as the number of expert transitions stored in
the training database (nΓ = 100K). Once the training batch is collected, we feed the learner
transition buffer denoted Bπ with trajectories generated by πθk−1

to train the discriminator
Dwk−1

. Note that depending on the size of the learner buffer |Bπ| we can store more than a
single training batch Γ but to guarantee balanced expert and learner training distributions we
enforce |Bπ| = nΓ. Consequently the expert buffer Be is configured such that its size equals
the size of the training batch and its content is updated based on the scenario present in the
training batch : we load expert demonstrations associated to each learner trajectory in the
training batch. At this level the discriminator can be trained for ND epochs on the expert
and learner buffer. The number of epochs the discriminator is trained relies on a stopping
criteria detailed in section 5.1.2.4. Intuitively we should avoid saturation of the discriminator
but we should guarantee proper guidance for the policy. Once the discriminator is trained, we
can compute the reward for each transitions (ot, at, ot+1, r

(k)
t = f(Dwk

(ot, at, ot+1))) collected
by the learner πθk in the training batch. Since we update the policy with an on-policy actor
critic algorithm (PPO[167]), we need to compute the Generalized Advantage Estimator[166]
A
πθk−1

GAE (ot, at) for each sample (ot, at, ot+1, r
(k)
t ) of the training batch but since the reward r

(k)
t )

was recently updated by the new discriminator, the value approximator of our policy V πθk−1

should in principle also be updated based on the new rewards. We explain in section5.1.2.4
why it is actually better to reuse the old value function for advantage computation and why

2See the VINE version of TRPO [168]
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the value function should be trained after the policy. Once the advantage is available, we can
train the policy for Np epochs on the training batch Γ by mini batch gradient ascent. Note that
the stability of the training mainly depends on the quality of policy improvements that may
sometimes be too conservative or too aggressive as discussed in 5.1.2.4 which can severely harm
policy performances on the validation set. Note that off policy methods [93] enables to improve
sample efficiency of AIL methods [137] but can quickly turn unstable because the Q function
estimation under a changing reward is not guaranteed to provide reliable policy improvements 3

so we chose policy gradient actor critic methods as suggested in the original algorithm [69] and
in [56] that studies convergence of AIL. The whole training procedure is repeated for at most
Ntrain training iterations with some performance evaluation of the current policy on the test
set at a regular frequency. The training is stopped when the test performances do no decrease
anymore which means that the policy tends to overffit the training demonstrations. Note that
the main limitation of this framework is related to the fact that other agents in the simulation
are not really interacting with the learner. As a consequence the learner has either to recover
exactly the expert demonstration either to adapt to replay workers trajectories that are fixed.
Interacting with replay agent enables to stabilize the global traffic but it is also harder to pre-
dict other agents reaction as each replay agent is behaving in a unique way whatever happens
on the policy side.

Algorithm 17 AIL Training Procedure
1: INPUTS:

• De = (Dtrain,Deval)
• nΓ :traing batch size

• ND, Nπ, NV :discriminator,policy and value training epochs
2: Be = {},Bπ = {}
3: for k = 1, ....., Ntrain do
4: if k%nevaluation = 0 then
5: EV =Evaluate(π,Devalidation)
6: end if
7: [[S

(i)
j ]j∈Ji ]i∈[1,...,Ns] =AssignScenarios(Detrain)

8: Γ =CollectEpisods(Se, πθk−1
)

9: Be,Bπ =UpdateExpertAndStudentBuffers(Γ,Se,Be,Bπ)
10: Dwk

←trainDiscriminator(Dwk−1
, Be,Bπ)

11: Γ←UpdateRewardsAndAdvantages(Γ, Dwk
)

12: πθk ←trainActor(πθk−1
,Γ)

13: V πθk ←trainCritic(V πθk−1 ,Γ)
14: updateSimulationHorizon(Γ)

In the following we provided the best test performances obtained with different AIL algo-
rithms on three different databases extracted from the interaction dataset[214] and each based
on a different road-network respectively a roundabout an intersection and a road merging. The

3The Q target networks cannot adapt to reward changes.
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Figure 5.2: AIL Training procedure

detailed composition of the databases can be found in annexes .2.

We observe in tab.5.1 that AIL algorithms AIL,VAIL,WAIL all outperforms BC in terms of
imitation performances (ADE-5,ADE-10,ADE-15) but also in terms of safety with significantly
less episodes with collisions and less off-road driving. We see that imitation performances of
a PPO baseline are also significantly worse than most AIL algorithms which means that PPO
trained with the synthetic reward introduced in 4 is effectively learning a different strategy
from the expert but it has to be noted that PPO agents tend to drive in a safer way regarding
the results provided in tab.5.1 because the synthetic reward was specifically designed for this
purpose: avoiding collisions and staying on-road. Concerning AIL algorithms we observe that
WAIL is performing worse than GAIL and VAIL especially in the long term where it clearly
deviates from experts trajectory. Finally we note that best imitation performances are reached
with VAIL that prevents the discriminator to saturate such that the policy stays guided during
training. We will analyse more in depth WAIL and VAIL algorithms in the next sections.
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Huge_R_basic
ADE-5 ADE-10 ADE-15 CR% FCR% Off%

BC 5.20 8.21 13.6 55 23.4 10.30
PPO_R 4.80 6.8 9.67 17.4 7.8 5.3
GAIL 3.6 4.72 5.95 33.2 18.6 4.1
VAIL 2.60 4.51 5.34 28.2 17.3 3.8
WAIL 3.53 6.1 8.5 38.9 18.5 5.2

Huge_I_basic
ADE-5 ADE-10 ADE-15 CR% FCR% Off%

BC 5.82 8.67 12.1 45 21.2 11
PPO_R 4.6 7.1 9.3 15.4 7.2 4.5
GAIL 3.8 5.61 7.23 27.2 16.4 3.4
VAIL 3.42 4.82 6.47 25 14.3 3.1
WAIL 4.1 7.8 11.21 28.5 14.3 5.2

Huge_M_basic
ADE-5 ADE-10 ADE-15 CR% FCR% Off%

BC 5.2 7.3 12.3 65 35.2 5.3
PPO_R 4.2 7.63 11.31 13.5 7.4 2.2
GAIL 3.8 5.82 6.64 14.4 6.2 3.4
VAIL 3.20 5.41 5.65 12 6.1 3.1
WAIL 3.53 6.7 7.82 15.2 6.7 4.2

Table 5.1: Test performances comparison between AIL algorithms and other baselines.

5.1.2.3 Influence of horizon curriculum

The policy performances are considerably more difficult to optimize than the discriminator
performances. Indeed the policy has to imitate realistically the expert during the whole episode
while errors compounds at each decision steps whereas the discriminator has to classify expert
and learner per decisions step. The driving policy can quickly end up in a completely unrealistic
situation during closed loop simulation which may be very easy to detect for the discriminator.
As a consequence the bigger the decision step t the more difficult it becomes for the policy
to fool the discriminator with transition (sπt , a

π
t ) because the state st accumulates errors and

can look significantly different from (sπet , a
πe
t ). Since the policy can quickly deviate from the

expert reference trajectory it can be beneficial to early stop simulation during training before
the agent completely fails. This idea was first proposed in [10] but according to their work, the
simulation horizon is increased decision step by decision step without specific criteria based on
the current training performances. In the following, we propose several methods to update the
horizon based on training statistics before motivating our final choice. Since the discriminator
can quickly get too accurate to properly guide the policy it is natural to consider a criteria
based on training statistic of the discriminator. At each training step k, as depicted on fig.
17, we compute for each scenario S ∈ ΓS sampled in the training batch Γ a trajectory score
according to the discriminator for the expert policy sπe and for the associate the learner sπ.
We then compute the ratio rΓ of the trajectory score and average all the ratio on all scenarios

134



5.1. LEARNING TO IMITATE HUMAN DRIVERS

contained in the training batch:

sπ = ΠHS
t=0σ(Dφk

(sπt , a
π
t )) (5.37)

sπe = ΠHS
t=0σ(Dφk

(sπet , a
πe
t )) (5.38)

rΓ = ES∈ΓS
[
sπ
sπe

] (5.39)

The ratio should stay close to one such that the policy keeps challenging the discriminator
but in practice it stays smaller than 1 because the discriminator accuracy is also improved at
each training step. In order to decide if the simulation horizon should be changed4, we have to
set thresholds on the ratio which is not easy in practice because not directly related to policy
performances. A workaround is to use the average distance error δΓ at the current horizon Hk

to decide if the policy is ready to be trained on longer episodes. Based on policy trajectories in
the training batch Γ and their associate expert trajectories we can compute δΓ after each data
collection as follows:

δΓ = E(τπ ,τe)∈Γ[
1

Hk

Hk∑
i=1

|τπ,i − τe,i|] (5.40)

Since thresholds on δΓ can easily be determined experimentally based on imitation performances
obtained during previous training’s we choose δΓ as the main criteria to define our horizon
curriculum. Given a simulation horizon Hk and an horizon schedule:

[(δmin1 , δmax1 H1), (δ
min
2 , δmax2 H2), ..., (δ

min
N , δmaxN HN)] (5.41)

the function called updateSimulationHorizon in alg.17 update the simulation horizon accord-
ing to the following procedure detailed in alg.18. Note that horizon curriculum assumes that

Algorithm 18 Horizon scheduler
1: INPUTS:

• training batch Γ

• index j of current horizon

2: OUTPUTS : index j of new horizon
3: compute βΓon the training batch Γ
4: if δΓ > rmaxj then
5: j ← max(j − 1, 1)
6: else if δΓ < rminj then
7: j ← min(j + 1, N)
8: end if
9: return j =0

the return of each episode of length Hj at time t is computed by bootstraping the value function
4Changing the simulation horizon impacts data collection at the next training step.
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at the end of the episodes.

Rt =

Hj−j∑
i=t

γi.r(st+i, at+i) + Vϕk−1
(sHj+1) (5.42)

This enables to reduce the value bias even if the last value estimate is generally poorly estimated
due to the lack of data at the last step of the simulation. In order to avoid totally unrealistic
transitions as for instance when the agent is largely off-road, we allow simulation terminations
at t < Hj

5.
In the following experiment we study the influence of the horizon curriculum on long term
imitations performances with different horizon schedules detailed in tab.5.2. For those expe-
riences, we built a specific scenario database called Huge_R_horizon_curriculum on the
roundabout as detailed in annexes..2. The principle consists in dividing a set of expert episodes
into consecutive chunks of given simulation horizons. We repeat this operation for different
horizon included in [2.5, 5, 7.5, 10.0, 12.5, 15] and we obtain our final scenario database where
several episodes partially overlap. The intuition behind horizon curriculum is that the policy
will progressively improves its performances on small episodes chunks before being trained on
longer episode chunks in order to limit compounding errors.

E1 E2 E3 E4 E5

candidate horizon [15] [2.5, 5, 7.5, 10.0, 12.5, 15] [5, 10, 15] [5, 10, 15] [5, 10, 15]

initial_horizon 15s 2.5s 5s 5s 15s
training_batch_size 100 000 100 000 100 000 100 000 100 000

keep_shorter_horizon False False False True True
horizon_step 0 2.5s 5s 5s 5s

Table 5.2: Horizon schedules

To generate the curves in fig.5.3, we ran for each experience, at each training iteration, an
evaluation to compute (ADE-5,ADE-10,ADE-15) on the 200 original driving scenarios. This
step is not necessary for training but only to compare different curriculum with all the metrics
(ADE-5,ADE-10,ADE-15)6. Note that during evaluation the policy is sampled from the policy
distribution because the horizon schedule is applied on training metrics while the policy is
exploring. For all the experiences, the policy is trained from scratch from fixed random weights.
We apply the curriculum based on the average distance error criteria detailed above to update
the simulation horizon. In the first experience, named E1, we directly train the agent on
complete episodes of 15 seconds. Since the policy is exploring during training, it tends to deviate
after the first five seconds and the discriminator gets quickly too accurate which prevents from
guiding properly the policy. Training directly on long horizon episodes as in experience E1 does

5We choose a threshold of maximum lateral distance with respect to the center line equal to 5 meters because
no expert in the database goes above that distance laterally.

6For experience E2 for instance, ADE-15 is not computed during training at the very beginning because we
start to simulate for only 2.5 seconds
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Figure 5.3: Influence of horizon curriculum on training performances: we illustrate when horizon
5s and horizon 10s are passed for experience E2. On the left side of the vertical line the simulation
horizon is equal to respectively 5 and 10 seconds and on the right side it is increased to respectively
7.5 and 12.5 seconds because ADE-5 and ADE-10 reached the thresholds defined in the curriculum.

not lead to good imitation performances as shown by training results on fig.5.3. In case we
gradually increase the horizon with a step equal to 2.5 seconds as in experience E2

7, we observe
improvements in the short term but the performances are unstable. This can be explained by
the fact that the policy can start to accumulate errors when the simulation horizon gets bigger

7The horizon schedule [(25,4.5),(50,6.5),(75,7.0),(100,7.5),(125,8.0),(150,8.5)] for E2 just uses lower thresh-
olds δmin at which the horizon can be increased.
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but since the shorter episodes are not kept in the training database, the policy tends to forget
what it previously learnt and cannot easily recover. In experience E4 we keep shorter episodes
in the training database when a new simulation horizon is reached and we observe that short
term performances up to horizon 10 seconds considerably improve compared to experience E3

where shorter episodes are not kept. The training performances get also more stable because
intermediate errors that can come back during training can be quickly corrected since they
appear in all episodes that overlap. The main disadvantage of this method is the large number of
training episodes that it needs during training. Given an initial set of 200 demonstrations of 15
seconds decomposed according to the following horizon curriculum : [2.5, 5, 7.5, 10.0, 12.5, 15] :
keeping all episodes at the end of the training implies to sample among (6+3+2+1+1).200=2600
scenarios. It appears that the best imitations performances were obtained in experience E4

where we reduce the number of horizons from [2.5, 5, 7.5, 10.0, 12.5, 15] to [5, 10.0, 15] and where
we also keep shorter episodes. Training with possible scenario from the beginning is insufficient
to improve long term performance because long trajectories are generated less frequently in
the training batch. One considerable improvement provided by the horizon curriculum is the
reduction of long term imitation errors (ADE-10,ADE-15) compared to BC as shown in fig.5.3.
However, properly setting the curriculum can require intensive search and depends on the
complexity of the road map.

5.1.2.4 Balancing policy and discriminator training

The goal of each training iteration in AIL algorithms is to improve policy performances mea-
sured in terms of imitations. For a fixed training horizon H we score the policy with the Average
Distance Error at horizon H denoted (ADE-H). We define the policy imitation score (defined
earlier in ) as the statistic provided by ADE-H and we aim to decrease gradually ADE-H after
several training iterations. However the AIL training iterations described in 17 suffers from the
same instability issues as GANs [201]. GANs usually suffer from mode collapse which means
that they cannot produce diverse samples. Since our policy is conditioned on a high dimen-
sional observation and on a command, the demonstrations get drastically less multi modal and
it does not have a major impact on the driving behaviour compared to previous works [108]
where policies are not goal based and can turn right or left. The main problem that AIL faces
is the unbalanced competition between the generator and the discriminator exacerbated by the
sequential nature of the decision process. The discriminator trained on binary targets tends
to quickly overfit because its task is much easier to solve than the generator that has to pro-
vide realistic trajectories and not only realistic instantaneous transitions (st, at, st+1). Although
the existence of a global Nash Equilibrium has been proven [55], practical implementations of
GANs with neural networks prevents from operating directly in the distributional space and
only enables to operate on the parameter space of the the generator. The most challenging part
consists in modifying policy parameters such that next trajectories look more realistic than at
previous iterations. Our goal in this section,is to investigate how we can adjust the standard
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training procedure described in 17 such that the policy imitation score5.1.2.4 gradually im-
proves without resorting to numerous hyper-parameters. To understand why the policy is hard
to train, consider how GAN’s generator loss is expressed:

LGAN(θ) = Ez∼p(z)[log(D(Gθ(z))] (5.43)

The GAN generator training loss enables to back-propagate through the discriminator whereas
the policy loss for on-policy AIL algorithms is based on advantage estimates ÂGAEt (st, at) and
on probability ratios π(.|st;θ)

πk−1(at|st)
.

Lπ(θ) ≈ Es∼pπk−1
(s),a∼πk−1(.|s)[

π(.|st; θ)
πk−1(at|st)

ÂGAEt (st, at)] (5.44)

The discriminator gradients do not intervene during the policy update because discrimina-
tor only comes into play during advantage computation. As a consequence the policy is only
guided by the advantage estimate ÂGAEt (st, at) whose scale and sign determines how much the
probability of action at should be increased or decreased for state st. Therefore we should
adjust the whole training iteration such that advantage estimates get as accurate as possi-
ble8. The advantage estimator ÂGAEt (st, at) depends both on discriminator for the reward
rDwk−1

(st+l, at+l, st+l+1) and on the state value function V πk−1

ϕk−1
(st+l+1) through the TD residual

δVt+l:

ÂGAEt (st, at) =
H−t∑
l=0

(γ.λ)lδVt+l (5.45)

Given a transition (st, at, st+1) of the training batch Γk, computing the TD residual δVt+1 is not
as straightforward as in reinforcement learning, because not only the policy is changing but
also the reward. In principle, computing δVt+l requires the value function of the previous policy
πθk−1

but evaluated with the current reward model rDwk
which suggests that we can compute

δVt+l as follows:

δVt+l = rDwk
(st+l, at+l, st+l+1) + γ (5.46)

V
πk−1

ϕk
(st+l+1)− V πk−1

ϕk
(st+l) (5.47)

where the value V πk−1

ϕk
is trained just after the discriminator update on Γk but with the new

reward rDwk
on each transition. In this case, the TD residuals used for advantage computation

may just reduce to zero since we trained the value function on the same transitions as the one
used for computing the TD residuals. An alternative method that we call TD-corrected is to
consider that the new reward model stays close to the older one with an additional correction

8Advantage estimates should have low variance and more importantly low bias
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term (rDwk
(st+l, at+l, st+l+1)− rDwk−1

(st+l, at+l, st+l+1)):

δVt+l = rDwk−1
(st+l, at+l, st+l+1) + (rDwk

(st+l, at+l, st+l+1)− rDwk−1
(st+l, at+l, st+l+1)) + γ (5.48)

V
πk−1

ϕk−1
(st+l+1)− V πk−1

ϕk−1
(st+l) (5.49)

In this case, we can keep using the older value function trained on Γk−1 with the older reward
model rDwk−1

to compute the TD residuals. We apply this approach in our algorithm detailed
in alg.19 such that the value can be trained at the end of the training iteration. This method
requires that the reward model rDwk

changes slowly to let the policy progressively explore new
parts of the state space without suddenly getting lost due to excessive incentive to explore. In
order to limit the discriminator changes during an AIL training iteration, we propose a method
inspired by PPO clipping strategy [167]. Intuitively, we aim to control the total variation
denoted δD between the Bernoulli distributions parametrized by the old discriminator Dwk−1

and the new discriminator:

δD = E(s,a)∼0.5ρπ+0.5ρπe [DTV (Dw(.|(s, a))|Dwk−1
(.|(s, a))] = E(s,a)[

∣∣Dw(.|(s, a)−Dwk−1
(.|(s, a)

∣∣)
(5.50)

One way to proceed would be to optimize the discriminator with a hard constrain on the total
variation similarly to TRPO [168]. Since enforcing a hard constrain considerably increase the
computation time, we reformulate the discriminator loss LD such that the local changes of
density gets restricted:

argmaxwLD(w) (5.51)

LD(w) = E(o,a)∼Be [rη(s, a).logDw(s, a)] + E(o,a)∼Bπ [rη(s, a).log(1−Dw(s, a))] (5.52)

rη(s, a) = 1[−δD,δD][

∣∣∣∣ Dw(s, a)

Dwk
(s, a)

− 1

∣∣∣∣] + η.1R\[−δD,δD](

∣∣∣∣ Dw(s, a)

Dwk
(s, a)

− 1

∣∣∣∣) (5.53)

(5.54)

For our experience, we choose to set η = 0.0 such that the ratio rη(s, a) reduces to the indicator
function but we could imagine other variations where η could be set to 0.1 which means that
gradients on the discriminator parameters at a state action pair (s, a) with high density changes
will be downscaled. An alternative to this clipping strategy would be to monitor estimates of
the total variation averaged on mini-batches and stop the SGD once a threshold is exceeded.
This strategy is similar to the one used on the policy in [179] but it did not lead to stable
improvements when applied on the discriminator. Indeed, stopping the whole discriminator
training, potentially at the beginning of SGD, may result to a poor discriminator that cannot
efficiently guide the policy. In contrast, our method uses probability ratio clipping that just
cancel few samples in mini-batches used to compute the discriminator loss but do not stop
SGD. Note that the discriminator ratio threshold δD can be chosen the same way as the policy
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ratio threshold δπ which is set considering how much the policy can be changed in average
during each AIL training iteration.

δπ ∝ E(s,a)∼ρπθk

∣∣∣∣ πθ(a|s)πθk(a|s)
− 1

∣∣∣∣ (5.55)

The two criteria (δD, δπ) enable to avoid choosing specific number of training epochs (ND, Nπ)

that do not explicitly restrict the amount of change per training iterations in the distribution
space. Therefore, we can chose the same number of training epochs for both the discriminator
and the policy but we still need to define how fast each of them should learn. According to the
Two Time-Scale Update Rule (TTUR) method [67] developed for GANS, it was shown that
choosing different learning rates for the generator and discriminator still guarantee convergence
under mild assumptions to a stationary local Nash equilibrium. They recommend choosing
a higher learning rate for the discriminator and a lower one for the generator such that the
generator has to make smaller steps to fool the discriminator. However, we already explained
that in AIL a discriminator can quickly overfit especially if trained faster which results in a
saturating reward. It appears that using smaller learning rate for the discriminator and a higher
learning rate for the policy could also make sense.
So far, we mainly explained how to adjust discriminator and generator trainings but the value
function also have its importance and especially through the TD residuals. In contrast to the
policy or to the discriminator we do not need to restrict the value function but we want it
to generalize as much as possible such that TD residuals do not get too biased which would
be detrimental for policy update. To avoid value overfitting we can divide the training batch
Γkinto a test set Γtestk and a training set Γtraink and we should track the value function test error
∆V= Es∼Γk

[
∣∣∣V target(st)− V

πθk−1

ϕk−1
(st)
∣∣∣] after each training epoch. Note that the target return

V target is computed with the previous reward model Dwk−1
:

Vtarget(st) =
H−t∑
l=0

γl.r
Dwk−1

t+l + γH−t+1.V
πθk−1

ϕk−1
(sH) (5.56)

The test error ∆V can be used to launch additional data collection with policy πθk−1
such that

the value can be trained with more transition sample. More precisely, in case ∆V < ∆Vmax

we allow at most L additional data collections with the old reward model rDwk−1
to complete

the training batch Γ =
⋃
l∈[0,L] Γk+l of the value function as described in alg.19. Note that this

technique has a limited impact because the reward model rDwk−1
may not generalize very well

on samples outside Γk . Another way to improve the test performances of the value function is
to generate multiple episodes of the same scenario in the training batch 9 and to store them in
the training batch. Multiple episodes starting from the same state enable to better estimate the
stochasticity of the policy for the value function. It is all the more important that for efficient
value estimation, the policy standard deviation σ should stay low to avoid that the variance of

9This implies using large training batches because we also sample episode on each scenario
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the trajectory distribution explode and hence the value error.

In the following, we study how hyper-parameters δπ, δD, L,Γk, απ, αD influence the training
performances and which conditions are necessary to obtain stable policy improvements. We
choose to set a fixed simulation horizon of 10 seconds such that the policy is enough chal-
lenged during training. All experiences of this section are realised on training scenarios of the
Huge_R_Basic scenario database detailed in annexes .2. We first analyse how clipping the
probability ratio of the policy and the discriminator impacts the policy performances measured
with ADE − H. We choose a maximum number of training epochs equal to Ntrain = 5 for
the policy, the discriminator and the value function. We first start to train the value function
on the same training batch as the one used for the policy. For all experiences, we applied
200 AIL training iterations and we report the final Average Distance Error after 10 seconds
(ADE-10) in closed loop evaluation on scenarios of the training database. In experience 0 re-

(δπ, δD) (απ, αD) ADE − 5 ADE − 10

experience 0 δπ = None, δD = None απ = 0.0001, αD = 0.0001 8.54 13,45
experience 1 δπ = 0.3, δD = None απ = 0.0001, αD = 0.0001 3.50 6.70
experience 2 δπ = 0.3, δD = 0.1 απ = 0.0001, αD = 0.0001 3.22 6.21
experience 3 δπ = 0.03, δD = 0.1 απ = 0.0001, αD = 0.0001 3.24 6.59
experience 4 δπ = 0.3, δD = 0.05 απ = 0.0001, αD = 0.0001 2.98 5.73

Table 5.3: Influence of probability ratios clipping for the policy and the discriminator on training
performances

ported in tab.5.3, we do not use probability ratios at all and we observe that the policy cannot
learn. In experience 1, we start by clipping policy probability ratios according to PPO algo-
rithm[167] which results to large performance improvements for short term imitation but still
high deviations in the long term. In case we also clip the discriminator probability ratio as in
experience 2, we observe that long term imitation performances start to improve. Reducing
the probability ratio of the policy did not lead to better performance as reported in experience
3. In contrast, if the discriminator probability ratio threshold is reduced as in experience 4, we
obtain the best training performance. We conclude that sufficiently restricting local changes
of the discriminator distribution can also be beneficial for the policy. Since the reward cannot
change abruptly between two training iterations, the value function can gradually adapt to the
new reward landscape which helps to compute accurate advantage estimates.
However the policy performances also depend on the training speed induced by the learning
rates whose scales were fixed in the last experiences. In the following, we try to understand
if choosing specific policy and discriminator learning rates can complement ratio clipping. We
train the policy in a similar fashion, with the same initial parameters, for 200 AIL iterations
with different learning rates. In the nest experiences, we use the best pair of probability ratio
thresholds (δπ = 0.3, δD = 0.05) and we search what is the optimal pair of learning rates (απαD)
for keeping balanced performances between the policy and the discriminator for a fixed number
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Algorithm 19 Advanced AIL Training Procedure
1: INPUTS:

• Expert Database De = (Dtrain,Deval)
• nΓ, Ntrain : training batch size,training epochs for discriminator and policy
• NV training epochs of the value function
• L: number of additional data collection to train the value
• (δmaxπ , δmaxD ) : early stopping criteria for respectively the policy an d the discriminator
∆Vmin: minimum value error

2: for k = 1, ....., Ntrain do
3: EV =Evaluate(π,Devalidation)
4: [[S

(i)
j ]j∈Ji ]i∈[1,...,Ns] =AssignScenarios(Detrain)

5: Γk =CollectEpisods(Se, πθk−1
)

6: Be,Bπ =UpdateExpertAndStudentBuffers(Γk,Se,Be,Bπ)
7: for i ∈ [1, ...,M ] do
8: for i=1,...,ND do
9: (Bπ, Be) ∼ Be,Bπ

10: Dw ← Dw + αD∇wLD(Bπ, Be)
11: end for
12: for τ ∈ Γk do
13: for (st, at, st+1) in Γk do
14: δVt+l = rDwk

(st+l, at+l, st+l+1) + γV
πk−1

ϕk−1
(st+l+1)− V πk−1

ϕk−1
(st+l)

15: ÂGAEt (st, at) =
∑H−t

l=0 (γ.λ)lδVt+l
16: end for
17: end for
18: if k > 1 then
19: for i=1,...,Nπ do
20: Bπ ∼ Γk
21: πθ ← πθ + αθ∇θLπ(Bπ, πθk−1

)
22: end for
23: end if
24: end for
25: l = 0,∆V = ∆Vmax
26: ΓVk ← Γk
27: while l < L and ∆V >= ∆Vmin do
28: ΓVk,train ← growDataset(πθk , Dwk

, l)
29: for Bπ ∼ ΓVk,train do
30: Vϕ ← Vϕk + αV∇ϕLV (Bπ, Vϕk−1

)
31: end for
32: ∆V ← evaluateV alue(Vϕ,Γ

V
k,test)

33: l← l + 1
34: end while
35: end for
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of training epochs Ntrain = 5 for the policy and the discriminator10.
The first row of tab.5.5 reports the best performances obtained previously with the same

Ntrain (δπ, δD) (απ, αD) ADE − 5 ADE − 10

experience 0 5 δπ = 0.3, δD = 0.05 απ = 0.0001, αD = 0.0001 2.98 5.73
experience 1 10 δπ = 0.3, δD = 0.05 απ = 0.0001, αD = 0.0001 4.2 8.23
experience 2 5 δπ = 0.3, δD = 0.05 απ = 0.0001, αD = 0.00001 2.95 5.64
experience 3 5 δπ = 0.3, δD = 0.05 απ = 0.001, αD = 0.0001 3.44 6.23
experience 4 5 δπ = 0.3, δD = 0.05 απ = 0.001, αD = 0.001 4.37 8.61

Table 5.4: Influence of learning rates and training epochs on training performances

learning rates for the discriminator and the policy. Increasing the number of training epochs
for the discriminator and the policy does not enable to improve the performances because ad-
vantage estimates are only reliable if the optimized policy stay close to the previous which may
not be the case after more than 5 epochs. In case we slow down the discriminator training as in
experience 2, we do not observe substantial improvements compared to experience 0. Acceler-
ating the policy training as in experience 3 destabilizes the policy whose performances tend to
oscillate during training. In the last experience, we accelerate the policy and the discriminator
which leads to lower performances. Even if local changes of the policy and the discriminator
distributions are restricted with probability ratio clipping, advantage estimates can still be bi-
ased which explains that the policy can suffer from high policy learning rates. We conclude
that using different learning rates for the discriminator and the policy does not significantly
improve performances once suitable probability ratio threshold are found.
Finally, we investigate how the generalization performances of the value function influence the
policy performances for a fixed simulation horizon of H = 10s. The first row reports the
standard configuration with probability ration clipping used previously. In experience 1, we
use a training batch size Γ twice bigger to generate multiple episodes on the same scenario for
training the value but also the discriminator and the policy. For experience 2 we allow L = 2

additional data collections with the old reward model rDwk−1
to complete the training batch

Γ =
⋃
l∈[0,L] Γk+l of the value function11.

(δπ, δD) (απ, αD) L |Γk| ADE − 5 ADE − 10

experience 0 δπ = 0.3, δD = 0.05 απ = 0.0001, αD = 0.0001 0 100000 2.98 5.73
experience 1 δπ = 0.3, δD = 0.05 απ = 0.0001, αD = 0.000 0 200000 2.82 5.34
experience 2 δπ = 0.3, δD = 0.05 απ = 0.0001, αD = 0.000 2 100000 3.03 6.13

Table 5.5: Influence of value function generalization on training performances

We observe in tab.5.5 that doubling the training batch size is the most efficient way to
improve the long term imitation performances. This can be explained by the fact that not
only the value see more examples but also the discriminator during its training. Collecting

10We could even choose different number of training epochs for the policy and the discriminator but we did
not notice significant improvements for long term performances(ADE-10).

11Discriminator and policy do not see more training data
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multiple training batches that each uses the same discriminator for computing the rewards is
less efficient because the discriminator not always generalize very well on new states.

5.1.2.5 Influence of reward form and episode termination

Standard AIL algorithms based on f-divergence minimization as GAIL[69] formulates a sur-
rogate reward function based on the discriminator output. Since the discriminator parame-
terize a Bernouli distribution, its output is restricted to positive values which can be prob-
lematic depending on the expert to imitate. A strictly positive reward function as r(s, a) =

−log(1−D(s, a)) prevents the agent from solving goal based task in a minimal number of steps
because the agent is encouraged to survive in the environment by collecting more rewards. In
contrast, a strictly negative reward function log(D(s, a)) is not able to emulate a survival bonus
and the agent may try to finish the episode too quickly [93, 78, 198]. If we consider our driving
task, it is not really goal based because our policy is constantly conditioned on a reference
path that has to be followed without failure : there is no final destination that determines the
success of the driving task because we aim to stay as close a possible to all states visited by
the expert reference trajectory rather than just the last one. Our driving task is not survival
based either because it just requires to spend enough time in the environment to visit each
state of the expert trajectory. In order to avoid strictly positive or negative rewards we choose
a neutral reward function [93] which reduces to the discriminator output before the application
of the sigmoid and that as the range R.

r(s, a) = log(D(s, a))−log(1−D(s, a)) (5.57)

If the agent learns with this reward, it will always get fewer rewards than if it follows shorter non-
expert trajectories or if it loops as shown in [78]. However, in many environment especially task
based there are generally terminal states where agents enter and finish the episode. Depending
on the expert behaviour and on the nature of the terminal states, the agent may either try to
avoid them or to reach them as soon as possible. In case we define the final return RT (st, at)

with just the terminal state reward r(sT , aT ) since the value cannot be bootstrapped [143]
without having access to sT+1, the learner cannot access the true value of the terminal state
and is therefore still biased. Indeed we did not encourage the survival based agent to avoid the
terminal states and we did not encourage the goal based agent to transition to sT in particular.
In order to avoid the introduction of a bias due to terminal states we can consider that after
entering a terminal state, the agent visits an absorbing state sa [181] where it stays whatever
action it does. Therefore the return at the terminal state can be written :

RT (sT , aT ) = rT (sT , aT ) + γ.
∞∑

t=T+1

γk−t.ra = rT (sT , aT ) +
γ.ra
1− γ

(5.58)
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The value of ra can be learnt by the discriminator as suggested in [93] that however reports
training instabilities. A simple workaround would be to fix manually the value of ra assuming
that we know if the terminal state is detrimental or not for the agent (task completion or
failure). If we consider our driving task, adding terminal states could be beneficial for restricting
exploration because the policy may visit undesirable states far from the expert state support
and the transitions leading to those undesirable states are not very useful for guiding the policy
especially after some training iterations when the policy starts to improve. In order to bound
exploration in the state space, we can easily use domain knowledge to stop the episode once
the agent is too far from the expected configurations. For instance, one can use a threshold
nmax on the lateral distance with respect to the reference path denoted n to stop the episode
once the agent is too far : n > nmax. We can also stop an episode after that a collision occur
but if collisions occur too early in the episode, we may have to learn on very short trajectories
which can in turn prevents the agent from discovering interesting strategies. Since we have
access to the instantaneous distance error with respect to the reference expert, we could even
trigger an episode termination when the distance error gets too big. However, terminating
an episode based on a distance error with respect to an expert can also be confusing for the
agent since it may have reached a safe configuration on road with appropriate safety distances.
Additionally the terminal state reward has to be learned contrary to previous examples where
ra was fixed to a sufficiently negative value. To avoid learning the reward values for absorbing
states or setting manually their value based on domain knowledge, we can also consider that
arbitrary episode terminations triggered by any kind of events ( collision, lateral distance,... )
are just time terminations [143]. In case of time termination, the return of the last transition
(sT , aT , sT+1) reached is estimated by bootstraping the value function.

RT (sT , aT ) = rT (sT , aT ) + γ.Vϕk−1
(sT+1) (5.59)

The main limitation of this technique is that the value may poorly generalize the true value
V πk−1(sT+1) at sT+1 because there is no target to train Vϕk−1

on the last states sT+1.
In the following we investigate in experiences 1,2,3 how imitation performances evolve during
training when we change the form of the reward function. We also analyse the impact of
bootstrapping the value at the end of the episode with experiences 3 and 4. Finally we study
how the introduction of specific absorbing states for collision abbreviated col, lateral distance
with respect to reference path12 abbreviated n and instantaneous distance error with respect to
the expert abbreviated ∆de could help to improve imitation performance measured by ADE-
10. Note that we test two settings, one that consists in manually setting a negative value for
absorbing state rewards and one that consists in bootstrapping the value as if termination was
just a time termination. We realised our experiences on the database Huge_R_basic whose
composition is detailed in annexes .2.

12We stop the episode if n > nmax = 5m meters because the maximum lateral offset of expert does not exceed
this value

146



5.2. TOWARD ROBUST DRIVING IMITATIONS

experience s reward aborbing sate terminal return ADE-10
experience t 1 log(D(s, a) No RT (sT , aT ) = rT (sT , aT ) 8.34
experience 2 −log(1−D(s, a)) No RT (sT , aT ) = rT (sT , aT ) 7.94
experience 3 log(D(s, a)− log(1−D(s, a)) No RT (sT , aT ) = rT (sT , aT ) 6.32
experience 4 log(D(s, a)− log(1−D(s, a)) No RT (sT , aT ) = rT (sT , aT ) + γ.Vϕk−1

(sT+1) 5.94
experience 5 log(D(s, a)− log(1−D(s, a)) rcola = −1 RT (sT , aT ) = rT (sT , aT ) +

γ.ra
1−γ 6.95

experience 6 log(D(s, a)− log(1−D(s, a)) rcola = (1− γ)Vϕk−1
(sT+1) RT (sT , aT ) = rT (sT , aT )γ.Vϕk−1

(sT+1) 6.31
experience 7 log(D(s, a)− log(1−D(s, a)) rna = −1 RT (sT , aT ) = rT (sT , aT ) +

γ.ra
1−γ 6.82

experience 8 log(D(s, a)− log(1−D(s, a)) rna = (1− γ)Vϕk−1
(sT+1) RT (sT , aT ) = rT (sT , aT ) + γ.Vϕk−1

(sT+1) 5.64
experience 9 log(D(s, a)− log(1−D(s, a)) rdea = (1− γ)Vϕk−1

(sT+1) RT (sT , aT ) = rT (sT , aT ) + γ.Vϕk−1
(sT+1) 7.68

Table 5.6: Influence of AIL reward form and episode termination on training performances.

We observe in tab.5.6 that using the unbiased reward log(D(s, a)− log(1−D(s, a)) enables
to reach considerably better performances. We note that using absorbing states for the lateral
offset enables to reach better long term performances than just letting the simulation finish
at the last step H. We reached the best results with early simulation ending when n > nmax

with value bootstrapping. It appears that removing totally unrealistic trajectories enables to
challenge the discriminator such that it can better guide the policy during the whole training
even if sometimes during exploration, the policy starts to deviate too far from the expert
reference trajectory.

5.2 Toward robust driving imitations

In this section, we explain how to improve the test performances of AIL algorithms such that
the driving policy can imitate human drivers on new scenarios. We first study how to make the
policy more robust to distributional shift in sec.5.2.1 before studying to which extent expert
driving behaviour can really be explained in sec.5.2.2.

5.2.1 Adapting to distributional shift

In this section we study how the gradual deviation from expert trajectory during closed loop
simulation can be reduced. In sec.5.2.1.1 we show that decoupling action selection and short
term goal prediction helps the policy to better compensate errors. In sec.5.2.1.2 we show how
to provide smoother guidance with different forms of discriminator.

5.2.1.1 Planning target position before action

Displacement in curvilinear coordinates enables to explore easily around a reference path how-
ever the agent should still learn to compensate its error with respect to the expert trajectory.
If we consider the decision making process, the policy should plan its next target state accord-
ing to an expert and then infer which action enables to reach this target state. In case the
agent starts to drift from the expert trajectory, it should immediately compensate by taking
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the appropriate actions. In early stages of deviation, the next target position that can be con-
sidered as a short term goal should not change expect in some critical situations where a slight
deviation requires full trajectory replanning i.e if a collision is likely to occur, the target is not
updated. As a consequence, small variations on the current state should not imply variations
in the next target state however it requires to adapt the action. AIL approach intrinsically
helps to avoid deviations by guiding the agent with a dense reward but they do not explicitly
help to infer the adapted action that leads to the appropriate next state. For traffic simula-
tion, actions are secondary and what primarily matters is how realistic the sequence of states
of each agents looks because we aim to generate a realistic traffic and not to control a real
vehicle. State only imitation learning focus on recovering the state distribution without direct
access to actions in the demonstrations [189] but in our case, we can easily reconstruct accurate
sequence of displacements in curvilinear coordinates from expert demonstrations. Some other
works [114, 116] build upon state alignment to imitate expert trajectories while reconstructing
the action. The algorithm called SAIL[114] relies on a state predictor that first predicts the
next desired state s̃t+1 given the current state st and then infers the action at with an inverse
dynamic model at = f(st, s̃t+1). They leverage β − V AE [68] for the state predictor such that
the target prediction s̃t+1 remains robust to small variations in the current state st while the
inverse dynamic is a deterministic function that can be learned on an arbitrary set of transitions
(st, at, st+1) to get as accurate as necessary. One drawback of this approach is the necessity to
predict the entire next target state s̃t+1 which is not fully controllable with the action in our
multi-agent setting and which can be very complex because its contains multiple components
for ego information, other agents information and the road-network. What really matters to
take action is the desired target position Yt+1at t + 1 relative to the ego agent current frame
such that we can extract its curvilinear coordinates with respect to the command polyline
and hence infer the action at = (dst, nt+1). As a consequence, we choose to modify the orig-
inal architecture introduced in [114] such that the predictor only predicts the target position
Y t
t+1from the next decision step t+1 instead of the next state (observation in our case) similarly

to motion-forecasting architectures[164]. We define our inverse dynamic such that we do not
need to feed (ot, õt+1) but directly an embedding of ot denoted ht = bπθ (ot) and the predicted
target position Y t

t+1 expressed in the same frame as ot. The planning procedure decomposes
as follows : at the current decision step t the observation is first embedded into htt = bπθ (ot).
Given the previous actions at−1, the planner first predicts which target position it aims to reach
through a VAE composed of (Dθ ◦ Eθ ◦ gθ). The observation embedding htt and the previous
actions at−1 are processed by the VAE encoder (Eθ ◦gθ) that generates the latent representation
ztt = Eθ(gθ(h

t
t, at−1)) associated to the current observation ot. This latent representation ztt is

later transformed by the predictor network Dθ into the target position Y t
t+1 = Dθ(z

t
t) and the

inverse dynamical model fθ infers the action at = fθ(h
t
t, Y

t
t+1:t+H) the agent should perform to

reach the first desired position ytt+1 based on the observation embedding htt . Then a forward
dynamical model Tθ updates the observation embedding htt+1 = Tθ(h

t
t, at) such that we can

plan the next decision steps similarly to the auto-regressive planner introduced in chap.3. The
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Figure 5.4: Architecture of the Inverse Auto-regressive planner (Autoreg_IDM)

forward model has to implicitly understand how other agents may react to the planned action
at of the ego agent. The predicted embedding htt+1 should ideally match the embedding that
will be generated by the next observation ot+1 at the next decision step : ht+1

t+1 = bπθ (ot+1). We
propose to train the target position prediction pθ(y

t
t+1|ot) with a deep conditional generative

model [173]. For a given decision step t, we aim to maximize the conditional log-likelihood
pθ(y

t
t+1|ot) of the next target position knowing the current observation ot. In contrast to other

works that aims to reproduce dense realistic plans from high dimensional representations [121,
200] with variational inference, we aim to infer a sparse short term goal before taking action.
The variational lower bound of the conditional log likelihood is written as follows:

log(pθ(y
t
t+1|ot)) ≥ −KL[(qφ(zt|ytt+1, ot)||pθ(zt|ot))] + Eqφ(zt|ytt+1,ot)

[log(pθ(y
t
t+1|ot, zt)] (5.60)

In practice the recognition network qφ(zt|ytt+1, ot) process htt = bπθ (ot) with the same observation
backbone used in the planner in order to share representations. This choice is justified by
the fact that the VAE encoder is not directly used to extract observation features but rather
target features robust to small observation perturbations. The lower bound enables to define
the target loss that has to be minimized based on β − V AE [68] .

LCV AEθ,φ (ytt+1, ot) = Eqφ(zt|ytt+1,ot)
[−log(pθ(ytt+1|ot, zt)] + β.KL[(qφ(zt|ytt+1, ot)||pθ(zt|ot))] (5.61)

with β < 1 (5.62)
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The expectation is computed with the reparametrization trick : we use L samples to compute
z
(l)
t = µφ(zt|ytt+1, ot)+ϵ

(l).σφ(zt|ytt+1, ot) where ϵ(l) ∼ N (0, I). The main drawback of this method
is that it requires the following target sequence coming from an expert to train a planner for
planning H steps :

(oet , y
e
t+1, a

e
t , o

e
t+1, y

e
t+2, a

e
t+1, ..., o

e
t+H−1, y

e
t+H , a

e
t+H−1) (5.63)

Each sample in the training batch has to store the consecutiveH observations (oet , oet+1, ..., o
e
t+H−1)

seen by the expert because the recognition network requires ot+∆t for training the planning step
t+∆t. Remember that in chap.3, the auto-regressive planner called Planner_ILL_AUTOREG
was trained with samples of the following form (oet , y

e
t+1:t+H , a

e
t+1:t+H) that only contain the cur-

rent observations which is much easier to store and less computationally intensive. It would
have been possible to parameterize the recognition network for multiple planning steps such that
it outputs ztt:t+H−1 instead of just ztt but this methods makes the lower bound auto-regressive
since ztt+∆t+1 depends on ztt+∆t. Back-propagation is very likely to get unstable with consecutive
application of the reparamterization trick for each decision step. Consequently we chose to use
the variationnal lower bound LCV AE(ytt+1, ot, θ, φ) to train only the first step of the planner
that outputs the first action at and its associate target position ytt+1. In complement to this
loss, we keep training the planning loss used in Planner_ILL_AUTOREG to learn expert like
sequence of actions. Except for the first planning step, we force the latent ztt+∆t to be computed
with the mean parametrized by the encoder (µθ(e

t
t+), (σθ(e

t
t+∆t)) = Eθ(e

t
t+∆t) instead of being

sampled.

Lplanner(oet , aet , ...aet+H−1, θ) = Eot∼ρ∗(ot),((aet ,...aet+H−1),(y
e
t ,...y

e
t+H−1)∼πe(|,ot)[ (5.64)

−log(πplanner(aet , ...aet+H−1|ot : θ) +
H−1∑
k=0

(ytt+k − yet+k)2] (5.65)

In the following, we propose a new training procedure that combines multiple offline and online
objectives for training an expert driving policy robust to deviations. Offline objectives are com-
puted on expert data, we optimize LCV AE(ytt+1, ot, θ, φ) such that the agent predicts robustly
the first target position ytt+1 as an expert and we also optimize the planning loss to ensure
the agent plans a sequence of actions as an expert would do. Since those losses are computed
entirely on the expert state distribution they may not be sufficient to improve the robustness
to distributional shift. As a complement, we also collect trajectories with behaviour policy that
applies the first action of the planner at each decision step and store them in a buffer B. We
stop simulation roll-outs when the agent error with respect to expert position δyt = ∥yπt − yet ∥
gets bigger than a given threshold : the maximum deviation δymax = 3m. For each step of the
trajectory, we compute retrospectively the position effectively reached by the agent denoted
yπt+1 after it applied action at and we add this information next to the expert target position
yet+1 in each sample stored in B. In order to improve the inverse dynamical model fθ we leverage
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online data stored in B to improve the inverse inference of the action based on the position
really reached yπt+1 by applying aπt from observation oπt .

Linverse(oπt , aπt , yπt+1) = E(oπt ,a
π
t o

π
t+1,y

e
t+1,y

π
t+1)∼B[0.5(a

π
t − fθ(bπθ (ot), yπt+1))] (5.66)

In order to improve the forward dynamical model we reuse the loss introduced in chap.3 that
enforces predicted observation embedding htt+1 = Tθ(b

π
θ (o

π
t ), a

π
t ) and the effective observation

embedding ht+1
t+1 = bπθ (o

π
t+1) to align.

Lforward(oπt , aπt , oπt+1) = E(oπt ,a
π
t o

π
t+1,y

e
t+1,y

π
t+1)∼B[0.5.(b

π
θ (o

π
t+1)− Tθ(bπθ (oπt ), aπt ))2] (5.67)

Algorithm 20 Training procedure of the Inverse Auto-regressive planner
1: INPUTS:

• D ={(oet , aet , oet+1y
e
t+1)} expert dataset

2: B = {}
3: for i = 0, ...N : do
4: if i%L = 0 then
5: collect trajectories {τi}i∈I and stop simulations when δy > δymax = 2.5m
6: dump {τi}i∈I trajectories in buffer: B = B

⋃
{τi}i∈I

7: compute first position yπt+1reached by the policy on each trajectory
8: end if
9: Lθ = 0

10: sample policy transitions (oπt , a
π
t o

π
t+1, y

e
t+1, y

π
t+1) in B

11: improve target prediction with expert target yet+1: Lθ = Lθ + λtargetLtargetθ (yet+1, o
π
t , θ, φ)

12: improve inverse action extraction : Lθ = Lθ + λinvLinverse(oπt , aπt , yπt+1))
13: improve forward model: Lθ = Lθ + λfoward.Lforward(oπt , aπt , oπt+1)
14: sample expert transitions : (oet , aet , ...aet+H−1, y

e
t+1, ..., y

e
t+H) in D

15: imitate expert target prediction:Lθ,φ = Lθ + λCV AE.LCV AEθ (yet+1, o
e
t , θ, φ)

16: imitate expert plans beyond the first setp: Lθ,φ = Lθ,φ +
λplanner.Lplanner(oet , aet , ...aet+H−1, θ)

17: optimize Lθ,φ with respect to θ and φ
18: end for

To check how much the inverse auto-regressive planner called Planner_ILL_AUTOREG_INV
can compensate deviations with respect to expert trajectories we propose the following ex-
periment. We train a driving policy as detailed in alg.20 on the scenario data base called
Huge_R_Basic detailed in annexes .2 and we analyse the impact of each loss on closed loop
test performances and notably imitation errors. We observe in tab.5.7 that only using the
planning loss Lplanner results to significant deviations with respect to the expert even after 5
seconds. When we add the target prediction loss optimized with a CVAE as in experience 2,
we observe general improvements in all imitation metrics but despite good target predictions
indicated by low gap δ The gap δ represents the error between the predicted position yt+1

t and
position yt+1effectively reached δ = |yt+1

t − yt+1| we note that actions selected are not always
consistent with the target position. In case we add the online loss for the inverse dynamical
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E0 E1 E2 E3 E4

Offline Losses
Lplanner(oet , aet , ...aet+H−1, θ) yes yes yes yes yes
Ltarget−prediction(yet+1, o

e
t , θ, φ) no yes yes yes yes

Online losses
Ltarget−prediction(yet+1, o

π
t , θ, φ) no no yes yes yes

Linverse(oπt , aπt , yπt+1, θ) no no no yes yes
Lforward(oπt , aπt , oπt+1, θ) no no no no yes

E0 E1 E2 E3 E4

ADE-5 4.82 4.23 3.84 3.44 3.26
ADE-10 6.83 6.40 6.10 5.64 4.63
ADE-15 9.23 9.05 7.83 6.53 5.64

Table 5.7: Influences of offline and online losses on test performances of the inverse auto-regressive
planner

model we note significant improvements in ADE-5 and ADE-10 and we observe that actions
usually enable to reach the target positions. Finally, we observe marginal improvements when
we add the online loss for the forward model. We posit that more advanced prediction models
that take into account future trajectories of other agents should be used for training the forward
model such that value prediction could be improved for downstream RL trainings.

5.2.1.2 Compensating compounding errors

Adversarial Imitation Learning casts imitation learning as a state action distribution match-
ing between the expert and the RL agent. The adversarial reward can be interpreted as an
exploration mechanism for the RL agent rather than the true expert reward. The reward func-
tion under the optimally assumption of the discriminator D∗(s, a) = ρπ(s,a)

ρπ(s,a)+ρπe (s,a)
provided by

GAIL algorithm [69] expresses as follows:

rgail(s, a) = −log(D∗(s, a)) = log(1 +
ρπE(s, a)

ρπ(s, a)
) = log(1 + ϕ(s, a)) (5.68)

Intuitively, rgail encourages the RL agent toward under-visited state-actions, where ϕ(s, a) > 1,
and away from over-visited state-actions, where ϕ(s, a) < 1. When πe and π matches exactly,
rgail converges to an indicator function for the support of πe, since ∀(s, a) ∈ supp(πe)φ(s, a) = 1

and the signal provided by the discriminator −log(D∗(s, a)) saturates and cannot be used to
guide the learner anymore. Since the policy explores during training it can quickly deviate
due to random action sampling and reach regions where the discriminator saturates. The
policy gradient computed on those trajectories with rewards saturating to negative values can
induce undesirable modifications of the policy weights and considerably limits improvements of
the policy. We explained in sec.5.1.1.5 that smoother rewards could be learned based on the 1-
Wasserstein distance according to the algorithm called WAIL. The 1-Wasserstein distance allows
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to compare the discrepancy between two distributions that have negligible intersections whereas
KL based divergences will have troubles because they tend to diverge to infinity on regions not
visited by the expert. Since the 1-Wasserstein distance is a proper metric, it is suitable for
continuous interpolation of distributions, which is particularly interesting because we want the
state-action distribution of the policy to gradually move toward the one of the expert. However
learning to quantify deviation for each decision step between expert and policy state action pairs
(se, ae), (sπ, aπ) is not straightforward because the usual distance metric d((se, ae), (sπ, aπ)) on
(S × A, d) does not indicate how difficult it will be for the policy to recover an expert like
behaviour for future steps. Since we cannot compensate deviations by arbitrary displacements
but by transitions that stay close to the expert support it may take several decision steps to
recover the expert trajectory and in some cases it may even be impossible. For instance, if at
an intersection, the policy does not choose to take the way at the same moment as the expert,
it may have to adapt by first giving the way to avoid a collision and then moving forward
as the expert would have done. Unfortunately we do not have access to those counterfactual
demonstrations to measure how realistic are policy adaptations : for each episode we are forced
to imitate the reference expert trajectory. Querying an expert is not a scallable solution and
furthermore the expert cannot necessarily recover from arbitrary states. Some works proposed
to leverage bissimulation metrics to encourage the agent to choose transitions not too far from
the expert support but they assume having access to the rewards in the transitions [31, 215] in
contrast to our setting. What primarily matters for practical applications of traffic simulation
is to stay sufficiently close to expert trajectory to stay safe in any circumstances. We should not
expect the learner to exactly memorize each expert trajectory on each scenario but rather to
find transitions that are not unrealistic in expectation. One major limitation of previous WAIL
implementations[219, 204] is their dependence on a single binary label to distinguish expert
and policy samples which may considerably limit the way the transition features are exploited.
A recent work proposed to use an auto encoder to build the discriminator[221]. Auto-Encoding
Adversarial Imitation Learning (AEAIL) utilizes the reconstruction error of the auto-encoder
as a reward signal. The reward signal based on the reconstruction error significantly retains
the information of state-action pairs rather than focusing on the minor differences. The reward
tends to get more dense because it is computed based on the full state action reconstruction
error instead of just a binary label. Therefore the discriminator gets less overconfident in
distinguishing the expert and the generated samples. The method also builds upon the WAIL

objective which optimize the reward ϕ as a Kantorovich potentials:

supϕ∈L1E(s,a)∼ρπe [ϕ(s, a)]−E(s,a)∼ρπ [ϕ(s, a)]

This form of the reward signal uses the reconstruction error of an auto-encoder to score the state-
action pairs in the trajectories. ϕ(s, a) = 1

(1+AEω(s,a))
whereAEω(s, a) = ∥Dec ◦ Enc(s, a)− (s, a)∥2

supϕ∈L1E(s,a)∼ρπe [
1

(1+AEω(s,a))
]−E(s,a)∼ρπ [

1
(1+AEω(s,a))

]
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The reward rw(s, a) = 1
(1+AEω(s,a))

gets high when the reconstruction errors is low which is
supposed to happen when state-action pairs belongs to the expert support. However the method
does not really scale with high dimensional observation space where numerous components of
different types need to be reconstructed. Instead of reconstructing the state action pair we
propose to reconstruct the observation embedding as follows:

AEω(ot, ot+1) = ∥Dω(Eω(ot))− Eω(ot+1)∥2

The discriminator is composed of an encoder Eω that embeds the observation in a latent space
and a decoder Dω that is expected to decode the latent embedding ẑt+1 = Dω(Eω(ot)) of the
next observation from the embedding of the current zt = Eω(ot). In order to enforce the
Lipschitz constrain on the discriminator we use a gradient penalty as done in [219]. We expect
that using a prediction error in the latent space instead of an explicit reconstruction error in a
high dimensional observation space will help the discriminator Dω(ot, ot+1) =

1
1+AEω(ot,ot+1)

to
better guide the policy .
In the following, we investigate how much different implementations of WAIL algorithms could
improve long term imitation performances in closed loop compared to GAIL. We expect
WAIL rewards to provide more informative gradients∇ar(s, a) and∇sr(s, a) when the learning
agent leaves the expert state action support which should help to compensate compounding
errors. We first try to apply WAIL with a discriminator fed with state action pair as in [219]
before trying to use consecutive states (st, st+1) as suggested in [114]. In order to enforce the
constrain on WAIL discriminator we implemented two variations : one that use a gradient
penalty [57] and one that use spectral normalization [125]. Finally we also evaluated our
adaption of the AEAIL algorithm with the latent prediction error. Note that all the baselines
are trained on theHuge_R_Basic scenario database. We observe in tab.5.8 that WAIL-SN(s,s)

GAIL WAIL-GP(s,a) WAIL-SN(s,a) WAIL-SN(s,s) AEAIL
ADE-5 3.6 3.74 3.63 3.53 3.51
ADE-10 4.72 7.31 7.23 6.1 5.34
ADE-15 5.95 8.91 8.89 8.5 7.21

Table 5.8: Comparison of test performances in closed loop of different WAIL implementations

outperforms WAIL-GP(s,a) and WAIL-SN(s,a) notably for long term imitation performances
(ADE-10 and ADE-15). We posit that rewarding actions is more complex because actions
are implicitly represented with curvilinear coordinated and state-action score also depend on
the next state which is not provided in WAIL-GP(s,a) and WAIL-SN(s,a). In contrast, the
GAIL baseline that use a standard discriminator successively exploits the action to distinguish
expert and policy transitions. It appears that learning a Bernoulli distribution with a GAIL
discriminator is less prone to optimization issues than trying to lean a Kantorovitch potential
with WAIL algorithm for a distance metric d on S × A which is perhaps not adapted for our
problem. Regarding the 1-Lipshitz constrain, we don’t observe significant improvements with
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the spectral normalization even if the gradient penalty coefficient used in WGAIL(s,a)-GP
need to be selected with attention. Concerning our adaptation of the AEAIL algorithm we
note that it slightly outperforms all other WAIL algorithms in terms of test performances and
gets competitive to GAIL baseline. To better understand how the policy is guided with our
AEAIL algorithm, we analysed the reward landscape of AEAIL in situations where the learner
deviated from the expert trajectory. We generated synthetic trajectories based on a expert
trajectory with some noise injection in the action such that the agent deviates and we analyse
how the AEIL rewards react to those perturbations. We created perturbed trajectories with
increasingly higher noise injection in the actions which induce important lateral offsets and
even a collision as depicted in fig.5.5 We see that AEIL reward globally penalizes all perturbed
trajectories with low scores in blue while safe transitions have high score in red and reward
variations stay smooth. We observe that the discriminator did not necessarily penalize an agent
that goes a bit slower than the expert as long as it does not collide which means that it starts
to exploit suitable features to interpret the transition (ot, ot+1).

5.2.2 Explaining expert driving behaviours

5.2.2.1 Causal confusion

Even if the amount of driving data available is huge, it was shown that test performances of a
driving policy in closed loop cannot easily be improved up to an arbitrary level [8]. This issue has
deeper origins than standard over-fitting where larger models memorize training data and fail to
generalize or optimization difficulties associated with access to more information. To be robust
to distributional shift, a policy must exclusively rely on the true causes of expert actions and
must ignore spurious correlations between actions and observations features. This issue is called
causal confusion and it was shown that it can can occur by simply adding a little bit of additional
information to the observation vector [32]. While RL offers a way to conduct interventional
queries to alleviate causal confusion by letting the learned model control the system and observe
outcomes, Behavioural Clonning cannot and struggles to understand the causal structure of the
task [30]. Even if AIL algorithms are more robust to distributionnal shifts, they also suffer from
causal confusion with irrelevant decision making in unusual situations. It is particularly the
case for high dimensional observations because the discriminator that guides the policy tends to
exploit task-irrelevant features (artefacts) which do not provide an informative reward signal,
leading to poor imitation performances. A few works [144, 232, 233, 154, 205] have attempted
to address the overfitting problem of GAIL but mostly for applications with a single agent
in prototypical environments. In the following, we review most interesting approaches and
propose some modifications to apply them to our driving task. One way to learn task relevant
features is to learn general transferable skills that might help the agent during explorations.
[154] proposed to apply reward shaping γ.ϕφ(s′)−ϕφ(s) with an empowerment-based potential
function ϕ(s) to guide the agent during training. Intuitively, the empowerment ϕ(s) of a state
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Figure 5.5: Evolution of the AEAIL reward from the expert trajectory toward increasingly more
perturbed trajectories.
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s quantifies the extent to which an agent can influence its future.

ϕ(s) = max(I(s′, a|s)) (5.69)

It can be computed based on the mutual information between a sequence of actions a and the
final state reached s′ from state s which can be estimated with variationnal inference [126]. In
our setting, the driving policy is already conditioned on a plan which reduces the necessity of
learning primary skills like following the road. Additionally, the method does not easily scale for
high dimensional setting where the state is not fully controllable [154]. A big picture about AIL
algorithms reveals that the drop of policy performances can be explained from the perspective
of the discriminator.[232] points out that False negative : realistic transitions generated by the
policy can encourage the discriminator to focus on features that are irrelevant for guiding the
policy behavior. They propose for instance to filter out some transitions considered as False
negative based on prior knowledge of the reward function however the discriminator is not
guaranteed to provide better guidance on those transitions. Instead of considering that policy
transitions are necessarily unrealistic, [205] proposed to let them unlabeled while expert tran-
sitions are labeled as positive because they are assumed optimal. They frame the problems as
a positive-unlabeled classification problems, and adapt the empirical risk estimator introduced
in [91] to train a discriminator from either expert demonstrations or unlabeled policy samples.
However their algorithm requires setting hyper-parmeters that are not stationary during train-
ing and hence difficult to determine for large scale experiments (namely the positive class prior
η that changes with agents improvements). Instead of considering policy samples as negatively
labeled or unlabeled, we can use prior knowledge to refine our judgment. The main problem
is that the discriminator ignores driving rules and while policy performances improves it may
turn to exploit spurious features instead of task relevant features that become less predictive
[232]. As a consequence the discriminator quickly overfitt and the reward saturates prevent-
ing the policy from improving. The problem is especially challenging when some observation
features are beyond agent control as positions of other agents. Task-Relevant Adversarial Imi-
tation Learning (TRAIL)[233] was designed to prevent the discriminator from forming spurious
associations between transition features and labels. The principle consists in regularizing the
discriminator on a specific set of transitions (st, at, st+1) called a constraining set Ie

⋃
Iπ com-

posed of subsets of expert Ie and policy Iπ subset of transitions. The constraining set is defined
based on domain knowledge such that expert and agent transitions contained in Ie

⋃
Iπ can

only be identified as belonging to one or the other category using spurious features. Based on
the cross entropy objective Gw((se, ae), (sπ, aπ)) = log(Dw(se, ae))]+ log(1−Dw(sπ, aπ)) used to
optimize GAIL discriminator, TRAIL adds a constrain that limits the accuracy of the discrim-
inator on IE

⋃
Iπ in order to discourages the discriminator from forming spurious associations.

Note that the constrain is applied once the discriminator gets overconfident as indicated by

157



5.2. TOWARD ROBUST DRIVING IMITATIONS

1accuracy(IE
⋃

Iπ)>0.5.

LD(w) = E(se,ae)∼ρπe ,(sπ ,aπ)∼ρπ [Gw((se, ae), (sπ, aπ))]− 1accuracy(IE
⋃

Iπ)>0.5. (5.70)

E(s′e,a
′
e)∼IE ,(s′π ,a′π)∼IA [Gw((s

′
e, a

′
e), (s

′
π, a

′
π))] (5.71)

We build upon the principle of TRAIL by defining Ie
⋃
Iπ such that all transitions contain no

collision, small lateral offsets with respect to the centerline lower than nt < nmax and a distance
to neighbors not lower than dmax. Additionally, we enforce policy transitions to have a dis-
tance error ∆dt with respect to the associate expert demonstration belonging to a fixed range
∆dt ∈ [∆dmin,∆dmax]. The idea is that those transitions cannot easily be labeled as optimal
or unsafe a priori, so the discriminator should become more selective when it exploits features
to classify a transition. Similarly to TRAIL, at the beginning of the discriminator update, we
evaluate the accuracy of the old discriminator on the new constraining set Ie

⋃
Iπ generated

after simulation roll-outs. If the average accuracy exceeds 0.5 then we train the next discrimina-
tor with labels set to 0.5 for all transitions contained in Ie

⋃
Iπ while other labels in the buffer

remains equal to 1.0 for experts or 0.0 for the policy. This adaptation enables to avoid sampling
separate mini-batches from a separate buffer which reduce computational overheads. While the
constraining set can be useful at some specific stage of the training it is not guaranteed to help
when the policy gets considerably more realistic. Another way to regulate the accuracy of the
discriminator without introducing domain knowledge is to constrain the information flow in the
discriminator by means of an information bottleneck [144]. Since a discriminator that achieves
very high accuracy can produce relatively uninformative rewards (i.e that saturates almost ev-
erywhere) while a weak discriminator can also hamper the generator’s ability to improve its
skills there is a necessity to a find trade-off along the whole training. Starting from the original
principle of GAIL, another algorithm called VAIL[144] proposed to structure the discriminator
as a variational auto-encoder. An encoder Ew transforms the transition (ot, at, ot+1) into a latent
vector zt distributed as a Gaussian vector Ew[z|(o] = N (µE(x),ΣE(x) and a decoderDw outputs
the probability that the transition comes from an expert. By enforcing a constraint on the mu-
tual information I((Ot, At, Ot+1), Zt) = DKL(p((Ot, At, Ot+1), Zt)|, p((Ot, At, Ot+1).p(Zt)) be-
tween the transition and its internal representation zt, the discriminator enforces the distri-
bution of the latent representation and the distribution of the transitions to stay relatively
independent which prevents the discriminator from becoming arbitrarily accurate. Since the
mutual information is intractable, an upper bound obtained with variational inference [5] is
used to build the objective.

maxwE(s,a)∼ρπe [Ez∼E(z|(s,a)[log(Dw(z))]]− E(s,a)∼ρπ [Ez∼E(z|(s,a)[log(1−D(z))]] (5.72)

s.t E(s,a)∼0.5ρπe+0.5ρπ [KL[E(z|(s, a))|r(z)]] < IC (5.73)

where r(z) = N (0, I), Ic ≤ 1.0 (5.74)
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To solve this constrained problem, we introduce the Lagrangian and update the Lagrange
multipliers β via dual gradient ascent as suggested in [144]. However the choice of the constrain
threshold Ic has a strong impact on the performances and it should be determined by hyper-
parameter search.
In the following we investigate how the problem of spurious associations in the discriminator
network hurts policy test performances. We compare how the test performances of different
algorithm discussed above, evolve when we increase the amount of training data. We expect that
restricted amount of data severely limits the ability of the policy to generalize while increasing
the amount of training data should in theory help. However including more training data can
also lead to causal confusions as explained at the beginning of the section and we will analyse
how adapted version of TRAIL and VAIL performs with respect to the original GAIL algorithm.
For the experiences, we trained GAIL,TRAIL and VAIL on different scenario databases called
Small_R_basic,Big_R_basic and Huge_R_basic with increasingly more training scenarios
as detailed in annexes.2. We compare the test performances of those algorithms on the test
scenario database of Huge_R_basic with new driving scenarios in tab.5.9

training scenarios Small_R_basic Big_R_basic Huge_R_basic
ADE-5 ADE-15 CR% ADE-5 ADE-15 CR% ADE-5 ADE-15 CR%

BC 6.20 15.6 64 5.40 14.1 57 5.20 13.6 55
GAIL 4.2 8.34 40.3 3.96 6.87 36.1 3.6 5.95 33.2

TRAIL 4.85 7.42 37.2 4.61 7.93 26.4 4.2 6.92 18.2
VAIL 4.1 8.12 39.7 3.64 7.34 33.3 2.60 5.34 28.2

Table 5.9: Evolution of test performances of different AIL algorithm when the amount of training
data increase.

We observe in tab.5.9 that BC do not understand how to avoid collisions and quickly
drifts from the expert trajectory without significant improvements when more training data is
provided. The performances of GAIL shows that gradually increasing the amount of data helps
to improve test performance and especially short term imitations (ADE-5,ADE-15). The results
of TRAIL show improved safety metrics but sightly lower imitations performances. TRAIL
discriminator privileges simple observation features to distinguish expert and policy since its
accuracy is limited on ambiguous transitions and hence collision are ranked as highly unrealistic
while slight speed variations are ignored. We observe that VAIL reached the best performances
and this can be explained by the fact that it can gradually regulate the discriminator accuracy
in contrast to TRAIL that cannot handle arbitrarily realistic policy. We highlight that those
results were obtained with the best hyper-parameters through intensive search.

5.2.2.2 Recovering expert reward function

Learning a policy that imitates expert can be restrictive because driving policies may not
easily transfer to new environments with different dynamics especially when other agents are
replayed. Ideally we should learn not only a policy but also the associate expert reward function
disentangled from the dynamics. The reward could later be used to fine tune the policy on
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synthetic scenarios with more interactive agents (Rule based or learned based) in order to
improve interactions that are only approximated with replayed agents during training. Learning
the reward also enables to analyse how each environment transition (s, a, s′) is scored which
serves to check that it effectively matches common driving rules as penalizing over-speeding,
off road driving or aggressive accelerations. Learning a reward is challenging for several reasons
and previous attempts in autonomous driving are restricted to specific settings like highways
[203, 178, 73]. Primarily IRL is an ill defined problem since there are many optimal policies that
can explain a set of demonstrations so MaxEnt[231] first proposed to learn an expert reward
for a policy with maximum entropy which removes this ambiguity. Another problem is that
many rewards can explain an optimal policy as shown in [132] and especially rewards shaped by
the environment dynamics that cannot easily be transferred at test time when the environment
dynamic changes (other agents behaviour change for instance). While GAIL [69] does not
attempt to directly recover the expert reward since at optimality, the discriminator is supposed
to output 0.5 everywhere on the expert support, a previous work called GAN-GCL proposed a
solution inspired from IRL [44] but leveraging an adversarial approach. However their method
operates with a GAN at the trajectory level and hence suffered from high variance estimation.
Adversarial Inverse Imitation Learning (AIRL)[46], proposed a straightforward extension using
only state action pairs to build their discriminator with a specific form:

Dw(s, a) =
efw(s,a)

efw(s,a) + π(a|s)
(5.75)

The reward provided to the generator rw(s, a) = log(Dw(s, a)) − log(1 − Dw(s, a)) reduces to
fw(s, a) − log(π(a|s)) which recovers the entropy-regularised policy objective. It was shown
that under the optimal discriminator D∗ the reward reduces to the expert advantage f ∗

w(s, a) =

A∗(s, a) which is yet heavily entangled with the dynamic so this reward won’t be robust to
changes in environment. According to [46], a reward function r′(s, a, s′) is said (perfectly)
disentangled with respect to a ground-truth reward r(s, a, s′) and a set of dynamics T if and only
if, for all dynamic T ∈ T , the optimal policy is the same: π∗

r′,T (a|s) = π∗
r,T (a|s). Consequently

AIRL resorts to a technique called reward shaping[132] that states that under the following
reward transformation

r′(s, a, s′) = r(s, a, s′) + γϕ(s′)− ϕ(s) (5.76)

the optimal policy remains unchanged, for any function ϕ : S → R. In order to decouple the
reward function from the advantage, AIRL proposed to express the discriminator as follows:

Dw,φ(s, a, s
′) =

efw,φ(s,a,s′)

efw,φ(s,a,s′) + π(a|s)
(5.77)

where fw,φ(s, a, s′) = gw(s, a) + γ.hφ(s
′)− hφ(s) comprises a reward approximator gw(s, a) and

a shaping term hφ. Note that AIRL algorithm trains the policy and the discriminator the same
way as GAIL. Finally it was shown the true reward function r∗ can be obtained at optimality,
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in case the ground truth reward is state only, the environment is deterministic and additionally
satisfies the decomposability condition [52]. The discriminator then reduces to :

g∗(s) = r∗(s) + const (5.78)

h∗(s) = V ∗(s) + const (5.79)

because f ∗
w,φ should recover the expert advantages. Since the driving scene is far from being

deterministic due to other agents behaviour, we cannot fully recover the expert reward in our
setting with AIRL. However we choose to investigate to which extent AIRL could effectively
recover an interpretable state only reward function.
In the following, we compare the test performances of the state only AIRL(s,s’) with respect
to a state only WAIL(s,s’) baseline which also enables to recover a reward. Since GAIL and
AIRL do not optimize the same f-divergence [50] we also compare them to check that AIRL
do not obtain lower test performances than GAIL. We trained all algorithms on the scenario
database called Huge_R_Basic detailed in annexes .2 with horizon curriculum. According to

ADE-5 ADE-10 Off% CR%
GAIL 3.6 4.72 4.1 33.2

AIRL(s,s’) 3.71 5.31 3.6 37.1
WAIL(s,s’)-SN 3.53 6.1 5.2 38.9

Table 5.10: Comparison of best test performances between AIRL,WAIL and GAIL

the test performances in tab.5.10, the state based AIRL is less competitive than GAIL with
lower imitation performances. This can be explained by the fact that during discriminator
training Dw,φ(s, a, s

′) = efw,φ(s,a,s′)

efw,φ(s,a,s′)+π(a|s)
tends to saturate to 1.0 because action sampled with

low probability during exploration lead to low values for π(a|s). As a consequence the guidance
provided by the discriminator is hindered by previous policy action probabilities. Note that
during discriminator training, the policy parameters are frozen and no gradient is taken in the
term π(a|s).
We provide qualitative results to interpret the consistency of the state only reward learned by
AIRL(s,s’) and the state only reward learned WAIL(s,s’). We use stereotypical scenario to point
out how much the state only reward is able to guide a policy. We first consider the situation
where the last states of the trajectory lead to a collision and we expect the reward to penalize
gradually those states such that future training of the policy could avoid it. We also consider
the typical case where the policy deviates from the center of the road in a straight line where
the reward is also supposed to gradually penalize lateral offsets. Finally, we also propose to
analyse how the reward behaves when the agent stay motionless in the middle of the road while
there is no neighbor around. The longer the agent stays motionless the more the reward should
penalize the agent knowing that the agent has information about its own trajectory history
encoded in the observation.
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Figure 5.6: AIRL reward landscape for stereotypical scenarios: blue rewards are negative while red
rewards are positive. The collision is represented with a dark blue point.

The reward landscape shows that unrealistic behaviours of the learner are conveniently
penalized both for the growing lateral offset but not totally for collisions. The collision rate
of AIRL given in tab.5.6 reveals that the reward does not sufficiently guide the policy to stay
totally safe. We conclude that expert rewards cannot robustly be learnt in replayed driving
environments with AIRL which limits the interpretability of the learned driving policies.

5.3 Learning to drive with multiple objectives

We show in the last section that we could learn a driving policy from real demonstrations
or from synthetic experiences in chap.4. Therefore we aim to develop a method to learn a
policy from multiple experiences that we detail in sec.5.3.1. In a second part sec.5.3.2 we will
investigate which experiences are more valuable and how we could combine them to learn robust
driving skills.

5.3.1 Multi objective policy optimization

In this section we study how a driving policy can learn simultaneously from multiple objectives
such that it can get as safe and realistic as possible. We first review tools of multi task learning
that enables to optimize a shared model with multiple targets in sec.5.3.1.1. Subsequently, we
explain in sec.5.3.1.2 our own method for training a shared driving policy with reinforcement
learning from multiple experiences.

5.3.1.1 Theory of multi task learning

Assuming we have at our disposal several dataset of transitions {Di}i∈[1,...,N ] where Di = {
(ojt , a

j
t , o

j
t+1, r

j
t )}j∈[1,...,|Di|] each representing different experiences collected by our current policy

πθ. We posit that training our policy jointly on those datasets with different losses enables to
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learn more robust features. This formulation reduces to a multi-task learning problem. Multi-
task learning exploits similarities between tasks to yield models that are expected to generalize
better and require less training data. Several multi task algorithm have been proposed recently
UW[86],MGDA[170],PCGrad[212],CAGrad,[113], inspired by various hypotheses about what
makes multi-task settings difficult, each motivating a new specialized optimizer. We review
the latest approaches and related concepts to motivate our own method detailed in the next
section.
Formally, suppose we haveK tasks each corresponding to a dataset in {Di}i∈[1,...,N ]. A multi task
model usually contains two parts of parameters: task-sharing parameters θsh and task-specific
parameters {θi}i∈[1,K}. Let Li(Di, θsh, θi), denote per task loss on Di with its gradient denoted
gi = ∇θshLi(Di, θsh, θi) then the first question that arise is how to compare a pair of parame-
ters (θ, θ′). Since two multi objective loss vectors L(θ) = (L1(Di, θsh, θ1), ...,LN(DN , θsh, θN))
and L(θ′) = (L1(Di, θ′sh, θ′1), ...,LN(DN , θ′sh, θ′N)) can not be ordered we need to introduce some
concepts of Pareto optimality to compare parameters (θ, θ′).

For two points θ, θ′, we say that θ is Pareto dominated by θ′, denoted by L(θ′) ≺ L(θ), if
∀i ∈ [1, ..., N ]Li(θ′) ≤ Li(θ) and L(θ′) ̸= L(θ). A point θ∗ is said to be Pareto-optimal if ∀θ
then θ does not dominates θ∗. The set of all Pareto-optimal points θ is called the Pareto set
Pθ and the image of the Pareto set in the objective function space is called the Pareto front
PL = {L(θ)}θ∈Pθ

. A point θ is called Pareto-stationary if we have minw∈W ∥gw(θ)∥ = 0 where
gw =

∑K
i=1wi∇θLi(θ) and W is the probability simplex on [K]. A local Pareto optimal point

θ is Pareto stationary.
MTL algorithms should ideally lead to a Pareto-optimal point θ for multiple objectives. The
Multiple Gradient Descent Algorithm (MGDA)[33] explicitly optimizes towards a Pareto-optimal
point and it was shown that a necessary condition for θ to be a Pareto-optimal point is that
we could find a convex combination of the task gradients at θ that results in a zeros vector.
Therefore, MGDA proposes to minimize the minimum possible convex combination of task
gradients:

minα1,...,αT
{

∥∥∥∥∥
T∑
t=1

αt.∇θshL̂t(θsh, θt)

∥∥∥∥∥
2

2

|
T∑
t=

αt = 1, α1, ..., αT ≥ 0} (5.80)

[33] showed that the solution to this optimization problem is either 0 and the resulting point
satisfies the Kuhn-Karush-Tucker(KKT) conditions of optimality, or the solution gives a descent
direction that improves all tasks. The main limitation of MGDA is the fact that it converges
to any point on the Pareto set without explicit control whereas a common objective in MTL is
usually to minimize the average loss:

L(θ) =
T∑
t=1

αt.L̂t(θsh, θt) (5.81)

where αt = 1
T
. This gave rise to the development of various methods that directly optimize

L(θ). Loss balancing methods for instance, studies how to generate appropriate loss weights
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{αt}t∈[1,T ] in every iteration. Some representative methods focus on using higher loss weights
for more difficult tasks measured either by the task uncertainty [86] or measured by the relative
loss value [115]. Another line of research named gradient re-balancing, hypothesises that one
of the main optimization issues in multi-task learning arises from gradients from different tasks
conflicting with one another in a way that is detrimental for making progress. Their analysis
assumes that the optimization landscape of each task consists of a deep valley, a property
that has been observed in neural network optimization landscapes [54]. Two gradients gi and
gj are defined as conflicting when their cosine similarity cos(ϕi,j) is negative. The condition
at which conflicting gradients can harm the training dynamics are called the tragic triad and
implies large differences in gradients magnitudes as well as high curvatures in the multi-task
optimization landscape. To illustrate this concept, we borrow the example provided in [212]
with a two tasks problem depicted in fig.5.7. We observe that the bottom of the deep valley is
characterized by high positive curvature and large differences in the task gradient magnitudes.
Under such circumstances, the multi-task gradient is dominated by one task gradient, which
comes at the cost of degrading the performances of the other tasks. Furthermore, due to
high curvature, the improvement in the dominating task may be overestimated, while the
degradation in performance of the non-dominating task may be underestimated. As a result,
the ADAM optimizer[90] struggles to make progress on the optimization objective. In order to

Figure 5.7: Visualization of a multi-task objective landscape. (b) and (c) represent a contour plots of
the individual task objectives that compose (a). (d) Trajectory of gradient updates on the multi-task
objective using the Adam optimizer. The gradient vectors of the two tasks at the end of the trajectory
are indicated by blue and red arrows, where the relative lengths are on a log scale.

break one condition of the tragic triad, PCGrad[212] proposed to directly alter the gradients
themselves to prevent conflicts. More specifically, for gradients gi and gj of the i-th and j-th task
respectively at a specific training step, PCGrad computes their cosine similarity to determine
if they are conflicting, and if the value is negative, it projects gi onto the normal plane of gj
before combining them together to form the final update vector.:

g′
i
= g

i
−

g
i
.g
j∥∥∥g

j

∥∥∥2
2

.g
j

(5.82)

The altered gradient g′
i

replaces the original g
i

and this whole process is repeated across all
tasks in a random order. Note that the gradient cosine similarity will always be zero after the
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projection.

g′
i
.g
j
= (g

i
−

g
i
.g
j∥∥∥g

j

∥∥∥2
2

.g
j
).g

j
= (g

i
.g
j
−

g
i
.g
j∥∥∥g

j

∥∥∥2
2

.
∥∥∥g

j

∥∥∥2
2
) = 0 (5.83)

[212] established the convergence guarantee for PCGrad only under the two-tasks learning
setting. Moreover, PCGrad is only guaranteed to converge to the Pareto set without explicit
control over which point it will arrive at. This means that the final convergence point of this
method may largely depend on the initial model parameters.
This lack of strong convergence guarantee motivated the development of another method called
Conflict-Averse Gradient descent (CAGrad)[113], which reduces the conflict among gradients
and still provably converges to a minimum of the average loss. The principle is the following :
it looks for an update vector that maximizes the worst local improvement of any objectives in
a neighborhood of the average gradient. On each optimization step, CaGrads determines the
update d by solving the following optimization problem:

maxd∈Rmmini∈[K] ⟨gi, d⟩ (5.84)∥∥d− g0∥∥ < c
∥∥g∥∥ (5.85)

where c ∈ [0, 1[ is a hyper-parameter that controls the convergence rate. The optimization
problem looks for the best update vector d within a local ball centered at the averaged gra-
dient g0 = 1

T
.
∑T

t=1∇θshL̂t(θsh, θt) while also minimizing the conflict in losses measured by
−mini∈[K] ⟨gi, d⟩. It was shown that CAGrad converges to an optimum of L(θ), when we choose
c ∈ [0, 1[ but instead of solving directly the problem with d which has the same dimensionality
of the neural network, CaGrad considers the dual problem which only involves solving for a
decision variable w ∈ RT . This enables to leverage standard optimization methods to obtain
w such that the optimal update direction could be expressed as d∗ =

∑T
t=1wt∇θshL̂t(θsh, θt) as

detailed in [113]. In the following section we will leverage those multi-task optimizers to train
our driving policy with two training objectives jointly.

5.3.1.2 From multi task learning to policy optimization

Domain adaptation in traffic simulation is crucial for practical applications on new driving
scenarios. Since we ignore the true expert reward function we can only leverage our domain
knowledge and driving demonstrations to learn driving policies. Even if querying an expert
could considerably improve the driving policy in critical situations, this solution is not scalable
because it would require an expert on arbitrary number of scenarios [145]. In last resort, we
could always add a safety shield but this may require at lot of engineering to correct manually
unsafe policy decisions[196].
We do not assume having access to the true reward function but only to some proxies associated
to our imitation and safety performance metrics. We have at least two reward hypothesis
based respectively on domain knowledge and on expert demonstrations. The synthetic reward
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based on traffic rules enables to encode traffic rules without ambiguity while the data driven
reward induced by demonstrations indicates complex human preferences about various driving
aspects. The synthetic reward is supposed to provide minimal guidance for the learner to
reach reasonable performances in any situations however it cannot fully explain the expert
behaviour. The data driven reward provided by AIL algorithms acts as a guidance toward the
expert distribution but this signal may be less informative when the agent goes on states less
visited by the expert. It appears that both rewards could complement each other however they
may also come into conflict in some cases. The synthetic reward may encourage the agent to
go faster than the expert did in the same episode. Similarly, the data driven reward may miss
to penalise at the right scale some collisions or large lateral offsets in some unusual situations
where the discriminator is not accurate. It is not clear which reward should be privileged
during the training because the data driven constantly change which makes difficult to learn
preferences on rewards as suggested in [2]. It is also possible to formulate a constrained problem
based on a data driven reward to maximize under a set of constrains, leveraging Lagrangian
relaxation as proposed in [25]. Constrained reinforcement learning could in theory help to
reduce considerably the number of collision in training but at the cost of the data driven
reward which may be completely ignored until collisions completely disappear [187]. Instead of
enforcing a hard constrain, we can also optimize a soft-robust objective that balances expected
performance and a risk measure as proposed by PG-BROIL[77]. The main limitation of this
method is that the risk estimation does not scale in high dimensional environment with complex
multi agent interactions. The most intuitive solution would be to use a weighted sum of rewards
for each transition collected by the policy as suggested in [197]. However the fact that the data
driven is constantly changing during training can be problematic.
Assuming that we are using the sum of the reward rD + rS, then we need to learn the value
function of the behaviour policy under the same reward model denoted V π

rS+rd
. We remind that

the value function is necessary to compute advantage estimates [166] for the policy gradient.
In practice V π

rS+rd
(st = s) = Eτ∼π[

∑∞
l=0 γ

l.rt+l|st = s] is estimated with the trajectory return
G(τ) with bootstrapping at the end of the trajectory Ĝt(τ) =

∑T−t
l=0 γ

lrt+l + γT+1.V π
θk−1

(sT ) for
the trajectory τ = (s0, a0, r0, s1, ..., sT−1, aT−1, rT−1, sT ) generated by π. The value function is
trained to regress the trajectory return by minimizing the following objective :

argminϕEτ∼πθ [(Vϕ(st)− Ĝt)
2] (5.86)

The distribution of the return G(st) = Gs(st) + Gd(st) induced by policy πθ can be expressed
with the synthetic return GS term and data driven reward Gd. As a consequence the variance
of the return:

V(G) = V(Gs) + V(Gr) + 2.cov(Gs, GR) (5.87)
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may increase13 due to additional the covariance term cov(Gs, GR) = Es∼ρπ [(Gs(s)−E(Gs))(Gr(s)−E(Gr))].
The covariance is positive when the differences between the variables (Gs, Gr) and their means
tend to be of the same sign according to cov(Gs, GR) = E[(Gs−E[Gs])(Gr−E[Gr])]. Since the
two reward signal are rarely in complete contradiction it is reasonable to think that they evolve
globally on the same side of their mean so the covariance term can turn positive. At least Gs

and GR cannot be considered as independent since interactions exist between the policy πθ,
the synthetic reward rs and the data driven reward rd during training. The policy generates
trajectories based on what it learned from previous experiences which are labeled with rewards
comprising the synthetic term. Therefore, trajectories generated by the policy πθ are influenced
by the synthetic reward. Those trajectories are later used to update the data driven reward
which consequently, gets influenced by the synthetic reward. It is all the more true that this
process is repeated for many iteration during the whole training procedure. It appears that
the value approximator of V π

rS+rd
may be more difficult to learn accurately than learning sepa-

rately the two approximators V π
rS

and V π
rd

. This can result in less accurate advantage estimation
Aπs+r(a, s) which may in turn deteriorate policy updates.
An alternative, would be to leverage all information we have i.e trajectories with synthetic
rewards and trajectories with the data driven reward to compute synthetic Aπs (a, s) and data-
driven Aπd(a, s) advantages which result to two separate policy objectives JPPOs (θ) and JPPOd (θ).
We propose to train the policy jointly with those two policy objectives based on a multi-task
optimizer as detailed detailed in fig.5.8. Since the two objectives JPPOs (θ) and JPPOd (θ) are
computed according to a standard PPO loss that enables to directly update policy parameters,
we call our method Multi-Objective Policy Optimization abbreviated (MOPO). During a train-
ing iteration of MOPO, the policy first collects a training batch Γ whose transitions are labeled
with synthetic rewards rs. Similarly to GAIL[69], MOPO also learns a data driven reward
model from policy samples collected and associate expert demonstrations. Consequently, each
transition (st, at, st+1) will not only be labeled with a single reward but with two rewards : the
synthetic rs(st, at, st+1) and the data-driven rD(st, at, st+1) rewards. Note that the synthetic re-
ward is the same as the one introduced in chap.4. Subsequently we compute for each transition
the two advantage estimators Aπolds (a, s) and Aπoldd (a, s)) for respectively the synthetic reward
model and the data driven reward model. To this end we also need to train two separate value
functions for each reward model V π

s and V π
d . In order to update the policy we compute two

PPO losses: JPPOs (θ) and J PPO
r (θ) for a mini batches B = {(s, a, Aπolds (a, s), Aπoldr (a, s))i}i∈[1,m]

sampled in the training batch Γ.

JPPOs (θ) = E(s,a)∼B[min(
πθ(.|s)
πθold(.|s)

Aπolds (a, s), clamp(
πθ(.|s)
πθold(.|s)

, 1− ϵ, 1 + ϵ).Aπolds (a, s)) (5.88)

JPPOd (θ) = E(s,a)∼B[min(
πθ(.|s)
πθold(.|s)

Aπoldd (a, s), clamp(
πθ(.|s)
πθold(.|s)

, 1− ϵ, 1 + ϵ).Aπoldd (a, s)) (5.89)

13Note that two random variables that are not independent can still have a covariance term equal to 0.
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At this level, if we apply a multi-task optimizer on the two policy losses JPPOs (θ) and JPPOs (θ),
we will face a problem because the losses are computed based on the same transitions (st, at, st+1).
It results that the two gradients computed on the mini-batches B ={(st, at, Aπolds (a, s), AπoldD (a, s))}
will be co-linear because∇θJ

PPO
s (θ) = ∇θ

πθ(.|s)
πθold (.|s)

.Aπolds (a, s) and∇θJ
PPO
D (θ) = ∇θ

πθ(.|s)
πθold (.|s)

.AπoldD (a, s).
Applying the PCGrad[212] optimizer would be equivalent than taking the mean gradient and
applying MGDA[170] would result to a zero gradient. It appears that MOPO boils down in the
best case to the average loss whose interest depends on the scale of Aπolds (a, s) and AπoldD (a, s).
In order to make the two advantages more comparable, we chose to standardize them with their
respective standard deviations. Another solution would have been to use weights (λS, λD) but
we cannot a priory set their values if we ignore their relative importance. Since summing the
losses (JPPOS (θ), JPPOD (θ)) is not equivalent to summing the rewards because we learn separate
value functions, we chose to analyse this simplified version of MOPO and we call it MOPO
Mono-dataset because it collects a single training batch Γ to compute the two policy objectives.
In MOPO Mono-dataset we simply sum the losses JPPO(θ) = JPPOS (θ) + JPPOD (θ) before com-
puting the policy gradient ∇θJ(θ). Once the the policy is updated with mini batch SGD, we
also update the two value functions with their respective target and we repeat this training pro-
cedure as long as test performances improves. While the above algorithm exploits two different
reward models, it uses the same environment transitions (st, at, st+1) for both reward functions
which prevents from obtaining gradients that are not co-linear. Providing more contrastive
experiences by not only changing the reward model but also their associate transitions would
enable to compute gradients with potentially different directions.
In the following, we propose to collect two training batches ΓS and ΓD respectively for the
synthetic reward and for the data driven reward based on the same set of driving scenario.
This approach is similar to traditional multi-task RL where the policy is conditioned on a task
encoding zi and is trained with multiple losses computed on separate dataset {Di}i∈T associ-
ated to each task [212]. In our setting, we do not indicate which experience is synthetic and
which is real because our goal is to make our policy more robust to changes of dynamics and
not to master several tasks. Consequently, the training procedure of the policy is changed.
For a given number of epochs we sample a pair of mini-batches (Bs,Bd) from the two separate
training batches Γs × Γd and we compute for each of them the two PPO losses:

JPPOS (θ) = E(s,a)∼Bs [min(
πθ(.|s)
πθold(.|s)

Aπolds (a, s), clamp(
πθ(.|s)
πθold(.|s)

, 1− ϵ, 1 + ϵ).Aπolds (a, s)) (5.90)

JPPOD (θ) = E(s,a)∼Bd
[min(

πθ(.|s)
πθold(.|s)

Aπoldr (a, s), clamp(
πθ(.|s)
πθold(.|s)

, 1− ϵ, 1 + ϵ).Aπoldr (a, s)) (5.91)

Note that the two training batches ΓS and ΓD are necessarily different because they are
collected while the policy explore: so even if the trajectories are collected on the same scenarios,
sampling actions with the stochastic policy for exploration makes each trajectory unique. The
gradients ∇θJ

PPO
S (θ) and ∇θJ

PPO
D (θ) will later be combined by the multi task optimizer as
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Figure 5.8: Training procedure of MOPO MonoDataset

depicted on fig.5.9. Since the algorithm requires two training batches we call this version
MOPO Multi-dataset and we summarize the training procedure in alg.21. The fact that the two
gradients ∇θJ

PPO
S (θ)|θk and ∇θJ

PPO
S (θ)|θk are not computed on the same transitions enables

to obtain different update directions potentially conflicting at point θk. In this case applying
a multitask optimizer as PCGrad could enable to avoid detrimental interferences which is
expected to help the policy to obtain better performances.
We note that our approach is complementary to the generalist specialist framework proposed
in [80]. Their method consists in training a generalist policy on various environments and once
it starts to plateaus, specialists policies are initialized with its weights and fine tuned to master
a subset of task. Finally, they resume the training of the generalist with auxiliary rewards
induced by demonstrations of all specialists and they obtained improved performance for the
generalist after several training iterations. Our approach could be used to train a generalist
policy and a specialist that both share the same backbone but have separate policy heads. We
propose to train the generalist and the specialist jointly with our multi objective approach on
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Figure 5.9: Training procedure of MOPO MultiDatasets

different environment. While the generalist is trained on various environments, the specialist
is trained on very specific environments where the generalist is currently poorly performing. In
the meantime, the specialist continues to generate valuable demonstrations that the generalist
can exploit with an auxiliary reward. This technique enables to continuously train the generalist
while sharing parameters with a specialist14.

5.3.2 Learning from multiple experiences

In the following section, we analyse performances of several variations of MOPO. In sec.5.3.2.1
we first examine how using multiple rewards with our multi-objectives algorithm could improve
the test performances. In sec.5.3.2.2 we analyse how collecting multiple experiences with various

14Multiple specialists can be used but the multi objective optimizer should be selected appropriately
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Algorithm 21 Training procedure of MOPO-multi-datasets
1: INPUTS:

• S : set of training driving scenarios

• πθ, Vϕ, Dw :initial policy critic and discriminator

• Ntrain: size of the training batch

2: while isImproving(πθ, [mi]i∈I) do
3: Ss,Sd ←updateScenarios(S,k)
4: Ds,Dd ←collectDatasets(Ss,Sd, πθ, Ntrain)
5: Bπ,Be ←UdpateBuffers(Bπ,Be,Dd)
6: Dwk+1

←trainDiscriminator(Bπ,Be)
7: Dd ←computeDataDrivenReward(Dd, Dϕk+1

)
8: Ds,Dd ←ComputeAdvantages(Ds,Dd)
9: for i = 1, ..., Nπ do

10: for (Bs, Bd) sampled in Ds ×Dd: do
11: ∇θLPPO(θ)← PCGrad(∇θLPPOs (θ),∇θLPPOd (θ))
12: θk+1 = θk + α.∇θLPPO(θ)
13: end for
14: end for
15: V S

ϕk+1
, V D

ϕk
←trainValueFunctions(Ds,Dd, V S

ϕk
, V D

ϕk
)

16: if k%Teval = 0 then
17: mk=eval(πθ)
18: k = k + 1
19: end if
20: end while

environment dynamics could make the policy more robust during test.

5.3.2.1 Learning with multiple rewards

In this section, we will analyse if using jointly a synthetic reward and a data driven reward with
MOPO is more efficient than any other baselines. We realised our experiences on a database
called Huge_R_Basic detailed in annexes.?? with an environment dynamic composed of re-
played workers. We compare performances of MOPOmultidataset that use a multi-task optimizer,
with respect to three simple baselines named MOPOmonodatset, GAIL and GAILaug. As a start-
ing point, we choose the simplest multi task optimizer (PCGrad) to implement MOPOmulti

because we will analyse the impact of the optimizer choice in a second time. We include an-
other baseline called MOPOmultidatset−US for Unitary Scalarization (US) and that just consists
in taking the gradient of the sum of the two policy objectives: ∇θ(J

PPO
S (θ) + JPPOD (θ)) to

update the policy. This variation is slightly different from MOPOmonodataset because the losses
are not computed on the same training batches but on two separate training batches labeled
respectively with the synthetic reward and the data-driven reward. The standard GAIL im-
plementation use the data driven reward on a single training batch while GAILaug use the
sum of the synthetic reward with the data driven reward on a single training batch[197]. Note
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that GAILaug trains a single value function for the reward sum V π
rs+rD

contrary to MOPOmono

that trains two separate value functions and sums policy losses computed on the same training
batch. We first observe in tab.5.11 that GAILaug performs better than GAIL especially for

Training batch Synthetic experiences Real experiences ADE-5 ADE-15 CR%
MOPOmulti−PCGrad multi dataset Ds(rs, Treplay) Dr(rd, Treplay) 2.70 4.98 16.1
MOPOmulti−US multi dataset Ds(rs, Treplay) Dr(rd, Treplay) 3.16 5.14 17.2
MOPOmono mono-dataset Ds(rs, Treplay) Dr(rd, Treplay) 3.21 5.28 19.7
GAILaug mono-dataset None Dr(rs + rd, Treplay) 3.36 5.42 21.3
GAILs mono-dataset None Dr(rd, Treplay) 3.6 5.95 28.2
PPO mono-dataset Ds(rs, Treplay) None 4.80 9.67 17.4

Table 5.11: Test performances comparison between MOPO multidataset-PCGrad with different base-
lines.

collision avoidance which indicates that the synthetic reward has a positive effects when com-
bined to the data driven reward. As expected, it helps to reduce the number of collision which
in turn enables to slightly improve imitation performances. In order to understand if simply
summing the reward is a better choice than computing separate advantage estimates as done in
MOPOmonodataset, we compare GAILaug and MOPOmonodataset. We note that MOPOmonodataset

is better than GAILaug for all performance metrics and especially for imitation performances.
To better understand the root causes of the gain of performances we compare to which extent
advantage estimation is improved if we use two separate value functions. We compare the
bias and the variance of V π

rs+rD
against the one of V π

rs and V π
rD

which directly reveals if the
advantage is well estimated. We realise that the variance (1.546) but also the bias (0.345)
of V π

rs+rD
on this experience, is considerably bigger than individual variance (0.241,0.655) and

bias (0.015,0.276) for respectively V π
rs and V π

rs
15. It appears that learning the value function

for GAILaug is harder than learning separate values which can be explained by the covariance
term which arise when rewards are summed. The direct consequence is that the GAILaug policy
reached lower performances due to poor advantage estimates compared to MOPOmonodataset.
Finally if we compare MOPOmulti−PcGrad against MOPOmonodatset or MOPOmulti−US we ob-
serve that the performances of MOPOmulti−PcGrad are better which indicates that using the
multi objective optimizer effectively solve conflicts to escape some local minima reached by
MOPOmonodataset or MOPOmulti−US. To make a fair comparison, the training batch size of
MOPOmono denoted |ΓmonoD | is made twice bigger than synthetic or real training batches of
MOPOmulti : |ΓmonoD | = 2.

∣∣ΓmultiD

∣∣ = 2.
∣∣ΓmultiS

∣∣ such that MOPOmono and MOPOmulti are
trained on the same amount of data. In this case, improvements of MOPOmulti−PcGrad cannot
be attributed to additional data collection but only to the impact of multi task optimizer.
Furthermore, the fact that MOPOmulti−PCGrad outperforms MOPOmulti−US shows that the
multi objectives optimizer is more efficient than just applying unitary scalarization on the two
policy objectives. It has to be noted that the PPO baseline reached competitive rate of colli-
sion with MOPOmulti−PCGrad because PPO is focused on improving safety performances while

15Remind that the value function is trained to regress the normalized value targets which explains low values
for bias and standard deviations.
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MOPOmulti−PcGrad searches a trade-off between safety and imitation due to the multi-task
optimizer. Since imitating the expert and avoiding collisions among replay workers are not
necessarily conflicting tasks (It suffices to closely imitate the expert to meet both constrains),
MOPOmulti−PcGrad finally reached better test performances than other baselines.
After having shown that using a multi task optimizer to update a policy with two sources of
rewards provides better performances than other baselines, we examine which multi task opti-
mizer is the most efficient. In the last section we introduced three optimizers: MGDA,PCGrad
and CaGrad that we will now use to implement the policy update in MOPOmulti. We observe

Optimizer ADE-5 ADE-15 CR%
MOPOPCGrad PCGRad 2.70 4.98 16.1
MOPOUS UnitaryScalarization 3.16 5.14 17.2

MOPOCAGrad CaGrad 2.68 4.95 15.3
MOPOMGDA MGDA 3.46 6.06 19.1

Figure 5.10: Test performances comparison between different multi-objective optimizers.

in fig.5.10 that CaGrad reached slightly better results than PCGrad which is consistent with
experiences realised in [113]. We chose an intermediate value c = 0.5 for the CaGrad constrain
constant such that it neither reduces to gradient descent neither to MGDA. We also observe
that CAGrad and PCGrad outperform MGDA and the unitary scalarization baselines. Since
MGDA optimizes the worst local update without explicit constrain on the average loss [113], it
may suffer from the fact that the data driven reward is constantly changing. In contrast, it is
proved that under mild conditions CaGrad and PCGrad converge to a local optimum of the
average loss when the number of losses is restricted to two. Since PCGrad is much faster in
execution in our setting we will continue the next experiences with this optimizer.

5.3.2.2 Learning with agents mixture

To learn a safe driving policy that generalizes how to avoid collisions in new environments, we
need to incorporate more realistic interactions in our training batches because other agents pop-
ulating the scene just replay their trajectories in the previous experiences. While replay agents
are necessary to recover an expert driving strategy thanks to AIL algorithms, their benefit
are more limited to learn realistic collision avoidance strategies. Since MOPO enables to in-
corporate synthetic experiences labeled with synthetic rewards, it appears that those synthetic
experiences could also include trajectories generated with different environment dynamics. The
use of replay workers was justified by the requirements of AIL algorithms whose simulation roll-
outs should stay as close as possible to the real driving episodes. Since we ignore how to animate
other agents of the traffic in a realistic way in new situations we realised that simply replaying
other agent trajectories was the best solution to stabilize AIL algorithm. In MOPO, the syn-
thetic training batch is not labelled with the data driven reward but just with the synthetic
reward so there is no more restriction on the environment dynamics. To better learn how to
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avoid collision with interactive agents we propose to include trajectories generated in presence
of interactive workers in the synthetic training batch. We can use centralized and decentral-
ized IDM models introduced in chap.2 that have relatively low collision rates when evaluated
with each other. Since we mix experiences generated with different environment dynamics in
the synthetic training batch ( Non interactive replay agents with Interactive Centralized or
Decentralized IDMs), we call this variation MOPOmulti−mix. We illustrate the differences of
MOPOmulti−mix during data collection in fig.5.11 where we can see that during synthetic data
collection some simulations will collect episodes with interactive workers while other simula-
tions will collect episodes with replay workers according to the scenario specifications. Note
that all synthetic episodes contained in the training batch ΓS are labeled by the same synthetic
reward function introduced in chap.4 but since the environment dynamic changes, each tra-
jectory should theoretically be evaluated with a value function associated to the appropriate
dynamic : V

πθk,Treplay
ϕk

(s) or V
πθk,TCIDM

ϕk
(s). To alleviate the computational load, we use a single

value approximator V
πθk,

ϕk
and we expect the state value approximation to get more pessimistic

which should still be sufficient for advantage estimation16.

Figure 5.11: Training procedure of MOPOmix

16In practice we could implement the value loss as follows: Es∼π[Relu(Vtarget(s) − Vϕ(s) + (Relu(Vϕ(s) −
Vtarget(s)))

2] but we found experimentally that the standard loss is sufficient.
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In the following, we investigate to which extent synthetic experiences that includes various envi-
ronment dynamics could improve performances and robustness of our driving policy. Note that
in this experience, all driving scenarios are populated with either replay workers or interactive
worker :Dencentralized IDM(DCIM) or Centralized IDM(CIDM) but all of them are extracted
from real episodes recordings. This means that the agent spawning process as well as the goal
assignment are still conform with the real recordings: it is only the behaviour of workers that
can change.
In order to measure performances during the test phase, we first created a test dataset composed
of 200 real driving scenarios of 15 seconds with replay agents that enables to compute imitation
metrics (ADE-5,ADE-15) as well as a rate of episodes with collision in presence of Non Interac-
tive agents denoted CR(NI). In addition we also added the same 200 scenarios but replay workers
are replaced with either Centralized IDM(CIDM) or Decentralized workers (DIDM) which en-
ables to compute two associate collision rates CR(DI)% and CR(CI)%. The statistics provided
by (CR(NI)%,CR(DI)%,CR(CI)%) show to which extent the driving policy is robust to changes
of environment dynamics in terms of collision avoidance. We train all our baselines on 750 real
driving scenario Dr(rd, Treplay) with only replay workers and labeled with the data driven re-
ward rd and on 750 synthetic scenarios labeled with the synthetic reward rs that compounds
a certain proportion of scenarios with replay workers :αreplay CIDM workers :αCIDM or DIDM
:αDIDM workers as indicated by Ds(rs, αreplay.Treplay + αCIDM .TCIDM + αDIDMTDIDM). The
scenario databases used for training and testing are detailed in annexes..2 in paragraph5.3.2.2.
We observe in tab.5.12 that using only replay workers does not enable to obtain low collision

training batch Synthetic experiences Real experiences
MOPOmulti−unreactive multi-dataset Ds(rs, Treplay) Dr(rd, Treplay)
MOPOmulti−CIDM multi-dataset Ds(rs, 12Treplay +

1
2
TInter−centralized) Dr(rd, Treplay)

MOPOmulti−DIMD multi-dataset Ds(rs, 12Treplay +
1
2
TInter−decentralized) Dr(rd, Treplay)

MOPOmulti−mix multi-dataset Ds(rs, 12Treplay +
1
4
TInter−centralized + 1

4
TInter−decentralized) Dr(rd, Treplay)

MOPOmulti−Interactive multi-dataset Ds(rs, Tinter−decentralized) Dr(rd, Treplay)

ADE-5 ADE-15 CR(NI)% CR(DIDM)% CR(CIDM)%
MOPOmulti−unreactive 2.70 4.98 16.1 21.2 11.6
MOPOmulti−CIDM 3.13 5.48 12.2 18.2 4.1
MOPOmulti−DIMD 2.78 5.24 9.3 7.6 4.3
MOPOmulti−mix 2.72 5.11 7.1 8.2 3.2

MOPOmulti−Interactive 2.72 5.17 10.4 7.1 5.9

Figure 5.12: Influence of environment dynamics on test performances of MOPO.

rates in presence of all kind of agents as indicated by the results of MOPOmulti−unreactive. We
see that including trajectories collected in presence of either CIDM workers or DIDM work-
ers enables to improve associate collision rates CR(DI)%,CR(CI)% at the expense of slightly
lower imitation performances on real scenarios as indicated by the results of MOPOmulti−CIMD

and MOPOmulti−DIMD. In case the synthetic training batch only contains episodes gener-
ated with CIDM agents we see that CR(CI) improves a lot at the expense of ADE-5,ADE-
15,CR(NI)% and CR(DI)% which means that the policy tends to get overspecialized to another
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kind of dynamic. If the synthetic training batch is generated with a full mixture of dynamics
Ds(rs, 12Treplay +

1
4
TInter−centralized + 1

4
TInter−decentralized) with a majority of trajectories gener-

ated in presence of replay workers, we obtain the best trade off as indicated by the results
of MOPOmulti−mix. We observe that MOPOmulti−mix reach the best imitation performances
and very competitive collision rates compared to the specialized baseline. More importantly
MOPOmulti−mix clearly outperforms the initial baseline MOPOmulti−unreactive that only uses
replay workers for training which proves that using diversified experiences with different envi-
ronment dynamics enables to make the policy more robust in terms of collision avoidance.
In the previous experience, we were restricted to real scenarios Real scenarios have the same
initial positions and goal assignments as real episodes recorded in the real world. with very
specific agent spawning processes and goal assignments. However those situations do not rep-
resent the full spectrum of situations that a basic driving agent is supposed to master. For
instance, we do not have driving scenes where the agent is alone and should just reach its goal
with almost constant speed. Similarly we do not have an initial state distribution for the ego
agent ρ0 that makes possible to start an episode on every positions of the road network in
presence of various density of neighbors. Therefore our driving agent can quickly specialize its
driving skills to a restricted set of scenarios that are over-represented in the scenario-database.
We propose to include in the set of synthetic scenarios a certain proportion of hand designed
scenarios that do not come from the real world. More specifically, we include the following
categories of hand crafted scenarios:

1. MonoAgent SMonoagent: the scenario compounds a single agent (actor) which has to join
an arbitrary destination on the road-network.

2. MultiAgent SMultiAgent(N,R) : the actor is spawned at an arbitrary yet consistent position
on the road and it is surrounded by a fixed number Na of agents located in a fixed radius
Ra around the actor. Each neighbor is assigned a destination and all neighbors initial
positions are non overlapping and consistent with the road-network. At the exception of
the actor, all other agents are animated by a DIDM model.

In the following, we analyse how the inclusion of handcrafted scenarios can influence the test
performance robustness of our driving policy. The test database we use to evaluate our policy
in tab.5.12 compounds 200 real scenarios of 15 seconds with replay workers, and the same
200 scenarios with DIDM workers to compute associate collision rate. We also use those 200
test scenarios to evaluate our policy alone in the scene by removing all the traffic. The train-
ing database is composed 750 real scenarios with replay workers and 750 synthetic scenarios
with a proportions of real world scenario:αreal and scenarios of other types as indicated by
αreal.Sreal+αmono.SMonoagent+αmulti(SMultiAgent(5,3)+SMultiAgent(3,3)+SMultiAgent(4,3)). The sce-
nario database used for training and testing is called Huge_R_Mixed_H and is detailed in
annexes..2. We first consider the test results relative to scenarios where the actor is alone
and expected to reach its goal without interruption. To check that the policy behaves the
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training batch Synthetic experiences type of scenario Real experiences
MOPOmulti−mix−SR multi-dataset Ds(rs, 12Treplay +

1
2
TInter−decentralized) Sreal Dr(rd, Treplay)

MOPOmulti−mix−SM(1,5) multi-dataset Ds(rs, 12Treplay +
1
2
TInter−decentralized) 1

2
Sreal + 1

4
SMonoagent

1
4
SMultiAgent(5,3) Dr(rd, Treplay)

MOPOmulti−mix−SM(1,5,3,4) multi-dataset Ds(rs, 12Treplay +
1
2
TInter−decentralized) 1

2
Sreal + 1

8
SMonoagent +

1
8
SMultiAgent(5,3) +

1
8
SMultiAgent(3,3) +

1
8
SMultiAgent(4,3) Dr(rd, Treplay)

ADE-5 ADE-15% CR(NI)% CR(DI)% Motionless%
MOPOmulti−mix−SR 2.78 5.24 9.3 7.6 11.2

MOPOmulti−mix−SM(1,5) 2.82 5.31 9.1 7.1 0.0
MOPOmulti−mix−SM(1,5,3,4) 2.86 5.34 8.7 6.2 0.2

Table 5.12: Influence of hand crafted scenarios on test performances of MOPO.

right way, we measure the amount of time it stays motionless during an episode and we con-
sider that it should not exceed 5% of the time to stay realistic. We observe in tab.5.12 that
MOPOmulti−mix−SR is not always able to reach its destination smoothly: the agent stays in
average 11.2 % of the time motionless in an episode while being alone as if neighbors were in the
surrounding, blocking its path. In contrast, other versions of MOPO stay less than 5% of the
time motionless (sometimes at the level of intersections) and they all reached their destination.
Those results show that the driving policy tends to poorly interpret the scene context if it is
only trained on real scenarios with numerous neighbors whereas including more diversity at the
scenario level helps to disambiguate simple situations.
Secondly, if we consider the collision rate with interactive agents (CR%(DI)), we observe that
the more we include diverse scenarios the lower it gets. This prove that domain randomization
plays a crucial role to acquire robust driving skills even if it cannot fully address the fundamen-
tal problem of causal confusion that prevent from generalizing robust decisions if appropriate
features are not used. Lastly we notice that including hand-crafted scenarios in the training
set does not significantly deteriorate imitation metrics despite the fact that they are affected.
This also reveals the limits of our approach because the environment dynamic induced by re-
play worker is still very different from the one induced by decentralized IDM workers. As a
consequence learning with both dynamic requires to trade off imitation and safety instead of
getting cumulative improvements. Another approach such as Robust Reinforcement learning
that optimize for the worst case could also help to improve this trade-off[149].

5.4 Conclusion

In this chapter, we study how to leverage expert driving demonstrations to learn realistic driv-
ing policies. In order to limit deviations with respect to the expert trajectory we leverage
Adversarial Imitation Learning that enables to guide a policy though simulation roll-outs with
a data driven reward. We showed that AIL enables to considerably reduce long term imitation
errors and we extensively explained how to stabilize the training process which opposes a policy
and a discriminator. We notably showed how to better exploit observation features to prop-
erly interpret policy environment transitions which revealed critical for constantly improving
imitation performances. We also modified our auto-regressive planner in order to limit gradual
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5.4. CONCLUSION

deviations with respect to the expert trajectory which resulted to competitive imitation perfor-
mances. Instead of directly outputting an action, we proposed to first predict a target position
before inferring the action in curvilinear coordinates which also enabled to exploit additional
simulation data. Finally we proposed a multi objective algorithm called MOPO that combines
the bests of AIL and RL in order to control the trade-off between safety and imitation per-
formances. We showed that MOPO can also benefit from synthetic interactions to improve its
robustness to environment variations without significantly loosing in imitation performances.
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Chapter 6

General conclusion

In this work, we introduced a method to learn realistic and safe driving policies for traffic
simulation. We first designed a driving simulator that enables to replay driving episodes ex-
tracted from the Interaction Dataset and we developed a salable training framework based on
Rllib library which makes possible to simulate driving episodes massively in parallel. In order
to animate traffic agents, we proposed a hierarchical driving policy composed of a traditional
routing module that generates a traffic free reference path that conditions a maneuver planner
implemented with a neural network that can take action in simulation. Actions are specified
in curvilinear coordinates with respect to the traffic free path which enables to easily guide
the agent during learning. Additionally, we proposed several neural network architectures to
encode the local scene context and showed that they enable to learn expert short term plans
when we extend decision making for multiple steps with a planner head. Subsequently we
improved our maneuver planner architecture such that it can better extract relevant features
for long term decision making since closed loop evaluations of the previous planner resulted in
poor performances. We proposed an auto-regressive planner augmented with simulation data
that better adapts to new situations during closed loop evaluation with compact plans with
low jerk. In order to incorporate basic traffic rules to improve safety in closed loop evaluation,
we also trained our maneuver planer with Reinforcement Learning(RL) based on a synthetic
reward. We show that decoupling the training of the value function and the policy while shar-
ing a common backbone enables to significantly improve test performances. We also noted
that including synthetic scenarios with interactive rule based agents enables to make the policy
safety more robust to environment variations. Since the maneuver planner trained with RL
does not necessarily reproduce expert driving strategies, we leveraged Adversarial Imitation
Learning(AIL) to better exploit expert demonstrations. We showed that AIL enables to signifi-
cantly improve long term imitation performances on various driving scenarios whereas standard
imitation learning as behavioural cloning tends to suffer from the distributional shift induced
by simulation. We analysed how to stabilize the AIL training by constantly balancing the
competition between the discriminator and the policy for maintaining gradual performances
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improvements. We also explored another method to reduce deviations with respect to the
expert trajectory and found out that predicting a robust target position before inferring the
action in curvilinear coordinates with our auto regressive planner augmented with simulation
data also led to competitive results. Finally, in order to combine the best of imitation learning
and reinforcement learning, we proposed a multi objective formulation of policy optimization.
We developed an algorithm called MOPO that enables to combine policy gradients computed
respectively on synthetic scenarios with a synthetic reward and on replayed scenarios with a
data driven reward learnt with AIL. We showed that using a multi objective optimizer enables
to alleviate local conflicts between objectives which led to a better trade off between safety and
imitation than other RL and AIL baselines. As a complement, we show that MOPO can obtain
balanced imitation and safety performances on a mixture of replayed, synthetic and interactive
scenarios while getting more robust to environment variations. As a conclusion, we summarize
the main contributions of this work. We first developed a realistic driving simulator that can
handle real driving scenes and demonstrations while integrating interactive traffic agents ani-
mated with rule based models. With this simulator, we proposed a method to learn humanlike
driving policies able to adapt to new situations on several real interactive maps. In order to
combine the benefits of domain knowledge and human driving demonstrations, we proposed
a multi objective algorithm called MOPO that is able to obtain the best trade off between
imitation and safety performances on various scenarios with either replayed traffic agents or
interactive traffic agents. We provide an exhaustive comparison in fig.6.1 in terms of imitation
and safety performances between all driving policies trained in this work which clearly shows
the superiority of our best MOPO variation for all kind of metrics.
Our approach enables to initialize a multi agent traffic simulation with a humanlike driving
policy with basic skills but several challenges remain for large scale practical applications. Op-
timizing imitation and safety metrics with a model free approach is not enough to interpret the
outcome of a driving episode. The agent should ideally plan and predict futures states before
taking action but standard actor-critic architectures tend to hide this process which makes dif-
ficult to understand failures during test. Additionally, existing AIL methods only match expert
and policy occupancy measures but do not enable to learn the true expert reward which limits
our understanding about expert imitation. Another limitation of our approach is the difficulty
to run multi agent simulation from a single agent policy learnt in an another environment dy-
namic. We showed that our most advanced driving policy can adapt to replay or rule based
agents but there is no guarantee that it can adapt to a traffic populated with clones of itself.
Consequently, additional multi-agent trainings may be required to properly coordinate agents
animated by our policy. Finally, we did not explicitly consider the diversity of traffic users in
the demonstrations because we condition our policy on a reference path which considerably
reduces the multi-modality of the driving behaviours. However, different driving styles exist
in a traffic and should be learned for large scale realistic traffic simulation. As a consequence,
future works in traffic simulation may largely benefit from initial driving policies learnt with
our method but should focus on the following research directions. Model based approaches that
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enable explicit planning look promising for improving the decisions interpretability. Recently,
several works[74, 17] proposed to combine AIL methods and tree search algorithms [211] in
order to better explore the space of future trajectories. Those methods provides potentially
a better policy improvement operator than the policy gradient but stay compatible with our
decentralized approach. However, the added value of those methods depend on the access to
a realistic and interactive environment which is not possible in practice because the traffic is
replayed from logs. Finding a method to relax this strict requirement is a major challenge
because contrary to pure control tasks, the dynamic of the traffic is only approximated in the
current setting.
A workaround would be to learn all driving polices of each agent in the scene simultaneously
as suggested in PS-GAIL[14] but it requires to share parameters among policies and it does
not easily converge even to a local optimum. Developing a scalable approach for deploying
multi agent imitation leaning on small traffic bubbles before extending it to larger area with
complementary MARL technics[96] is a promising research direction but requires considerable
engineering work and resources as shown in the SMARTS project[228]. Finally learning di-
verse driving policies is still an active research direction. While Burn-in GAIL [97] proposed
a method to discover latent driving style factors in expert demonstrations, Triple-GAIL [42]
proposed a conditional skill selection method, based on multiple expert modalities known a
priori. The multi modality of expert driving behaviors can be analysed with mode priors such
as level of aggressiveness but more subtle latent factors also come into play such as distractions
or stress and are difficult to disentangle from each other. A systematic analysis of the multi
modal nature of expert demonstrations is still an open problem.
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Figure 6.1: Closed loop test performances comparison on Huge_R_Basic with replayed agents be-
tween all driving policies trained in this work.
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.1. CONTRIBUTIONS

.1 Contributions

This work resulted in two publications for international conferences and a validated patent
submission.

• Koeberle, Yann, Stefano Sabatini, Dzmitry V. Tsishkou and Christophe Sabourin. “Learn-
ing Human-like Driving Policies from Real Interactive Driving Scenes.” International Con-
ference on Informatics in Control, Automation and Robotics (2022).

• Koeberle, Yann, Stefano Sabatini, Dzmitry V. Tsishkou and Christophe Sabourin. "Ex-
ploring the trade off between human driving imitation and safety for traffic simulation."
2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2022.

• International Patent Application, PCT/EP2021/074878, Title: SIMULATION BASED
METHOD AND DATA CENTER TO OBTAIN GEO-FENCED DRIVING POLICY,
filed in 2021
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.2. DATATASET COMPOSITION

.2 Datataset composition

.2.0.1 Huge R basic scenario database

TheHuge_R_basic databse is generated based on the road map calledDR_DEU_Roundabout_OF
from the Interaction dataset. The following table specify the composition of the training and
testing database. We specify which tracks we used to extract the scenario i.e [0-8], how many
time the scenario last in seconds (horizon) based on the associate expert trajectory length.
Note that Huge_R_basic contains scenarios where traffic workers are replay workers and since
scenarios are extracted from real world recordings we also have access to associate demonstra-
tions.

training number of scenarios horizon(s) type of workers Demonstrations available tracks
250 7.5 replay yes 0-8
250 10 replay yes 0-8
250 15 replay yes 0-8

evaluation 200 150 replay yes 9-11

Table 1: Composition of Huge_R_basic scenarios database

For experiences on causal confusion, we introduce smaller databases than theHuge_R_basic
database called respectively Small_R_basic database,Big_R_basic database which contains
respectively 50 and 150 scenarios for each horizons instead of 250.

.2.0.2 Huge I basic scenario database

Similarly to the Huge_R_basic database we also created another scenario database called
Huge_I_basic based on the intersection map called DR_USA_Intersection_EP0.

training number of scenarios horizons type of workers Demonstrations available tracks
250 7.5 replay yes 0-10
250 10 replay yes 0-10
250 15 replay yes 0-10

evaluation 200 150 replay yes 11-14

Table 2: Composition of Huge_I_basic scenarios database

.2.0.3 Huge M basic scenario database

Similarly to the Huge_R_basic database we also created another scenario database called
Huge_M_basic based on a map with lane merging called DR_DEU_Merging_MT .

training number of scenarios horizons type of workers Demonstrations available tracks
250 7.5 replay yes 0-8
250 10 replay yes 0-8
250 15 replay yes 0-8

evaluation 200 150 replay yes 9-11

Table 3: Composition ofHuge_M_basic scenarios database.
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.2. DATATASET COMPOSITION

.2.0.4 Scenario databases for horizon curriculum

For experiences with horizon curriculum, we created training databases based on 200 driving
scenarios of 15 seconds extracted from tracks [0-8] on the roundabout map called
DR_DEU_Roundabout_OF from interaction dataset. Depending on the horizon schedule,
we subdivide those 200 scenarios, in consecutive chunks of given temporal lengths to build the
database. For instance, for the finer curriculum : [2.5,5,7.5,10,12.5,15] we obtain the following
scenario database.

training number of scenarios horizons type of workers Demonstrations available
1200 2.5 replay yes
600 5 replay yes
300 7.5 replay yes
200 10 replay yes
200 12.5 replay yes
200 15 replay yes

Table 4: Composition of Huge_I_basic scenarios database

.2.0.5 Huge R mixed scenario database

For experiences of sec.5.3.2.2 we created different scenario databases with a mixture of real
scenarios and synthetic scenarios built from from real episodes but where replay agents are
replaced either with DIDM workers or CIDM workers. In sec.5.3.2.2, we specified the proportion
of synthetic scenarios with replay workers αreplay, DIDM workersαDIDM , and CIDM workers
αCIDM , we want among our synthetic scenarios. Given those proportions, we can build the
scenario databases as follows. Note that we always have αreplay + αCIDM + αDIDM = 1.0.

training number of scenarios horizons type of workers Demonstrations available tracks type of scenario
250 7.5 replay yes 0-8 real
250 10 replay yes 0-8 real
250 15 replay yes 0-8 real

αreplay.250 7.5 replay no 0-8 synthetic
αDIDM .250 7.5 DIDM no 0-8 synthetic
αCIDM .250 7.5 CIDM no 0-8 synthetic
αreplay.250 10.0 replay no 0-8 synthetic
αDIDM .250 10.0 DIDM no 0-8 synthetic
αCIDM .250 10.0 CIDM no 0-8 synthetic
αreplay.250 15.0 replay no 0-8 synthetic
αDIDM .250 15.0 DIDM no 0-8 synthetic
αCIDM .250 15.0 CIDM no 0-8 synthetic

evaluation 200 150 replay yes 9-11 real
200 150 synthetic(CIDM) no 9-11 synthetic
200 150 synthetic(DIDM) no 9-11 synthetic

Table 5: Composition of a generic mixed database with different environment dynamics.

.2.0.6 Huge R mixed H scenario database

For experiences of sec.5.3.2.2 we also created different scenario databases with a mixture of real
scenarios and synthetic scenarios where synthetic scenario also contains a certain proportion
of hand crafted scenarios : multiagent scenarios multiagent(N,R) where a specific number N
of agents surround the ego agent agent at a given distance R , or mono agent scenarios where
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the ego agent is alone on the map. Once the proportions of the different categories of synthetic
scenarios scenarios are specified, we can build the scenario database as explained in the table
bellow. Noe that we always have

∑L
i=1 αmultiagents(Ni,Ri) + αreplay + αmonoagent = 1

training number of scenarios horizons type of workers Demonstrations available tracks type of scenario
250 7.5 replay yes 0-8 real
250 10 replay yes 0-8 real
250 15 replay yes 0-8 real

αreplay.250 7.5 replay no 0-8 synthetic
αmultiagents(N1,R1).250 7.5 DIDM no 0-8 synthetic

...
...

...
...

...
...

αmultiagents(NL,RL).250 7.5 DIDM no 0-8 synthetic
αmonoagent.250 7.5 none no 0-8 synthetic
αreplay.250 10 replay no 0-8 synthetic

αmultiagents(N1,R1).250 10 DIDM no 0-8 synthetic
...

...
...

...
...

...
αmultiagents(NL,RL).250 10 DIDM no 0-8 synthetic

αmonoagent.250 10 none no 0-8 synthetic
αreplay.250 15 replay no 0-8 synthetic

αmultiagents(N1,R1).250 15 DIDM no 0-8 synthetic
...

...
...

...
...

...
αmultiagents(NL,RL).250 15 DIDM no 0-8 synthetic

αmonoagent.250 15 none no 0-8 synthetic
evaluation 200 150 replay yes 9-11 real

200 150 synthetic(DIDM) no 9-11 synthetic
200 150 none no 0-8 synthetic

Table 6: Composition of a generic mixed database with different environment dynamics and hand-
crafted scenarios.
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