Influence of organic matter from urban effluents on trace metal speciation and bioavailability in river under strong urban pressure
Abstract
In aquatic systems, dissolved organic matter (DOM) constitutes a key component of the carbon cycle controlling the transport, speciation, bioavailability and toxicity of trace metals. In this work, we study the spatio-temporal variability of the MO in terms of both quality and quantity from upstream to downstream the Parisian conurbation. Urban discharges which are the main source of allochthonous organic matter into the Seine at low water periods were also investigated. The DOM collected was fractionated according to polarity criteria into five fractions: hydrophobic, transphilic, hydrophilic acid, hydrophilic basic and hydrophilic neutral. Due to urban discharges a strong enrichment in the hydrophilic (HPI) fraction was observed for downstream sites. This hydrophilic fraction presented stronger binding capacities for copper than hydrophobic fraction from less urbanized site (upstream from Paris) and than Suwannee river fulvic acid (SRFA). Furthermore, biotests highlighted a significant copper bioavailability decrease in presence of hydrophilic DOM.