Continuity of the extremal decomposition of the free state for finite-spin models on Cayley trees - Université Paris-Est-Créteil-Val-de-Marne
Pré-Publication, Document De Travail Année : 2023

Continuity of the extremal decomposition of the free state for finite-spin models on Cayley trees

Loren Coquille
Christof Kuelske
  • Fonction : Auteur

Résumé

We prove the continuity of the extremal decomposition measure of the free state of low temperature Potts models, and more generally of ferromagnetic finite-spin models, on a regular tree, including general clock models. The decomposition is supported on uncountably many inhomogeneous extremal states, that we call glassy states. The method of proof provides explicit concentration bounds on branch overlaps, which play the role of an order parameter for typical extremals. The result extends to the counterpart of the free state (called central state) in a wide range of models which have no symmetry, allowing also the presence of sufficiently small field terms. Our work shows in particular that the decomposition of central states into uncountably many glassy states in finite-spin models on trees at low temperature is a generic phenomenon, and does not rely on symmetries of the Hamiltonian.

Dates et versions

hal-04389543 , version 1 (11-01-2024)

Identifiants

Citer

Loren Coquille, Christof Kuelske, Arnaud Le Ny. Continuity of the extremal decomposition of the free state for finite-spin models on Cayley trees. 2024. ⟨hal-04389543⟩
46 Consultations
0 Téléchargements

Altmetric

Partager

More