3D-HEVC Fast Partionining Algorithm Based on MD-CNN - Université Paris-Est-Créteil-Val-de-Marne
Communication Dans Un Congrès Année : 2024

3D-HEVC Fast Partionining Algorithm Based on MD-CNN

Résumé

The introduction of the 3D-HEVC encoding standard has revolutionized the field of 3D and multi-view video by effectively synthesizing 3D video with adequate depth effects using depth map sequences. However, achieving this involves computationally intensive operations, such as the quad-tree partitioning of Intra Coding Units (CUs). Researchers used multiple approaches including heuristic, machine learning and deep learning to address this complexity. We opted to train a Multi-Deep Convolutional Neural Network (MD-CNN) model specifically for depth maps and integrated it into the 3D-HEVC encoder. This modified encoder uses the independent views as a reference to encode the dependent depth map views. This strategy reduces the complexity of the 3D-HEVC video encoder by 70.12% while slightly reducing video compression efficiency by 0.02% and a small Peak signal-to-noise ratio (PSNR) penalty of -0.80 dB.
Fichier principal
Vignette du fichier
3dhevc_Omran 24.pdf (2.41 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04813138 , version 1 (01-12-2024)

Identifiants

  • HAL Id : hal-04813138 , version 1

Citer

Nacir Omran, Imen Werda, Amna Maraoui, Rostom Kachouri, Hamdi Belgacem. 3D-HEVC Fast Partionining Algorithm Based on MD-CNN. IEEE International Conference On Artificial Intelligence & Green Energy (ICAIGE 2024), Oct 2024, Hammamet, Tunisia. ⟨hal-04813138⟩
0 Consultations
0 Téléchargements

Partager

More