Retinal blood vessel segmentation from high resolution fundus image using deep learning architecture - Université Paris-Est-Créteil-Val-de-Marne
Communication Dans Un Congrès Année : 2024

Retinal blood vessel segmentation from high resolution fundus image using deep learning architecture

Résumé

The Retinal Vascular Tree (RVT) segmentation is required to diagnose various ocular pathologies. Recently, fundus images are acquired with higher resolution, which allows representing a large range of vessel thickness. However, standard Deep Learning (DL) architectures with static and small convolution size have failed to achieve higher segmentation performance. In this paper, we propose a novel DL architecture for RVT segmentation dedicated for high resolution fundus images. The idea consists at extending the U-net architecture by increasing (e.g. decreasing) convolution kernel size through convolution blocs, in correlation with downscale (e.g. upscale) of feature map dimensions. The proposed architecture is validated on HRF database, where average sensitivity is increased from 56% to 84%.
Fichier principal
Vignette du fichier
Article-013-2024_Henda AMINA2.pdf (308.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04813363 , version 1 (01-12-2024)

Identifiants

  • HAL Id : hal-04813363 , version 1

Citer

Henda Boudegga, Yaroub Elloumi, Asma Ben Abdallah, Rostom Kachouri, Nesrine Abroug, et al.. Retinal blood vessel segmentation from high resolution fundus image using deep learning architecture. AMINA 2024, Nov 2024, Monastir, Tunisia. ⟨hal-04813363⟩
0 Consultations
0 Téléchargements

Partager

More