Skip to Main content Skip to Navigation
Journal articles

Internal rotation and chlorine nuclear quadrupole coupling in 2-chloro-4-fluorotoluene explored by microwave spectroscopy and quantum chemistry

Abstract : 2-Chloro-4-fluorotoluene was investigated using a combination of molecular jet Fourier transform microwave spectroscopy in the frequency range from 5 to 21 GHz and quantum chemistry. The molecule experiences an internal rotation of the methyl group, which causes a fine splitting of all rotational transitions into doublets with separation on the order of a few tens of kHz. In addition, hyperfine effects originating from the chlorine nuclear quadrupole moment coupling its spin to the end-over-end rotation of the molecule are observed. The torsional barrier was derived using both the rho and the combined-axis-method, giving a value of 462.5(41) cm-1. Accurate rotational constants and quadrupole coupling constants were determined for two 35Cl and 37Cl isotopologues and compared with Bailey's semi-experimental quantum chemical predictions. The gas phase molecular structure was deduced from the experimental rotational constants supplemented with those calculated by quantum chemistry at various levels of theory. The values of the methyl torsional barrier and chlorine nuclear quadrupole coupling constants were compared with the theoretical predictions and with those of other chlorotoluene derivatives.
Document type :
Journal articles
Complete list of metadata

https://hal.u-pec.fr//hal-03182467
Contributor : Ha Vinh Lam Nguyen <>
Submitted on : Friday, March 26, 2021 - 1:02:58 PM
Last modification on : Thursday, April 15, 2021 - 3:08:17 PM

File

2Cl4FT_HAL.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

K Rajappan Nair, Sven Herbers, William Bailey, Daniel Obenchain, Alberto Lesarri, et al.. Internal rotation and chlorine nuclear quadrupole coupling in 2-chloro-4-fluorotoluene explored by microwave spectroscopy and quantum chemistry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Elsevier, 2021, 247, pp.119120. ⟨10.1016/j.saa.2020.119120⟩. ⟨hal-03182467⟩

Share

Metrics

Record views

36

Files downloads

59