Novel active method for the estimation of a building wall thermal resistance
Abstract
The thermal resistance of a wall can be readily measured in steady-state. However, such a state is seldomly achieved in a building because of the variation of outdoor conditions as well as the high thermal inertia of building materials. This paper introduces a novel active (dynamic) method to measure the thermal resistance of a building wall. Not only are active approaches less sensitive to external temperature variations, they also enable to perform measurements within only a few hours. In the proposed methodology, an artificial thermal load is applied to a wall (heating of the indoor air) and its thermal response is monitored. Inverse techniques are used with a reduced model to estimate the value of the thermal resistance of a wall from the measured temperatures and heat fluxes. The methodology was validated on a known load-bearing wall built inside a climate chamber. The results were in good agreement with reference values derived from a steadystate characterization of the wall. The method also demonstrated a good reproducibility.
Domains
Thermics [physics.class-ph]Origin | Publisher files allowed on an open archive |
---|