Prediction and evaluation of energy and exergy efficiencies of a nanofluid-based photovoltaic-thermal system with a needle finned serpentine channel using random forest machine learning approach - Université Paris-Est-Créteil-Val-de-Marne Access content directly
Journal Articles Engineering Analysis with Boundary Elements Year : 2023

Prediction and evaluation of energy and exergy efficiencies of a nanofluid-based photovoltaic-thermal system with a needle finned serpentine channel using random forest machine learning approach

Yuanlei Si
  • Function : Author
Frantisek Brumercik
  • Function : Author
Chunsheng Yang
  • Function : Author
Adam Glowacz
  • Function : Author
Zhenjun Ma
  • Function : Author
Maciej Sulowicz
  • Function : Author
Munish Kumar Gupta
  • Function : Author
Zhixiong Li
No file

Dates and versions

hal-04509007 , version 1 (18-03-2024)

Identifiers

Cite

Yuanlei Si, Frantisek Brumercik, Chunsheng Yang, Adam Glowacz, Zhenjun Ma, et al.. Prediction and evaluation of energy and exergy efficiencies of a nanofluid-based photovoltaic-thermal system with a needle finned serpentine channel using random forest machine learning approach. Engineering Analysis with Boundary Elements, 2023, 151, pp.328-343. ⟨10.1016/j.enganabound.2023.03.009⟩. ⟨hal-04509007⟩

Collections

LISSI UPEC
3 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More